By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities ...By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.展开更多
Acoustic emission test and CT scanning are important techniques in the study of coal crack propagation. A uniaxial compression test was performed on coal samples by integrating CT and acoustic emission. The test compa...Acoustic emission test and CT scanning are important techniques in the study of coal crack propagation. A uniaxial compression test was performed on coal samples by integrating CT and acoustic emission. The test comparison analyzes the acoustic emission load and CT images for an effective observation on the entire process, from crack propagation to the samples' destruction. The box dimension of the coal samples' acoustic emission series and the CT images were obtained through calculations by using the authors' own program. The results show that the fractal dimension of both the acoustic emission energy and CT image increase rapidly, indicating coal and rock mass has entered a dangerous condition. Hence, measures should be taken to unload the pressure of the coal and rock mass. The test results provide intuitive observation data for the coal meso-damage model. The test contributes to in-depth studies of coal or rock crack propagation mechanisms and provides a theoretical basis for rock burst mechanism.展开更多
The brittleness and fracture behaviors of the sintered and the two-stage aged Dy-doped NdFeB magnets were studied by a unique method of acoustic emission testing and Vickers hardness indentation method in this paper.A...The brittleness and fracture behaviors of the sintered and the two-stage aged Dy-doped NdFeB magnets were studied by a unique method of acoustic emission testing and Vickers hardness indentation method in this paper.A detailed analysis on the crack propagation mechanism along the grain boundary of the main grain phase(Nd,Dy)_(2)Fe_(14)B was done.By comparing the acoustic emission energy count value(E_(n))with the Vickers hardness indentation load(P),it is shown that there is a linear relationship between En and P for both the sintered and the two-stage aged Dy-doped NdFeB magnets.According to the slope of En versus P linear lines,it can be found that the two-stage aged Dy-doped NdFeB magnet is more brittle than the sintered one.It is due to that the Ndrich grain boundary phase of the two-stage aged Dy-doped NdFeB magnet is formed as thin film and uniformly distributes around the main grain phase,which plays a significant role in increasing the intrinsic coercive force of the magnet,but decreasing its interface binding strength.Therefore,the resistance of crack propagation along the grain boundary decreases and the brittleness increases.展开更多
The oxidation tests of Ti_3AlC_2 were conducted at 1100 and 1200?C in air for 48 and 360 h, respectively,and the effects of high temperature oxidation on the flexural strength and hardness of Ti_3AlC_2 were investiga...The oxidation tests of Ti_3AlC_2 were conducted at 1100 and 1200?C in air for 48 and 360 h, respectively,and the effects of high temperature oxidation on the flexural strength and hardness of Ti_3AlC_2 were investigated. The microstructure, grain size and phase compositions of Ti_3AlC_2 substrate didn't change after oxidation, hence the oxide removed Ti_3AlC_2 substrate maintained its initial flexural strength and hardness. However, the flexural strength of oxide retained Ti_3AlC_2 decreased by about 5%. Acoustic emission monitoring indicated that during the process of three-point bending test, the formed Al_2O_3 scale on Ti_3AlC_2 surface fractured firstly in a cleavage manner, then the substrate/oxide interface cracked,and finally the Ti_3AlC_2 substrate fractured. The mechanical degradation was caused by the preferential formation of cracks in brittle Al_2O_3 scale as well as at defective and lacunose grain boundaries of the substrate where stress concentration generated. The mechanical degradation was insensitive to oxidation temperature and time in the present conditions. In addition, the surface hardness increased significantly after oxidation due to the formed hard Al_2O_3 scale on the surface of Ti_3AlC_2 substrate.展开更多
文摘By using MTS815 rock mechanics test system,a series of acoustic emission(AE) location experiments were performed under unloading confining pressure,increasing the axial stress.The AE space-time evolution regularities and energy releasing characteristics during deformation and failure process of coal of different loading rates are compared,the influence mechanism of loading rates on the microscopic crack evolution were studied,combining the AE characteristics and the macroscopic failure modes of the specimens,and the precursory characteristics of coal failure were also analyzed quantitatively.The results indicate that as the loading rate is higher,the AE activity and the main fracture will begin earlier.The destruction of coal body is mainly the function of shear strain at lower loading rate and tension strain at higher rate,and will transform from brittleness to ductility at critical velocities.When the deformation of the coal is mainly plasticity,the amplitude of the AE ringing counting rate increases largely and the AE energy curves appear an obvious ''step'',which can be defined as the first failure precursor point.Statics of AE information shows that the strongest AE activity begins when the axial stress level was 92-98%,which can be defined as the other failure precursor point.As the loading rate is smaller,the coal more easily reaches the latter precursor point after the first one,so attention should be aroused to prevent dynamic disaster in coal mining when the AE activity reaches the first precursor point.
文摘Acoustic emission test and CT scanning are important techniques in the study of coal crack propagation. A uniaxial compression test was performed on coal samples by integrating CT and acoustic emission. The test comparison analyzes the acoustic emission load and CT images for an effective observation on the entire process, from crack propagation to the samples' destruction. The box dimension of the coal samples' acoustic emission series and the CT images were obtained through calculations by using the authors' own program. The results show that the fractal dimension of both the acoustic emission energy and CT image increase rapidly, indicating coal and rock mass has entered a dangerous condition. Hence, measures should be taken to unload the pressure of the coal and rock mass. The test results provide intuitive observation data for the coal meso-damage model. The test contributes to in-depth studies of coal or rock crack propagation mechanisms and provides a theoretical basis for rock burst mechanism.
基金financially supported by the China National Major Special Project for the Rare Earth and Rare Metallic Materials ((2012) 1743)
文摘The brittleness and fracture behaviors of the sintered and the two-stage aged Dy-doped NdFeB magnets were studied by a unique method of acoustic emission testing and Vickers hardness indentation method in this paper.A detailed analysis on the crack propagation mechanism along the grain boundary of the main grain phase(Nd,Dy)_(2)Fe_(14)B was done.By comparing the acoustic emission energy count value(E_(n))with the Vickers hardness indentation load(P),it is shown that there is a linear relationship between En and P for both the sintered and the two-stage aged Dy-doped NdFeB magnets.According to the slope of En versus P linear lines,it can be found that the two-stage aged Dy-doped NdFeB magnet is more brittle than the sintered one.It is due to that the Ndrich grain boundary phase of the two-stage aged Dy-doped NdFeB magnet is formed as thin film and uniformly distributes around the main grain phase,which plays a significant role in increasing the intrinsic coercive force of the magnet,but decreasing its interface binding strength.Therefore,the resistance of crack propagation along the grain boundary decreases and the brittleness increases.
基金financial support of the project from the National Natural Science Foundation of China (Nos. 51571205 and 51271191)
文摘The oxidation tests of Ti_3AlC_2 were conducted at 1100 and 1200?C in air for 48 and 360 h, respectively,and the effects of high temperature oxidation on the flexural strength and hardness of Ti_3AlC_2 were investigated. The microstructure, grain size and phase compositions of Ti_3AlC_2 substrate didn't change after oxidation, hence the oxide removed Ti_3AlC_2 substrate maintained its initial flexural strength and hardness. However, the flexural strength of oxide retained Ti_3AlC_2 decreased by about 5%. Acoustic emission monitoring indicated that during the process of three-point bending test, the formed Al_2O_3 scale on Ti_3AlC_2 surface fractured firstly in a cleavage manner, then the substrate/oxide interface cracked,and finally the Ti_3AlC_2 substrate fractured. The mechanical degradation was caused by the preferential formation of cracks in brittle Al_2O_3 scale as well as at defective and lacunose grain boundaries of the substrate where stress concentration generated. The mechanical degradation was insensitive to oxidation temperature and time in the present conditions. In addition, the surface hardness increased significantly after oxidation due to the formed hard Al_2O_3 scale on the surface of Ti_3AlC_2 substrate.