The effects of 2-[p-(Dimethylamino)styryl] pyridine methiodide(DSPM)on slow response action potential(SRAP)and slow inward current(Isi) of guinea pig papillary muscles were studied by intracellular microelectrodes and...The effects of 2-[p-(Dimethylamino)styryl] pyridine methiodide(DSPM)on slow response action potential(SRAP)and slow inward current(Isi) of guinea pig papillary muscles were studied by intracellular microelectrodes and voltage clamp techniques.The APA and V_(max) of SRAP induced by high K ̄+were decreased after 50 min of perfusion with DSPM solu- tion. Isi was suppressed from a peak value of8.8± 1.6μA to 5.7± 1.8μA, The results indicated that DSPM has a selective blocking effect on calcium channel.展开更多
Brugada syndrome is a primary arrhythmia syndrome characterized by loss-of-function mutations in the SCN5A gene, which encodes for the cardiac Na^+ channel. In affected individuals, the risk of developing malignant v...Brugada syndrome is a primary arrhythmia syndrome characterized by loss-of-function mutations in the SCN5A gene, which encodes for the cardiac Na^+ channel. In affected individuals, the risk of developing malignant ventricular arrhythmias and sudden cardiac death are increased.展开更多
Previous studies have shown that ulnar nerve compound muscle action potential recorded by the conventional“belly-tendon”montage does not accurately and completely reflect the action potential of the ulnar nerve domi...Previous studies have shown that ulnar nerve compound muscle action potential recorded by the conventional“belly-tendon”montage does not accurately and completely reflect the action potential of the ulnar nerve dominating the abductor digiti minimi muscle due to the effects of far-field potentials of intrinsic hand muscles.A new method of ulnar nerve compound muscle action potential measurement was developed in 2020,which adjusts the E2 electrode from the distal tendon of the abductor digitorum to the middle of the back of the proximal wrist.This new method may reduce the influence of the reference electrode and better reflect the actual ulnar nerve compound muscle action potential.In this prospective cross-sectional study,we included 64 patients with amyotrophic lateral sclerosis and 64 age-and sex-matched controls who underwent conventional and novel ulnar nerve compound muscle action potential measurement between April 2020 and May 2021 in Peking University Third Hospital.The compound muscle action potential waveforms recorded by the new montage were unimodal and more uniform than those recorded by traditional montage.In the controls,no significant difference in the compound muscle action potential waveforms was found between the traditional montage and new montage recordings.In amyotrophic lateral sclerosis patients presenting with abductor digiti minimi spontaneous activity and muscular atrophy,the amplitude of compound muscle action potential-pE2 was significantly lower than that of compound muscle action potential-dE2(P<0.01).Using the new method,damaged axons were more likely to exhibit more severe amplitude decreases than those measured with the traditional method,in particular for patients in early stage amyotrophic lateral sclerosis.In addition,the decline in compound muscle action potential amplitude measured by the new method was correlated with a decrease in Revised Amyotrophic Lateral Sclerosis Functional Rating Scale scores.These findings suggest that the new ulnar nerve compound muscle action potential measurement montage reduces the effects of the reference electrode through altering the E2 electrode position,and that this method is more suitable for monitoring disease progression than the traditional montage.This method may be useful as a biomarker for longitudinal follow-up and clinical trials in amyotrophic lateral sclerosis.展开更多
ECAPs are the summary of multiple neurons’ spikes which could be recorded by a bidirectional stimulation-recording system via the cochlear implant,with the artifact elimination paradigms of forward-masking subtractio...ECAPs are the summary of multiple neurons’ spikes which could be recorded by a bidirectional stimulation-recording system via the cochlear implant,with the artifact elimination paradigms of forward-masking subtraction paradigm or alternating polarity paradigm.Three kinds of FDA approved cochlear implants support ECAP testing.This article is to summarize the clinical application of ECAP lest.ECAP test after insertion of electrode during implant operation has been widely used during cochlear implant surgery.In recent years.ECAP thresholds are also used to estimate the T levels and C levels helping programming.However,correlation between ECAP thresholds and psychophysical thresholds is affected by many factors.So far,ECAPs cannot yet be a good indicator of post-operative hearing and speech performance.展开更多
The distance between the two electrode tips can greatly influence the parameters used for record- ing compound nerve action potentials. To investigate the optimal parameters for these recordings in the rat median nerv...The distance between the two electrode tips can greatly influence the parameters used for record- ing compound nerve action potentials. To investigate the optimal parameters for these recordings in the rat median nerve, we dissociated the nerve using different methods and compound nerve action potentials were orthodromically or antidromically recorded with different electrode spac- ings. Compound nerve action potentials could be consistently recorded using a method in which the middle part of the median nerve was intact, with both ends dissociated from the surrounding fascia and a ground wire inserted into the muscle close to the intact part. When the distance be- tween two stimulating electrode tips was increased, the threshold and supramaximal stimulating intensity of compound nerve action potentials were gradually decreased, but the amplitude was not changed significantly. When the distance between two recording electrode tips was increased, the amplitude was gradually increased, but the threshold and supramaximal stimulating intensity exhibited no significant change. Different distances between recording and stimulating sites did not produce significant effects on the aforementioned parameters. A distance of 5 mm between recording and stimulating electrodes and a distance of 10 mm between recording and stimulating sites were found to be optimal for compound nerve action potential recording in the rat median nerve. In addition, the orthodromic compound action potential, with a biphasic waveform that was more stable and displayed less interference (however also required a higher threshold and higher supramaximal stimulus), was found to be superior to the antidromic compound action potential.展开更多
BACKGROUND: Myelination is a process whereby glial cells identify, adhere, wrap and enclose axons to form a spiral myelin sheath. OBJECTIVE: To investigate the effects of action potential-simulated weak electric fie...BACKGROUND: Myelination is a process whereby glial cells identify, adhere, wrap and enclose axons to form a spiral myelin sheath. OBJECTIVE: To investigate the effects of action potential-simulated weak electric fields on myelination in the central nervous system. DESIGN AND SETTING: This single-sample observation study was performed at the 324 Hospital of Chinese PLA. MATERIALS: Two 5 μm carbon fibers were provided by the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. One Sprague Dawley rat, aged 1 day, was used. METHODS: Cerebral cortex was harvested from the rat to prepare a suspension [(1 2)× 10^5/mL] containing neurons and glial cells. To simulate the axon, carbon fibers were placed at the bottom of the neuron-glial cell coculture dish, and were electrified with a single phase square wave current, 1×10^-2, 1×10^-3, 1×10^-4, and 1×10^-5 seconds, 1 Hz, 40 mV, and 10 μA, 30 minutes each, once a day for 10 consecutive days to simulate weak negative electric fields during action potential conduction. MAIN OUTCOME MEASURES: Glial cell growth and wrapping of carbon fibers were observed by phase contrast microscopy and immunohistochemistry. RESULTS: On culture day 7, cell groups were found to adhere to negative carbon fibers in the 1 × 10^-3 seconds square wave group. Cell membrane-like substances grew out of cell groups, wrapped the carbon fibers, and stretched to the ends of carbon fibers. Only some small and round cells close to negative carbon fibers were found on culture day 12. In the 1 × 10^-4 and 1 × 10^-3 seconds square wave groups, the negative carbon fibers were wrapped by oligodendrocytes or their progenitor cells. CONCLUSION: The local negative electric field which is generated by action potentials at 1×(10^-4-10^-3) seconds, 40 mV can directly initiate and participate in myelination in the central nervous system.展开更多
Action potentials(APs)in neurons are generated at the axon initial segment(AIS).AP dynamics,including initiation and propagation,are intimately associated with neuronal excitability and neurotransmitter release kineti...Action potentials(APs)in neurons are generated at the axon initial segment(AIS).AP dynamics,including initiation and propagation,are intimately associated with neuronal excitability and neurotransmitter release kinetics.Most learning and memory studies at the single-neuron level have relied on the use of animal models,most notably rodents.Here,we studied AP initiation and propagation in cultured hippocampal neurons from Sprague-Dawley(SD)rats and C57BL/6(C57)mice with genetically encoded voltage indicator(GEVI)-based voltage imaging.Our data showed that APs traveled bidirectionally in neurons from both species;forward-propagating APs(fpAPs)had a different speed than backpropagating APs(bpAPs).Additionally,we observed distinct AP propagation characteristics in AISs emerging from the somatic envelope compared to those originating from dendrites.Compared with rat neurons,mouse neurons exhibited higher bpAP speed and lower fpAP speed,more distally located ankyrin G(AnkG)in AISs,and longer Nav1.2 lengths in AISs.Moreover,during AIS plasticity,AnkG and Nav1.2 showed distal shifts in location and shorter lengths of labeled AISs in rat neurons;in mouse neurons,however,they showed a longer AnkG-labeled length and more distal Nav1.2 location.Our findings suggest that hippocampal neurons in SD rats and C57 mice may have different AP propagation speeds,different AnkG and Nav1.2 patterns in the AIS,and different AIS plasticity properties,indicating that comparisons between these species must be carefully considered.展开更多
Electrical stimulation of the mammalian neurohypophysial infundibular stalk evokes the entry of Nat and Ca^(2+) into the neurosecretory terminals during the action potential.These events,in turn,increase intracellular...Electrical stimulation of the mammalian neurohypophysial infundibular stalk evokes the entry of Nat and Ca^(2+) into the neurosecretory terminals during the action potential.These events,in turn,increase intracellular Ca^(2+) and activate NaK-and Ca-ATPases,prompting the mitochondria to increase oxidative phosphorylation which can be monitored by recording the changes in FAD and NADHfluorescence.This paper reflects our efforts to determine whether or not modulating the capacity of mitochondria to produce ATP,by changing the concentrations of two important substrates of the Krebs cycle of the nerve terminal mitochondria,pyruvate and glucose,has an effect on the intrinsicfluorescence changes triggered by action potential stimulation.展开更多
BACKGROUND: Both hypoxia and.carbon dioxide retention can damage phrenic nerve and muscle conduction, as well as diaphragm function. Diaphragm compound muscle action potential and phrenic nerve conduction time are re...BACKGROUND: Both hypoxia and.carbon dioxide retention can damage phrenic nerve and muscle conduction, as well as diaphragm function. Diaphragm compound muscle action potential and phrenic nerve conduction time are reliable indicators for measuring phrenic nerve and diaphragm function. OBJECTIVES: To verify the hypothesis that changes of phrenic nerve conduction time (PNCT) and diaphragm compound muscle action potential (CMAP) in obstructive sleep apnea-hypopnea syndrome (OSAHS) patients might contribute to the decline of phrenic nerve and diaphragm function. PNCT and CMAP were measured with multipair esophageal electrodes combined with unilateral magnetic stimulation. DESIGN, TIME AND SETTING: Case controlled study. The experiment was carried out in Guangzhou Institute of Respiratory Disease, Guangzhou MediCal College, from June 2005 to April 2006. PARTICIPANTS: Twenty seven OSAHS patients and eight primary snoring subjects from Guangzhou Institute of Respiratory Disease, Guangzhou Medical College were recruited and all subjects were diagnosed by polysomnography (PSG). Sixteen healthy, non-snoring subjects in the hospital for medical examination during the same time period were selected as the control group. METHODS: Esophageal electrodes, made by Guangzhou Institute of Respiratory Disease, combined with unilateral magnetic stimulation, were used to measure PNCT and CMAP of all subjects. PNCT was defined as the time from stimulation artifact to the onset of CMAP and diaphragm CMAP amplitude was measured from peak to peak. Oxygen desaturation index and apnea-hypopnea index were measured using PSG, and their relevance to PNCT and CMAP were analyzed. PNCT and CMAP in five OSAHS patients were repeatedly measured after effective nasal continuous positive airway pressure treatment for more than 2 months. MAIN OUTCOME MEASURES: (1) PNCT and diaphragm CMAP of subjects in each group. (2) Relevance of oxygen desaturation index and apnea-hypopnea index to PNCT and CMAP. (3) Changes of PNCT and CMAP of OSAHS patients before and after treatment. RESULTS: All subjects were included in the analyzed results. (1) PNCT of the OSAHS group was significantly longer compared to that of the control and primary snore groups, while CMAP of the OSAHS group was significantly lower (P 〈 0.05). (2) PNCT and CMAP recorded from both sides correlated significantly with oxygen desaturation index and with apnea-hypopnea index (P 〈 0.01 ). (3) PNCT shortened significantly after effective nasal continuous positive airway pressure treatment for more than 2 months ( P 〈 0.05). CONCLUSION: Prolongation of PNCT and decrease of CMAP might contribute to the decline of phrenic nerve and diaphragm function caused by repeated nocturnal hypoxia and carbon dioxide retention. The impairment of the phrenic nerve might also decrease diaphragm function.展开更多
Summary: The effect of acute ischemia on the electrophysiological characteristics of the three layers myocardium of canine in vivo was investigated. Twelve canines were divided into two groups randomly: acute ischem...Summary: The effect of acute ischemia on the electrophysiological characteristics of the three layers myocardium of canine in vivo was investigated. Twelve canines were divided into two groups randomly: acute ischemia (AI) group and sham operation (SO) group. By using the monophasic action potential (MAP) technique, MAP and effective refractory period (ERP) of the three layers myocardium were measured by specially designed plunge needle electrodes and the transmural dispersion of repolarization (TDR) and transmural dispersion of ERP (TDE) were analyzed. The results showed that in the AI group, MAP duration (MAPD) was shortened from 201.67±21.42 ms to 169.50±13.81 ms (P〈0.05), but ERP prolonged to varying degrees and TDE increased during ischemia. In the SO group, MAPD and ERP did not change almost. Among of the three layers myocardium of canine, MAPD was coincident in two groups. It was concluded that during acute ischemia, MAPD was shortened sharply, but there was no significant difference among of the three layers myocardium. The prolonged ERP was concomitant with increased TDE during acute ischemia, which may play an important role in the occurrence of arrhythmias induced by acute ischemia. These findings may have important implications in arrhythmogenesis.展开更多
Neurologists define the transmission of nerve impulses across the membranes of the neural cells as a result of difference in the concentration of ions while they measured an electric potential, called as an action pot...Neurologists define the transmission of nerve impulses across the membranes of the neural cells as a result of difference in the concentration of ions while they measured an electric potential, called as an action potential, which allows the propagation of such nerve impulses as electrical signals. Such measurements should guide them to a logical explanation of the nerve impulses as electric charges driven by the measured action potential. However, such logical conclusion, or explanation, is ignored due to a wrong definition of the flow of electric charges as a flow of electrons that cannot pass through neural networks. According to recent studies, electric charges are properly defined as electromagnetic (EM) waves whose energy is expressed as the product of its propagating electric potential times their entropy flow which is adhered to the flow of such energy. Such definition matches the logical conclusion of the nerve impulses as electric charges, as previously explained, and defines the entropy of the neural network, measured by Ammeters, in Watt or Joule/Volt. The measured entropy represents a neurodiagnostic property of the neural networks that measures its capacity to allow the flow of energy per unit action potential. Theoretical verification of the innovative definition of nerve impulses is presented by following an advanced entropy approach. A proper review of the machine records of the stimulating electric charges, used in the diagnosis of the neural networks, and the stimulated nerve impulses or stimulated responses, represents practical verifications of the innovative definitions of the electric charges and the nerve impulses. Comparing the functioning of the thermoelectric generators and the brain neurons, such neurons are defined as thermoelectric generators of the electric nerve impulses and their propagating, or action, potential.展开更多
In this paper, the authors investigate compound action potentials formed when the underlying tract's axons have current-mediated coupling amongst themselves, and no field-mediated coupling. The key finding of the ...In this paper, the authors investigate compound action potentials formed when the underlying tract's axons have current-mediated coupling amongst themselves, and no field-mediated coupling. The key finding of the paper is that, for the case of biophysically inhomogeneous axon tracts, the compound action potential is governed by a Hodgkin-Huxley like equation itself in certain cases. The paper extends an earlier result for the identical axon case.展开更多
Objective. To testify the phenomenon that large amplitude action potential appears at the early stage of facial paralysis, and to search for the mechanism through clinical and experimental ...Objective. To testify the phenomenon that large amplitude action potential appears at the early stage of facial paralysis, and to search for the mechanism through clinical and experimental studies. Patients(animals) and methods. The action potentials of the orbicular ocular and oral muscles were recorded in 34 normal persons by electromyogram instruments. The normal range of amplitude percentage was found out according to the normal distribution. One hundred patients with facial paralysis were also studied. The action potentials of facial muscles were recorded in 17 guinea pigs before and after the facial nerve was compressed and the facial nerve was examined under electromicroscope before and after the compression. Results. The amplitude percentage of the suffered side to the healthy side was more than 153 percent in 6 of the 100 patients. Large amplitude action potential occured in 35 per cent guinea pigs which were performed the experiment of facial nerve compression. Electromicroscopic examination revealed separation of the lammae of the facial nerve’s myelin sheath in the guinea pigs which exhibited large amplitude action potential. Conclusion. The facial nerve exhibited a temporary over excitability at the early stage of facial nerve injury in some patients and guinea pigs. If the injury was limited in the myelin sheath, the prognosis was relatively good.展开更多
Action potential,which is the foundation of physiology and electrophysiology,is most vital in physiological research.This work starts by detecting cardiac electrophysiology(tachyarrhythmias),combined with all spontane...Action potential,which is the foundation of physiology and electrophysiology,is most vital in physiological research.This work starts by detecting cardiac electrophysiology(tachyarrhythmias),combined with all spontaneous discharge phenomena in vivo such as wound currents and spontaneous neuropathic pain,elaborates from generation,induction,initiation,to all of the features of spontaneous high-frequency action potential--SSL action potential mechanism,i.e.,connecting-end hyperpolarization initiates spontaneous depolarization and action potential in somatic membrane.This work resolves the conundrums of in vivo spontaneous discharge in tachyarrhythmias,wounds,denervation supersensitivity,neurogenic pain(hyperalgesia and allodynia),epileptic discharge and diabetic pain in pathophysiological and clinical researches that have puzzled people for a hundred years.展开更多
Neural information processing is tightly coupled to both energy consumption and derivation from substrates.In this study,the energy function of the neuron during the action potential(AP)is described and analyzed.It ha...Neural information processing is tightly coupled to both energy consumption and derivation from substrates.In this study,the energy function of the neuron during the action potential(AP)is described and analyzed.It has been observed that energy consumption during the AP does not match predictions of the conventional theory of neural energy dynamics.On short time scales,neural energy expenditure shifts between positive and negative phases.During the AP,the energy source switches from neuronal stores(positive expenditure or net consumption)to exploitation of external substrates,specifically the glucose and oxygen carried in cerebral blood(the negative consumption phase).Based on the idea of reductionism,this paper demonstrates how ion channels,membrane pumps and transporters,ionotropic and metabotropic receptor signaling pathways,astrocyte glycolysis and the production lactate,and the glutamate-glutamine cycle all serve to relate cerebral blood flow and neuronal metabolism to neuronal activity and so maintain neuronal energy charge during the AP.展开更多
The back-propagating action potential(bpAP)is crucial for neuronal signal integration and synaptic plasticity in dendritic trees.Its properties(velocity and amplitude)can be affected by dendritic morphology.Due to lim...The back-propagating action potential(bpAP)is crucial for neuronal signal integration and synaptic plasticity in dendritic trees.Its properties(velocity and amplitude)can be affected by dendritic morphology.Due to limited spatial resolution,it has been difficult to explore the specific propagation process of bpAPs along dendrites and examine the influence of dendritic morphology,such as the dendrite diameter and branching pattern,using patch-clamp recording.By taking advantage of Optopatch,an all-optical electrophysiological method,we made detailed recordings of the real-time propagation of bpAPs in dendritic trees.We found that the velocity of bpAPs was not uniform in a single dendrite,and the bpAP velocity differed among distinct dendrites of the same neuron.The velocity of a bpAP was positively correlated with the diameter of the dendrite on which it propagated.In addition,when bpAPs passed through a dendritic branch point,their velocity decreased significantly.Similar to velocity,the amplitude of bpAPs was also positively correlated with dendritic diameter,and the attenuation patterns of bpAPs differed among different dendrites.Simulation results from neuron models with different dendritic morphology corresponded well with the experimental results.These findings indicate that the dendritic diameter and branching pattern significantly influence the properties of bpAPs.The diversity among the bpAPs recorded in different neurons was mainly due to differences in dendritic morphology.These results may inspire the construction of neuronal models to predict the propagation of bpAPs in dendrites with enormous variation in morphology,to further illuminate the role of bpAPs in neuronal communication.展开更多
The axon initial segment(AIS)is a specialized structure that controls neuronal excitability via action potential(AP)generation.Currently,AIS plasticity with regard to changes in length and location in response to neur...The axon initial segment(AIS)is a specialized structure that controls neuronal excitability via action potential(AP)generation.Currently,AIS plasticity with regard to changes in length and location in response to neural activity has been extensively investigated,but how AIS diameter is regulated remains elusive.Here we report that COUP-TFI(chicken ovalbumin upstream promotor-transcription factor 1)is an essential regulator of AIS diameter in both developing and adult mouse neocortex.Either embryonic or adult ablation of COUP-TFI results in reduced AIS diameter and impaired AP generation.Although COUP-TFI ablations in sparse single neurons and in populations of neurons have similar impacts on AIS diameter and AP generation,they strengthen and weaken,respectively,the receiving spontaneous network in mutant neurons.In contrast,overexpression of COUP-TFI in sparse single neurons increases the AIS diameter and facilitates AP generation,but decreases the receiving spontaneous network.Our findings demonstrate that COUP-TFI is indispensable for both the expansion and maintenance of AIS diameter and that AIS diameter fine-tunes action potential generation and synaptic inputs in mammalian cortical neurons.展开更多
This study presents a novel compound muscle action potential(CMAP)examination of motor unit changes in paretic muscle post stroke.CMAP scan of the first dorsal interosseous(FDI)muscle was performed bilaterally in 16 c...This study presents a novel compound muscle action potential(CMAP)examination of motor unit changes in paretic muscle post stroke.CMAP scan of the first dorsal interosseous(FDI)muscle was performed bilaterally in 16 chronic stroke subjects.Various parameters were derived from the CMAP scan to examine paretic muscle changes,including CMAP amplitude,D50,step index(STEPIX)and amplitude index(AMPIX).A significant decrease in CMAP amplitude and STEPIX was observed in paretic muscles compared with contralateral muscles(CMAP amplitude:paretic(9.0±0.5)mV,contralateral(11.3±0.9)mV,P=0.024;STEPIX:paretic 101.2±7.6,contralateral 121.9±6.5,P=0.020).No significant difference in D50 and AMPIX was observed between the paretic and contralateral sides(P>0.05).The findings revealed complex paretic muscle changes including motor unit degeneration,muscle fiber denervation,reinnervation and atrophy,providing useful insights to help understand neuromuscular mechanisms associated with weakness and other functional deterioration post stroke.The CMAP scan experimental protocols and the applied processing methods are noninvasive,convenient,and automated,offering practical benefits for clinical application.展开更多
Many rat taste receptor cells conduct action potentials(APs).APs had a mean threshold of -35 mV(n=95 cells)and a spike height of 52mV above threshold in current clamp(hold= -80mV).Aps could be classified into two sign...Many rat taste receptor cells conduct action potentials(APs).APs had a mean threshold of -35 mV(n=95 cells)and a spike height of 52mV above threshold in current clamp(hold= -80mV).Aps could be classified into two significantly different (P<0.001) groups-fast,with short half-time durations and large outward currents (mean1.3 ms and 2.7nA),and slow,with long duration and small outward currents(mean9.2ms and 0. 29nA).AP upstrokes were conducted by TTX-sensitive sodium currents whereas the downstroke by TEA-blockable outward currents. Voltage dependent analysis of outward current separated transient and sustained components.The transient component was specifically blocked by 4-AP(1mmol/L).A calcium-dependent outward component was also revealed modulating voltage and external calcium concentration.The fast recovery phase of the AP appears related the sustained outward current whereas the after hyperpolarization(AHP) was blocked by 4AP suggesting a significant contribution of the transient component.Forskolin (FSK),which elevates cAMP,reversibly blocked the majority of the sustained current without influencing the transient. FSK greatly exaggerated the AHP without changing the spike height or duration. These data suggest that several components of the outward current contribute specifically to the gustatory AP and that the AP may be modulated by cyclic nucleotides.展开更多
文摘The effects of 2-[p-(Dimethylamino)styryl] pyridine methiodide(DSPM)on slow response action potential(SRAP)and slow inward current(Isi) of guinea pig papillary muscles were studied by intracellular microelectrodes and voltage clamp techniques.The APA and V_(max) of SRAP induced by high K ̄+were decreased after 50 min of perfusion with DSPM solu- tion. Isi was suppressed from a peak value of8.8± 1.6μA to 5.7± 1.8μA, The results indicated that DSPM has a selective blocking effect on calcium channel.
文摘Brugada syndrome is a primary arrhythmia syndrome characterized by loss-of-function mutations in the SCN5A gene, which encodes for the cardiac Na^+ channel. In affected individuals, the risk of developing malignant ventricular arrhythmias and sudden cardiac death are increased.
基金supported by the National Natural Science Foundation of China,Nos.81873784,82071426Clinical Cohort Construction Program of Peking University Third Hospital,No.BYSYDL2019002(all to DSF)。
文摘Previous studies have shown that ulnar nerve compound muscle action potential recorded by the conventional“belly-tendon”montage does not accurately and completely reflect the action potential of the ulnar nerve dominating the abductor digiti minimi muscle due to the effects of far-field potentials of intrinsic hand muscles.A new method of ulnar nerve compound muscle action potential measurement was developed in 2020,which adjusts the E2 electrode from the distal tendon of the abductor digitorum to the middle of the back of the proximal wrist.This new method may reduce the influence of the reference electrode and better reflect the actual ulnar nerve compound muscle action potential.In this prospective cross-sectional study,we included 64 patients with amyotrophic lateral sclerosis and 64 age-and sex-matched controls who underwent conventional and novel ulnar nerve compound muscle action potential measurement between April 2020 and May 2021 in Peking University Third Hospital.The compound muscle action potential waveforms recorded by the new montage were unimodal and more uniform than those recorded by traditional montage.In the controls,no significant difference in the compound muscle action potential waveforms was found between the traditional montage and new montage recordings.In amyotrophic lateral sclerosis patients presenting with abductor digiti minimi spontaneous activity and muscular atrophy,the amplitude of compound muscle action potential-pE2 was significantly lower than that of compound muscle action potential-dE2(P<0.01).Using the new method,damaged axons were more likely to exhibit more severe amplitude decreases than those measured with the traditional method,in particular for patients in early stage amyotrophic lateral sclerosis.In addition,the decline in compound muscle action potential amplitude measured by the new method was correlated with a decrease in Revised Amyotrophic Lateral Sclerosis Functional Rating Scale scores.These findings suggest that the new ulnar nerve compound muscle action potential measurement montage reduces the effects of the reference electrode through altering the E2 electrode position,and that this method is more suitable for monitoring disease progression than the traditional montage.This method may be useful as a biomarker for longitudinal follow-up and clinical trials in amyotrophic lateral sclerosis.
基金supported by grants from the National Basic Research Program of China(973 Program)(#2012CB967900)Science and Technology Innovation Nursery Foundation of PLA General Hospital(13KMM14)Clinical Research Supporting Foundation of PLA General Hospital(2012FC-TSYS-3056)
文摘ECAPs are the summary of multiple neurons’ spikes which could be recorded by a bidirectional stimulation-recording system via the cochlear implant,with the artifact elimination paradigms of forward-masking subtraction paradigm or alternating polarity paradigm.Three kinds of FDA approved cochlear implants support ECAP testing.This article is to summarize the clinical application of ECAP lest.ECAP test after insertion of electrode during implant operation has been widely used during cochlear implant surgery.In recent years.ECAP thresholds are also used to estimate the T levels and C levels helping programming.However,correlation between ECAP thresholds and psychophysical thresholds is affected by many factors.So far,ECAPs cannot yet be a good indicator of post-operative hearing and speech performance.
基金supported by grants from Hand Function Research Center in Fudan University,Chinathe Project 211 in China,No.211XKZ
文摘The distance between the two electrode tips can greatly influence the parameters used for record- ing compound nerve action potentials. To investigate the optimal parameters for these recordings in the rat median nerve, we dissociated the nerve using different methods and compound nerve action potentials were orthodromically or antidromically recorded with different electrode spac- ings. Compound nerve action potentials could be consistently recorded using a method in which the middle part of the median nerve was intact, with both ends dissociated from the surrounding fascia and a ground wire inserted into the muscle close to the intact part. When the distance be- tween two stimulating electrode tips was increased, the threshold and supramaximal stimulating intensity of compound nerve action potentials were gradually decreased, but the amplitude was not changed significantly. When the distance between two recording electrode tips was increased, the amplitude was gradually increased, but the threshold and supramaximal stimulating intensity exhibited no significant change. Different distances between recording and stimulating sites did not produce significant effects on the aforementioned parameters. A distance of 5 mm between recording and stimulating electrodes and a distance of 10 mm between recording and stimulating sites were found to be optimal for compound nerve action potential recording in the rat median nerve. In addition, the orthodromic compound action potential, with a biphasic waveform that was more stable and displayed less interference (however also required a higher threshold and higher supramaximal stimulus), was found to be superior to the antidromic compound action potential.
基金the National Natural Science Foundation of China, No. 30170311Development Program of Chengdu Military Area Command of Chinese PLA during the Tenth-Five-Year Plan Period, No. 04A007
文摘BACKGROUND: Myelination is a process whereby glial cells identify, adhere, wrap and enclose axons to form a spiral myelin sheath. OBJECTIVE: To investigate the effects of action potential-simulated weak electric fields on myelination in the central nervous system. DESIGN AND SETTING: This single-sample observation study was performed at the 324 Hospital of Chinese PLA. MATERIALS: Two 5 μm carbon fibers were provided by the Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences. One Sprague Dawley rat, aged 1 day, was used. METHODS: Cerebral cortex was harvested from the rat to prepare a suspension [(1 2)× 10^5/mL] containing neurons and glial cells. To simulate the axon, carbon fibers were placed at the bottom of the neuron-glial cell coculture dish, and were electrified with a single phase square wave current, 1×10^-2, 1×10^-3, 1×10^-4, and 1×10^-5 seconds, 1 Hz, 40 mV, and 10 μA, 30 minutes each, once a day for 10 consecutive days to simulate weak negative electric fields during action potential conduction. MAIN OUTCOME MEASURES: Glial cell growth and wrapping of carbon fibers were observed by phase contrast microscopy and immunohistochemistry. RESULTS: On culture day 7, cell groups were found to adhere to negative carbon fibers in the 1 × 10^-3 seconds square wave group. Cell membrane-like substances grew out of cell groups, wrapped the carbon fibers, and stretched to the ends of carbon fibers. Only some small and round cells close to negative carbon fibers were found on culture day 12. In the 1 × 10^-4 and 1 × 10^-3 seconds square wave groups, the negative carbon fibers were wrapped by oligodendrocytes or their progenitor cells. CONCLUSION: The local negative electric field which is generated by action potentials at 1×(10^-4-10^-3) seconds, 40 mV can directly initiate and participate in myelination in the central nervous system.
基金supported by the National Science and Technology Innovation 2030-Major Program of “Brain Science and Brain-Like Research”(2022ZD0211800)National Natural Science Foundation of China General Research Grant (81971679, 21727806,31771147)+4 种基金Major Research Grant (91632305, 32088101)Ministry of Science and Technology (2018YFA0507600, 2017YFA0503600)Qidong-PKU SLS Innovation Fund (2016000663)Fundamental Research Funds for the Central Universities and National Key R&D Program of China (2020AAA0105200)sponsored by the Bayer Investigator Award。
文摘Action potentials(APs)in neurons are generated at the axon initial segment(AIS).AP dynamics,including initiation and propagation,are intimately associated with neuronal excitability and neurotransmitter release kinetics.Most learning and memory studies at the single-neuron level have relied on the use of animal models,most notably rodents.Here,we studied AP initiation and propagation in cultured hippocampal neurons from Sprague-Dawley(SD)rats and C57BL/6(C57)mice with genetically encoded voltage indicator(GEVI)-based voltage imaging.Our data showed that APs traveled bidirectionally in neurons from both species;forward-propagating APs(fpAPs)had a different speed than backpropagating APs(bpAPs).Additionally,we observed distinct AP propagation characteristics in AISs emerging from the somatic envelope compared to those originating from dendrites.Compared with rat neurons,mouse neurons exhibited higher bpAP speed and lower fpAP speed,more distally located ankyrin G(AnkG)in AISs,and longer Nav1.2 lengths in AISs.Moreover,during AIS plasticity,AnkG and Nav1.2 showed distal shifts in location and shorter lengths of labeled AISs in rat neurons;in mouse neurons,however,they showed a longer AnkG-labeled length and more distal Nav1.2 location.Our findings suggest that hippocampal neurons in SD rats and C57 mice may have different AP propagation speeds,different AnkG and Nav1.2 patterns in the AIS,and different AIS plasticity properties,indicating that comparisons between these species must be carefully considered.
基金We are grateful to Professor David F.Wilson for helpful discussions.This work was supported by USPHS grants(BMS)NS 40966 and NS 16824.
文摘Electrical stimulation of the mammalian neurohypophysial infundibular stalk evokes the entry of Nat and Ca^(2+) into the neurosecretory terminals during the action potential.These events,in turn,increase intracellular Ca^(2+) and activate NaK-and Ca-ATPases,prompting the mitochondria to increase oxidative phosphorylation which can be monitored by recording the changes in FAD and NADHfluorescence.This paper reflects our efforts to determine whether or not modulating the capacity of mitochondria to produce ATP,by changing the concentrations of two important substrates of the Krebs cycle of the nerve terminal mitochondria,pyruvate and glucose,has an effect on the intrinsicfluorescence changes triggered by action potential stimulation.
文摘BACKGROUND: Both hypoxia and.carbon dioxide retention can damage phrenic nerve and muscle conduction, as well as diaphragm function. Diaphragm compound muscle action potential and phrenic nerve conduction time are reliable indicators for measuring phrenic nerve and diaphragm function. OBJECTIVES: To verify the hypothesis that changes of phrenic nerve conduction time (PNCT) and diaphragm compound muscle action potential (CMAP) in obstructive sleep apnea-hypopnea syndrome (OSAHS) patients might contribute to the decline of phrenic nerve and diaphragm function. PNCT and CMAP were measured with multipair esophageal electrodes combined with unilateral magnetic stimulation. DESIGN, TIME AND SETTING: Case controlled study. The experiment was carried out in Guangzhou Institute of Respiratory Disease, Guangzhou MediCal College, from June 2005 to April 2006. PARTICIPANTS: Twenty seven OSAHS patients and eight primary snoring subjects from Guangzhou Institute of Respiratory Disease, Guangzhou Medical College were recruited and all subjects were diagnosed by polysomnography (PSG). Sixteen healthy, non-snoring subjects in the hospital for medical examination during the same time period were selected as the control group. METHODS: Esophageal electrodes, made by Guangzhou Institute of Respiratory Disease, combined with unilateral magnetic stimulation, were used to measure PNCT and CMAP of all subjects. PNCT was defined as the time from stimulation artifact to the onset of CMAP and diaphragm CMAP amplitude was measured from peak to peak. Oxygen desaturation index and apnea-hypopnea index were measured using PSG, and their relevance to PNCT and CMAP were analyzed. PNCT and CMAP in five OSAHS patients were repeatedly measured after effective nasal continuous positive airway pressure treatment for more than 2 months. MAIN OUTCOME MEASURES: (1) PNCT and diaphragm CMAP of subjects in each group. (2) Relevance of oxygen desaturation index and apnea-hypopnea index to PNCT and CMAP. (3) Changes of PNCT and CMAP of OSAHS patients before and after treatment. RESULTS: All subjects were included in the analyzed results. (1) PNCT of the OSAHS group was significantly longer compared to that of the control and primary snore groups, while CMAP of the OSAHS group was significantly lower (P 〈 0.05). (2) PNCT and CMAP recorded from both sides correlated significantly with oxygen desaturation index and with apnea-hypopnea index (P 〈 0.01 ). (3) PNCT shortened significantly after effective nasal continuous positive airway pressure treatment for more than 2 months ( P 〈 0.05). CONCLUSION: Prolongation of PNCT and decrease of CMAP might contribute to the decline of phrenic nerve and diaphragm function caused by repeated nocturnal hypoxia and carbon dioxide retention. The impairment of the phrenic nerve might also decrease diaphragm function.
文摘Summary: The effect of acute ischemia on the electrophysiological characteristics of the three layers myocardium of canine in vivo was investigated. Twelve canines were divided into two groups randomly: acute ischemia (AI) group and sham operation (SO) group. By using the monophasic action potential (MAP) technique, MAP and effective refractory period (ERP) of the three layers myocardium were measured by specially designed plunge needle electrodes and the transmural dispersion of repolarization (TDR) and transmural dispersion of ERP (TDE) were analyzed. The results showed that in the AI group, MAP duration (MAPD) was shortened from 201.67±21.42 ms to 169.50±13.81 ms (P〈0.05), but ERP prolonged to varying degrees and TDE increased during ischemia. In the SO group, MAPD and ERP did not change almost. Among of the three layers myocardium of canine, MAPD was coincident in two groups. It was concluded that during acute ischemia, MAPD was shortened sharply, but there was no significant difference among of the three layers myocardium. The prolonged ERP was concomitant with increased TDE during acute ischemia, which may play an important role in the occurrence of arrhythmias induced by acute ischemia. These findings may have important implications in arrhythmogenesis.
文摘Neurologists define the transmission of nerve impulses across the membranes of the neural cells as a result of difference in the concentration of ions while they measured an electric potential, called as an action potential, which allows the propagation of such nerve impulses as electrical signals. Such measurements should guide them to a logical explanation of the nerve impulses as electric charges driven by the measured action potential. However, such logical conclusion, or explanation, is ignored due to a wrong definition of the flow of electric charges as a flow of electrons that cannot pass through neural networks. According to recent studies, electric charges are properly defined as electromagnetic (EM) waves whose energy is expressed as the product of its propagating electric potential times their entropy flow which is adhered to the flow of such energy. Such definition matches the logical conclusion of the nerve impulses as electric charges, as previously explained, and defines the entropy of the neural network, measured by Ammeters, in Watt or Joule/Volt. The measured entropy represents a neurodiagnostic property of the neural networks that measures its capacity to allow the flow of energy per unit action potential. Theoretical verification of the innovative definition of nerve impulses is presented by following an advanced entropy approach. A proper review of the machine records of the stimulating electric charges, used in the diagnosis of the neural networks, and the stimulated nerve impulses or stimulated responses, represents practical verifications of the innovative definitions of the electric charges and the nerve impulses. Comparing the functioning of the thermoelectric generators and the brain neurons, such neurons are defined as thermoelectric generators of the electric nerve impulses and their propagating, or action, potential.
文摘In this paper, the authors investigate compound action potentials formed when the underlying tract's axons have current-mediated coupling amongst themselves, and no field-mediated coupling. The key finding of the paper is that, for the case of biophysically inhomogeneous axon tracts, the compound action potential is governed by a Hodgkin-Huxley like equation itself in certain cases. The paper extends an earlier result for the identical axon case.
文摘Objective. To testify the phenomenon that large amplitude action potential appears at the early stage of facial paralysis, and to search for the mechanism through clinical and experimental studies. Patients(animals) and methods. The action potentials of the orbicular ocular and oral muscles were recorded in 34 normal persons by electromyogram instruments. The normal range of amplitude percentage was found out according to the normal distribution. One hundred patients with facial paralysis were also studied. The action potentials of facial muscles were recorded in 17 guinea pigs before and after the facial nerve was compressed and the facial nerve was examined under electromicroscope before and after the compression. Results. The amplitude percentage of the suffered side to the healthy side was more than 153 percent in 6 of the 100 patients. Large amplitude action potential occured in 35 per cent guinea pigs which were performed the experiment of facial nerve compression. Electromicroscopic examination revealed separation of the lammae of the facial nerve’s myelin sheath in the guinea pigs which exhibited large amplitude action potential. Conclusion. The facial nerve exhibited a temporary over excitability at the early stage of facial nerve injury in some patients and guinea pigs. If the injury was limited in the myelin sheath, the prognosis was relatively good.
基金supported by a grant of the Korean Health Technology R&D Project,Ministry for Health,Welfare & Family Affairs,Republic of Korea(Grant No.A 092125)
文摘Action potential,which is the foundation of physiology and electrophysiology,is most vital in physiological research.This work starts by detecting cardiac electrophysiology(tachyarrhythmias),combined with all spontaneous discharge phenomena in vivo such as wound currents and spontaneous neuropathic pain,elaborates from generation,induction,initiation,to all of the features of spontaneous high-frequency action potential--SSL action potential mechanism,i.e.,connecting-end hyperpolarization initiates spontaneous depolarization and action potential in somatic membrane.This work resolves the conundrums of in vivo spontaneous discharge in tachyarrhythmias,wounds,denervation supersensitivity,neurogenic pain(hyperalgesia and allodynia),epileptic discharge and diabetic pain in pathophysiological and clinical researches that have puzzled people for a hundred years.
基金supported by the National Natural Science Foundation of China(Grant Nos.1123200511002055)the Ministry of Education Doctoral Foundation(Grant No.20120074110020)
文摘Neural information processing is tightly coupled to both energy consumption and derivation from substrates.In this study,the energy function of the neuron during the action potential(AP)is described and analyzed.It has been observed that energy consumption during the AP does not match predictions of the conventional theory of neural energy dynamics.On short time scales,neural energy expenditure shifts between positive and negative phases.During the AP,the energy source switches from neuronal stores(positive expenditure or net consumption)to exploitation of external substrates,specifically the glucose and oxygen carried in cerebral blood(the negative consumption phase).Based on the idea of reductionism,this paper demonstrates how ion channels,membrane pumps and transporters,ionotropic and metabotropic receptor signaling pathways,astrocyte glycolysis and the production lactate,and the glutamate-glutamine cycle all serve to relate cerebral blood flow and neuronal metabolism to neuronal activity and so maintain neuronal energy charge during the AP.
基金the National Science and Technology Innovation 2030-Major program of"Brain Science and Brain-Like Research"(2022ZD0211800)the National Natural Science Foundation of China(81971679,32020103007,32088101,and 21727806),the Ministry of Science and Technology(2018YFA0507600 and2017YFA0503600)+1 种基金theQidong-PKU SLS Innovation Fund(2016000663 and 2017000246)the National Key R&DProgram of China(2020AAA0105200).
文摘The back-propagating action potential(bpAP)is crucial for neuronal signal integration and synaptic plasticity in dendritic trees.Its properties(velocity and amplitude)can be affected by dendritic morphology.Due to limited spatial resolution,it has been difficult to explore the specific propagation process of bpAPs along dendrites and examine the influence of dendritic morphology,such as the dendrite diameter and branching pattern,using patch-clamp recording.By taking advantage of Optopatch,an all-optical electrophysiological method,we made detailed recordings of the real-time propagation of bpAPs in dendritic trees.We found that the velocity of bpAPs was not uniform in a single dendrite,and the bpAP velocity differed among distinct dendrites of the same neuron.The velocity of a bpAP was positively correlated with the diameter of the dendrite on which it propagated.In addition,when bpAPs passed through a dendritic branch point,their velocity decreased significantly.Similar to velocity,the amplitude of bpAPs was also positively correlated with dendritic diameter,and the attenuation patterns of bpAPs differed among different dendrites.Simulation results from neuron models with different dendritic morphology corresponded well with the experimental results.These findings indicate that the dendritic diameter and branching pattern significantly influence the properties of bpAPs.The diversity among the bpAPs recorded in different neurons was mainly due to differences in dendritic morphology.These results may inspire the construction of neuronal models to predict the propagation of bpAPs in dendrites with enormous variation in morphology,to further illuminate the role of bpAPs in neuronal communication.
基金This work was supported by the National Natural Science Foundation of China(81870734)the Shanghai Municipal Government and ShanghaiTech University,China.
文摘The axon initial segment(AIS)is a specialized structure that controls neuronal excitability via action potential(AP)generation.Currently,AIS plasticity with regard to changes in length and location in response to neural activity has been extensively investigated,but how AIS diameter is regulated remains elusive.Here we report that COUP-TFI(chicken ovalbumin upstream promotor-transcription factor 1)is an essential regulator of AIS diameter in both developing and adult mouse neocortex.Either embryonic or adult ablation of COUP-TFI results in reduced AIS diameter and impaired AP generation.Although COUP-TFI ablations in sparse single neurons and in populations of neurons have similar impacts on AIS diameter and AP generation,they strengthen and weaken,respectively,the receiving spontaneous network in mutant neurons.In contrast,overexpression of COUP-TFI in sparse single neurons increases the AIS diameter and facilitates AP generation,but decreases the receiving spontaneous network.Our findings demonstrate that COUP-TFI is indispensable for both the expansion and maintenance of AIS diameter and that AIS diameter fine-tunes action potential generation and synaptic inputs in mammalian cortical neurons.
基金supported by the National Natural Science Foundation of China(82102179)the Shandong Provincial Natural Science Foundation(ZR2020KF012,ZR2021QH267,ZR2021QH053)+2 种基金the Shanghai Municipal Key Clinical Specialty(shslczdzk02701)the National Institutes of Health(7 R21 NS113716-02)the National Institute on Disability and Rehabilitation Research(90REMM0001-01-00).
文摘This study presents a novel compound muscle action potential(CMAP)examination of motor unit changes in paretic muscle post stroke.CMAP scan of the first dorsal interosseous(FDI)muscle was performed bilaterally in 16 chronic stroke subjects.Various parameters were derived from the CMAP scan to examine paretic muscle changes,including CMAP amplitude,D50,step index(STEPIX)and amplitude index(AMPIX).A significant decrease in CMAP amplitude and STEPIX was observed in paretic muscles compared with contralateral muscles(CMAP amplitude:paretic(9.0±0.5)mV,contralateral(11.3±0.9)mV,P=0.024;STEPIX:paretic 101.2±7.6,contralateral 121.9±6.5,P=0.020).No significant difference in D50 and AMPIX was observed between the paretic and contralateral sides(P>0.05).The findings revealed complex paretic muscle changes including motor unit degeneration,muscle fiber denervation,reinnervation and atrophy,providing useful insights to help understand neuromuscular mechanisms associated with weakness and other functional deterioration post stroke.The CMAP scan experimental protocols and the applied processing methods are noninvasive,convenient,and automated,offering practical benefits for clinical application.
文摘Many rat taste receptor cells conduct action potentials(APs).APs had a mean threshold of -35 mV(n=95 cells)and a spike height of 52mV above threshold in current clamp(hold= -80mV).Aps could be classified into two significantly different (P<0.001) groups-fast,with short half-time durations and large outward currents (mean1.3 ms and 2.7nA),and slow,with long duration and small outward currents(mean9.2ms and 0. 29nA).AP upstrokes were conducted by TTX-sensitive sodium currents whereas the downstroke by TEA-blockable outward currents. Voltage dependent analysis of outward current separated transient and sustained components.The transient component was specifically blocked by 4-AP(1mmol/L).A calcium-dependent outward component was also revealed modulating voltage and external calcium concentration.The fast recovery phase of the AP appears related the sustained outward current whereas the after hyperpolarization(AHP) was blocked by 4AP suggesting a significant contribution of the transient component.Forskolin (FSK),which elevates cAMP,reversibly blocked the majority of the sustained current without influencing the transient. FSK greatly exaggerated the AHP without changing the spike height or duration. These data suggest that several components of the outward current contribute specifically to the gustatory AP and that the AP may be modulated by cyclic nucleotides.