核数据库是中子输运计算的基础。基于ENDF/B-Ⅶ.1评价库,采用NJOY制作了用于MCNP(Monte Carlo N-Particle Transport Code)程序的AHD1.0(Advanced hybrid database1.0)库,并从国际临界核安全手册(International Handbook of Evaluated C...核数据库是中子输运计算的基础。基于ENDF/B-Ⅶ.1评价库,采用NJOY制作了用于MCNP(Monte Carlo N-Particle Transport Code)程序的AHD1.0(Advanced hybrid database1.0)库,并从国际临界核安全手册(International Handbook of Evaluated Criticality Safety Benchmark Experiments,ICSBEP)中分别选取了高浓铀、中浓铀、低浓铀的快谱、中间谱及热谱的部分基准装置,用MCNP程序调用该数据库进行了临界基准验证,验证结果显示:调用该库的计算值与实验值符合较好,误差在0.5%以内,具有较高的精确度,满足核设计对数据库精度的要求。但对于部分含有W、Fe、Gd等结构材料、吸收材料的基准检验中,存在较大的偏差,造成这些偏差的主要原因是计算过程中核素的处理及评价数据库的来源,需要进一步的研究验证。展开更多
Monocarboxylate transporter-8 (MCT8) is a specific thyroid hormone transporter, essential for the uptake of thyroid hormone into target tissues. Mutations in the MCT8 gene have been identified as the cause of Allan-...Monocarboxylate transporter-8 (MCT8) is a specific thyroid hormone transporter, essential for the uptake of thyroid hormone into target tissues. Mutations in the MCT8 gene have been identified as the cause of Allan-Herndon-Dudley syndrome (AHDS). It has been reported that soy isoflavones influence thyroid hormone system and can interact with thyroid hormone transporter proteins. Therefore, the present study aimed to find out whether soy isoflavones (genistein, daidzein and glycitein) can be used as a natural inhibitor to target MCT8 in AHDS. Docking studies were performed for soy isoflavones in order to evaluate their binding affinity to MCT8 protein using AutoDock4 (version 4.2.6) and AutoDock Vina. After docking, the ligands were ranked according to their binding energy and the best lead compound was selected based on the least binding energy. The docking results indicated that daidzein possesses the lowest binding energy against MCT8. Moreover, it was found that the residues PRO-338, HIS-341, and GLU-348 were involved in hydrogen bond interactions with genistein and daidzein. This study suggests that daidzein is a promising natural inhibitor to target MCT8 in AHDS.展开更多
文摘核数据库是中子输运计算的基础。基于ENDF/B-Ⅶ.1评价库,采用NJOY制作了用于MCNP(Monte Carlo N-Particle Transport Code)程序的AHD1.0(Advanced hybrid database1.0)库,并从国际临界核安全手册(International Handbook of Evaluated Criticality Safety Benchmark Experiments,ICSBEP)中分别选取了高浓铀、中浓铀、低浓铀的快谱、中间谱及热谱的部分基准装置,用MCNP程序调用该数据库进行了临界基准验证,验证结果显示:调用该库的计算值与实验值符合较好,误差在0.5%以内,具有较高的精确度,满足核设计对数据库精度的要求。但对于部分含有W、Fe、Gd等结构材料、吸收材料的基准检验中,存在较大的偏差,造成这些偏差的主要原因是计算过程中核素的处理及评价数据库的来源,需要进一步的研究验证。
文摘Monocarboxylate transporter-8 (MCT8) is a specific thyroid hormone transporter, essential for the uptake of thyroid hormone into target tissues. Mutations in the MCT8 gene have been identified as the cause of Allan-Herndon-Dudley syndrome (AHDS). It has been reported that soy isoflavones influence thyroid hormone system and can interact with thyroid hormone transporter proteins. Therefore, the present study aimed to find out whether soy isoflavones (genistein, daidzein and glycitein) can be used as a natural inhibitor to target MCT8 in AHDS. Docking studies were performed for soy isoflavones in order to evaluate their binding affinity to MCT8 protein using AutoDock4 (version 4.2.6) and AutoDock Vina. After docking, the ligands were ranked according to their binding energy and the best lead compound was selected based on the least binding energy. The docking results indicated that daidzein possesses the lowest binding energy against MCT8. Moreover, it was found that the residues PRO-338, HIS-341, and GLU-348 were involved in hydrogen bond interactions with genistein and daidzein. This study suggests that daidzein is a promising natural inhibitor to target MCT8 in AHDS.