Aluminum-doped ZnO(AZO) thin films with thin film metallic glass of Zr(50)Cu(50) as buffer are prepared on glass substrates by the pulsed laser deposition. The influence of buffer thickness and substrate temperature o...Aluminum-doped ZnO(AZO) thin films with thin film metallic glass of Zr(50)Cu(50) as buffer are prepared on glass substrates by the pulsed laser deposition. The influence of buffer thickness and substrate temperature on structural, optical, and electrical properties of AZO thin film are investigated. Increasing the thickness of buffer layer and substrate temperature can both promote the transformation of AZO from amorphous to crystalline structure, while they show(100)and(002) unique preferential orientations, respectively. After inserting Zr(50)Cu(50) layer between the glass substrate and AZO film, the sheet resistance and visible transmittance decrease, but the infrared transmittance increases. With substrate temperature increasing from 25℃ to 520℃, the sheet resistance of AZO(100 nm)/Zr(50)Cu(50)(4 nm) film first increases and then decreases, and the infrared transmittance is improved. The AZO(100 nm)/Zr(50)Cu(50)(4 nm) film deposited at a substrate temperature of 360℃ exhibits a low sheet resistance of 26.7 ?/, high transmittance of 82.1% in the visible light region, 81.6% in near-infrared region, and low surface roughness of 0.85 nm, which are useful properties for their potential applications in tandem solar cell and infrared technology.展开更多
Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of ...Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of AZO thin films were investigated by X-ray diffractometer, scanning electron microscope, UV-visible spectrophotometer, four-point probe method, and Hall-effect measurement system. The results showed that all the films obtained were polycrystalline with a hexagonal structure and average optical transmittance of AZO thin films was over 85 % at different sputtering powers. The sputtering power had a great effect on optoelectronic properties of the AZO thin films, especially on the resistivity. The lowest resistivity of 4.5×10^-4 Ω·cm combined with the transmittance of 87.1% was obtained at sputtering power of 200 W. The optical band gap varied between 3.48 and 3.68 eV.展开更多
The photoelectric properties of conductive films are improved by doping Ag on aluminum-doped zinc oxide(AZO)films by laser induced forward transfer(LIFT).Firstly,the picosecond laser induced transfer mechanism of Ag f...The photoelectric properties of conductive films are improved by doping Ag on aluminum-doped zinc oxide(AZO)films by laser induced forward transfer(LIFT).Firstly,the picosecond laser induced transfer mechanism of Ag films was revealed by numerical simulation;then,different-thickness Ag films were deposited on the AZO films by picosecond LIFT.When the film thickness is 30 nm and,50 nm,we have successfully obtained some Ag-AZO films with better optoelectronic properties by adjusting the laser parameters.展开更多
The polymethyl methacrylate (PMMA) film doped with an azo dye ethyl-red (ER) film is employed to demonstrate the properties of an all-optical switch by its photoinduced dichroism and birefringence. We show how to ...The polymethyl methacrylate (PMMA) film doped with an azo dye ethyl-red (ER) film is employed to demonstrate the properties of an all-optical switch by its photoinduced dichroism and birefringence. We show how to enhance remarkably the modulation depth of all-optical switches almost to 100% by using two linear polarization beams: one beam is inclined at 45° with respect to the probing beam and serves as a pumping beam, and the other beam is perpendicular to the probing beam and used as an erasing beam. Furthermore, a maximum-to-minimum output intensity ratio of 2000:1 is achieved in experiment, which is very useful and important for optical storages and image displays.展开更多
Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well a...Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well as the electrical and optical properties of the films was investigated.The structure characterizations indicated that the as-grown films were single-phased with a wurtzite ZnO structure,showing a significant c-axis orientation.The films were well crystallized and exhibited better crystallinity and denser texture when deposited at higher P_(O2).At the optimum oxygen partial pressures of 10- 15 Pa,the AZO thin films were epitaxially grown on c-sapphire substrates with the(0001) plane parallel to the substrate surface,i e,the epitaxial relationship was AZO(000 1) // A1_2O_3(000 1).With increasing P_(O2),the value of Hall carrier mobility was increased remarkably while that of carrier concentration was decreased slightly,which led to an enhancement in electrical conductivity of the AZO thin films.All the films were highly transparent with an optical transmittance higher than 85%.展开更多
Thin films of hydrazine molybdenum (MoO4N4H6), a new inorganic azo dye, were synthesized and deposited on a commercial glass substrate using the chemical bath deposition technique. Subsequently, the optical transmis...Thin films of hydrazine molybdenum (MoO4N4H6), a new inorganic azo dye, were synthesized and deposited on a commercial glass substrate using the chemical bath deposition technique. Subsequently, the optical transmission, reflectivity, absorption, refractive index, and dielectric constant of hydrazine molybdenum were investigated using an ultraviolet-visible spectrophotometer. In addition, the film structure was analyzed by mid-infrared spectroscopy. The spectra of the films were found to be in line with those in the literature. The surface properties of all films were examined using a computer-controlled digital scanning electron microscope with a secondary electron detector. The areas of application and the technological advantages of this material were also considered.展开更多
From different reports, it (AZO) and indium-doped including usage areas. We nanocrystalline films with is realized that there is a need to consider all sides of aluminum-doped zinc oxide zinc oxide (IZO) thin film...From different reports, it (AZO) and indium-doped including usage areas. We nanocrystalline films with is realized that there is a need to consider all sides of aluminum-doped zinc oxide zinc oxide (IZO) thin films with their optical, luminescence and surface properties establish an assessment to carry out further information to summarize AZO and IZO impact of the layer number.展开更多
A kind of azo-containing resin(Azo-R)was synthesized by a simple way through the coupling reaction of 2-nitro-N-methyldiphenylamine-4-diazoresin(NDR)with phenol,and a new covalentely attached multilayer film from Azo-...A kind of azo-containing resin(Azo-R)was synthesized by a simple way through the coupling reaction of 2-nitro-N-methyldiphenylamine-4-diazoresin(NDR)with phenol,and a new covalentely attached multilayer film from Azo-R asH-donor and photosensitive diazoresin,diphenylamine-4-diazoresin(DR)as H-acceptor via H-bonding attraction by self-assembly technique has been fabricated.Following the decomposition of diazonium group of DR under exposure to UVlight,the H-bonds between the layers of the film convert to covalent bonds and the film becomes very stable toward polarsolvents or electrolyte aqueous solutions.Thus the UV-irradiated azo-containing films can be used to measure photocurrentin a conventional three-electrode photoelectrochemical cell using KCl as supporting electrolyte.It was confirmed that theazo-containing multilayer film is responsible for the photocurrent generation.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant No.51571085)the Key Science and Technology Program of Henan Province,China(Grant No.19212210210)+1 种基金the Foundation of Henan Educational Committee,China(Grant No.13B430019)the Henan Postdoctoral Science Foundation,China。
文摘Aluminum-doped ZnO(AZO) thin films with thin film metallic glass of Zr(50)Cu(50) as buffer are prepared on glass substrates by the pulsed laser deposition. The influence of buffer thickness and substrate temperature on structural, optical, and electrical properties of AZO thin film are investigated. Increasing the thickness of buffer layer and substrate temperature can both promote the transformation of AZO from amorphous to crystalline structure, while they show(100)and(002) unique preferential orientations, respectively. After inserting Zr(50)Cu(50) layer between the glass substrate and AZO film, the sheet resistance and visible transmittance decrease, but the infrared transmittance increases. With substrate temperature increasing from 25℃ to 520℃, the sheet resistance of AZO(100 nm)/Zr(50)Cu(50)(4 nm) film first increases and then decreases, and the infrared transmittance is improved. The AZO(100 nm)/Zr(50)Cu(50)(4 nm) film deposited at a substrate temperature of 360℃ exhibits a low sheet resistance of 26.7 ?/, high transmittance of 82.1% in the visible light region, 81.6% in near-infrared region, and low surface roughness of 0.85 nm, which are useful properties for their potential applications in tandem solar cell and infrared technology.
基金supported by open research fund from Guangxi Key Laboratory of New Energy and Building Energy Saving, China
文摘Al-doped ZnO thin films were prepared on glass substrate using an ultra-high density target by RF magnetron sputtering at room temperature. The microstructure, surface morphology, optical and electrical properties of AZO thin films were investigated by X-ray diffractometer, scanning electron microscope, UV-visible spectrophotometer, four-point probe method, and Hall-effect measurement system. The results showed that all the films obtained were polycrystalline with a hexagonal structure and average optical transmittance of AZO thin films was over 85 % at different sputtering powers. The sputtering power had a great effect on optoelectronic properties of the AZO thin films, especially on the resistivity. The lowest resistivity of 4.5×10^-4 Ω·cm combined with the transmittance of 87.1% was obtained at sputtering power of 200 W. The optical band gap varied between 3.48 and 3.68 eV.
基金partially supported by the Jiangsu Government Scholarship for Overseas Studies(No.JS-2018-253)the Jiangsu Natural Science Foundation Youth Fund(No.BK20150529)the National Science Foundation for Post-doctoral Scientists of China(No.2015M571678)。
文摘The photoelectric properties of conductive films are improved by doping Ag on aluminum-doped zinc oxide(AZO)films by laser induced forward transfer(LIFT).Firstly,the picosecond laser induced transfer mechanism of Ag films was revealed by numerical simulation;then,different-thickness Ag films were deposited on the AZO films by picosecond LIFT.When the film thickness is 30 nm and,50 nm,we have successfully obtained some Ag-AZO films with better optoelectronic properties by adjusting the laser parameters.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774152)the Science and Technology Foundation of Guangzhou City,China(Grant No.2008J1-C021) the Research Fund for the Doctoral Program of Higher Education of China(Grant No.20070055103)
文摘The polymethyl methacrylate (PMMA) film doped with an azo dye ethyl-red (ER) film is employed to demonstrate the properties of an all-optical switch by its photoinduced dichroism and birefringence. We show how to enhance remarkably the modulation depth of all-optical switches almost to 100% by using two linear polarization beams: one beam is inclined at 45° with respect to the probing beam and serves as a pumping beam, and the other beam is perpendicular to the probing beam and used as an erasing beam. Furthermore, a maximum-to-minimum output intensity ratio of 2000:1 is achieved in experiment, which is very useful and important for optical storages and image displays.
基金Funded by National Natural Science Foundation of China(Nos.51272195,51521001)111 project(No.B13035)+1 种基金Hubei Provincial National Natural Science Foundation(No.2015CFB724)Fundamental Research Funds for the Central Universities(Nos.2013-ZD-4,2014-KF-3)
文摘Al-doped ZnO(AZO) thin films were grown on c-sapphire substrates by laser ablation under different oxygen partial pressures(P_(O2)).The effect of P_(O2) on the crystal structure,preferred orientation as well as the electrical and optical properties of the films was investigated.The structure characterizations indicated that the as-grown films were single-phased with a wurtzite ZnO structure,showing a significant c-axis orientation.The films were well crystallized and exhibited better crystallinity and denser texture when deposited at higher P_(O2).At the optimum oxygen partial pressures of 10- 15 Pa,the AZO thin films were epitaxially grown on c-sapphire substrates with the(0001) plane parallel to the substrate surface,i e,the epitaxial relationship was AZO(000 1) // A1_2O_3(000 1).With increasing P_(O2),the value of Hall carrier mobility was increased remarkably while that of carrier concentration was decreased slightly,which led to an enhancement in electrical conductivity of the AZO thin films.All the films were highly transparent with an optical transmittance higher than 85%.
文摘Thin films of hydrazine molybdenum (MoO4N4H6), a new inorganic azo dye, were synthesized and deposited on a commercial glass substrate using the chemical bath deposition technique. Subsequently, the optical transmission, reflectivity, absorption, refractive index, and dielectric constant of hydrazine molybdenum were investigated using an ultraviolet-visible spectrophotometer. In addition, the film structure was analyzed by mid-infrared spectroscopy. The spectra of the films were found to be in line with those in the literature. The surface properties of all films were examined using a computer-controlled digital scanning electron microscope with a secondary electron detector. The areas of application and the technological advantages of this material were also considered.
文摘From different reports, it (AZO) and indium-doped including usage areas. We nanocrystalline films with is realized that there is a need to consider all sides of aluminum-doped zinc oxide zinc oxide (IZO) thin films with their optical, luminescence and surface properties establish an assessment to carry out further information to summarize AZO and IZO impact of the layer number.
基金This work is financially supported by NSFC(No.2027400250173002).
文摘A kind of azo-containing resin(Azo-R)was synthesized by a simple way through the coupling reaction of 2-nitro-N-methyldiphenylamine-4-diazoresin(NDR)with phenol,and a new covalentely attached multilayer film from Azo-R asH-donor and photosensitive diazoresin,diphenylamine-4-diazoresin(DR)as H-acceptor via H-bonding attraction by self-assembly technique has been fabricated.Following the decomposition of diazonium group of DR under exposure to UVlight,the H-bonds between the layers of the film convert to covalent bonds and the film becomes very stable toward polarsolvents or electrolyte aqueous solutions.Thus the UV-irradiated azo-containing films can be used to measure photocurrentin a conventional three-electrode photoelectrochemical cell using KCl as supporting electrolyte.It was confirmed that theazo-containing multilayer film is responsible for the photocurrent generation.