The dissipation rate of turbulent kinetic energy ( ε ) is the key process parameters for mixing in surface aerators. At constant dynamic variables (rotational speed), ε is greatly affected by the geometric param...The dissipation rate of turbulent kinetic energy ( ε ) is the key process parameters for mixing in surface aerators. At constant dynamic variables (rotational speed), ε is greatly affected by the geometric parameters, such as impeller diameter, cross-sectional area of the tank, liquid height, rotor blade length and immersion height. By doing numerical computation by visimix, present work analyzes the effect of non-dimensional (which is non-dimensionalized through rotor diameter) geometric parameters on ε. With an increase in liquid height, there is an increase in the case of energy dissipation. In the case of tank area and blade length, it is vice versa. Energy dissipation is not affected by the variation in immersion height of the impeller.展开更多
A spillway aerator should guarantee favorable flow conditions in the coupled water-air system even if the aerator is unconventionally wide. Eight air-vent configurations are devised and incorporated into a 35-m wide c...A spillway aerator should guarantee favorable flow conditions in the coupled water-air system even if the aerator is unconventionally wide. Eight air-vent configurations are devised and incorporated into a 35-m wide chute aerator for a generalized study. Computational fluid dynamics(CFD) simulations are performed to explore their effects on water-jet and air-cavity features. The Re-normalisation group(RNG) k-ε turbulence model and the two-fluid model are combined to predict the two-phase flow field. The results demonstrate appreciable influences of the vent layouts on the water-air flow. The air vents stir the air motion and re-distribute the cavity air pressure. Once the vent layout is modified, reciprocal adjustments exist between the jet behavior and air-pressure field in the cavity, thus leading to considerable differences in air-flow rate, jet-trajectory length, vent air-flow distribution across the chute, etc. The large width plays a discernable role in affecting the aerated flow. Telling differences exist between the near-wall region and the central part of the chute. To improve the duct pressure propagation, a gradual augment of the vent area should be assigned towards the chute center. Relative to single-slot vents across the flow, the layouts with segregated vents gain by comparison. A designer should see to it that a vented aerator operates satisfactorily for a given range of flow discharges.展开更多
This study evaluated the effects of increased reservoir conservation level by 40 ft (12.2 m), on spillway velocities;it’s discharging capacity and associated cavitation risk. The study optimized the aerators size and...This study evaluated the effects of increased reservoir conservation level by 40 ft (12.2 m), on spillway velocities;it’s discharging capacity and associated cavitation risk. The study optimized the aerators size and shape to avoid cavitations. The mathematical model was used to estimate the flow velocities and cavitation risk, when scale model study assessed the spillway discharging capacity and optimized the performance of the aerators for modified conditions. The mathematical model simulations showed increased flow velocities and damage index for modified conditions. The damage potential was 2 - 3 times higher with modifications and falls within the major to catastrophic region. The scale model study showed that discharging capacity of the spillway can effectively be restricted to original design by raising spillway crest by 5.0 ft (1.52 m). The scale model study also showed that the two aerators near sluice and at the chute with an air duct pipe of 3.0 ft diameter can improve the free surface flow profile reducing the risks of cavitation. Simulations for several configurations demonstrated clearer affect of aerators ramps on flow trajectory and gate opening. It also depicted that the height of the ramp of sluice aerator has a positive effect on the flow performance to about 7.5 inches (19 cm), when further increase in the ramp height reduced the flow performance.展开更多
In order to improve the efficiency of water aerator,based on Venturi experimental principle in hydraulics and fluid dynamic ultrasonic generator,the inlet section,throat section,and outlet section of reed whistle ultr...In order to improve the efficiency of water aerator,based on Venturi experimental principle in hydraulics and fluid dynamic ultrasonic generator,the inlet section,throat section,and outlet section of reed whistle ultrasonic generator were designed,and the effect of the water aerator on dissolved oxygen was preliminarily studied. Results indicate that using this water aerator,the dissolved oxygen was 7. 94 mg / L,exceeding the saturation value of dissolved oxygen( 7. 82 mg / L) at current water temperature,reaching the supersaturation. Therefore,the designed water aerator will have a bright application prospect in sewage treatment,aquaculture and aerated irrigation of plants.展开更多
In the present work,a 3-D aerator device with backward lateral deflectors,called BLD-3-D aerator device,is developed,and the lateral cavity and fin performance of the BLD-3-D aerator device are experimentally investig...In the present work,a 3-D aerator device with backward lateral deflectors,called BLD-3-D aerator device,is developed,and the lateral cavity and fin performance of the BLD-3-D aerator device are experimentally investigated.The findings show that,the relative lateral cavity length with backward lateral deflectors is shorter than that with current lateral deflectors under the same approach flow conditions,and on the basis of the results of the relative cavity length ratio between the lateral and bottom aerators the BLD-3-D aerator device is of remarkable performance for the water fin control thanks to the decrease of the relative lateral cavity length.展开更多
It is proved that air entrainment is one of the efficient measures dealing with cavi-tation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. O...It is proved that air entrainment is one of the efficient measures dealing with cavi-tation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator,which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emer-gence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects,of both model and prototype,on the basis of error theory. A method to calculate the cavity length be-low aerators was suggested,which considers overall effects of the above men-tioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.展开更多
The air entrainment for avoiding cavitation damage has been widely used in long free flow tunnels. It is crucial to determine whether an aerator is needed for shorter tunnels. In this article, the bottom discharge tun...The air entrainment for avoiding cavitation damage has been widely used in long free flow tunnels. It is crucial to determine whether an aerator is needed for shorter tunnels. In this article, the bottom discharge tunnel at the Longtan Hydropower Station was involved, for which the free flow tunnel section was only 50.00 m long. The cavitation in the tunnel with and without the aerator was investigated using the physical models of the scale 1/30, through the measurements of cavitation noise. The experimental results show that it is necessary to place the aerator at the inlet of the free flow section for higher reservoir level to protect this tunnel from cavitation damage.展开更多
It is well known that the effect of air entrainment for cavitation damage controls is related not only to the air discharge into aerator devices but also the flow regime of the cavity below them.On the basis of the hy...It is well known that the effect of air entrainment for cavitation damage controls is related not only to the air discharge into aerator devices but also the flow regime of the cavity below them.On the basis of the hydraulic characteristics of the flow,the aerator devices were for the first time classified.The theoretical considerations were performed about the jet length and cavity flow regime with the influencing factors.Comparing with the behavior of the flow through the aerator of discharge tunnels,the flow regimes of the cavity below spillway aerators were experimentally investigated,and the empirical expressions were presented to identify the conversions of the cavity flow regimes,including fully filled cavity,partially filled cavity,and net air cavity.Some issues of the design of the aerator devices were suggested in the present work.展开更多
Air entrainment is known to be one of efficient and inexpensive methods to prevent cavitation damages in hydropower projects.The shape of sudden expansion-fall is used as a common device for mitigating cavitation eros...Air entrainment is known to be one of efficient and inexpensive methods to prevent cavitation damages in hydropower projects.The shape of sudden expansion-fall is used as a common device for mitigating cavitation erosions.The complex flow patterns with cavitation are numerically simulated by using the realizable k-εturbulence model and the air-water mixture model.The calculated results are compared well with the experimental results as well as those obtained with the k-εturbulence model with the Volume Of Fluid(VOF)Model.The calculated results agree well with the experimental data for the aeration cavity and wall pressure.Moreover,the air concentration near sidewall is simulated by a mixture model.It is found that the mixture turbulence model is superior to the VOF turbulence model.展开更多
Source water reservoirs easily become thermally and dynamically stratified. Internal pollution released from reservoir sediments is the main cause of water quality problems. To mitigate the internal pollution more eff...Source water reservoirs easily become thermally and dynamically stratified. Internal pollution released from reservoir sediments is the main cause of water quality problems. To mitigate the internal pollution more effectively, a new method, which combined chemical stabilization with water lifting aerator (WLA) technology, was proposed and its effciency in inhibiting pollutant release was studied by controlled sediment-water interface experiments. The results showed that this new method can inhibit pollutant release from sediment effectively. The values of mean effciency (E) in different reactors 2#–5# (1# with no agent, 2# 10 mg/L polymeric aluminum chloride (PAC) was added, 3# 20 mg/L PAC was added, 4# 30 mg/L PAC was added, 5# 20 mg/L PAC and 0.2 mg/L palyacrylamide (PAM) were added) for PO43- were 35.0%, 43.9%, 50.4% and 63.6%, respectively. This showed that the higher the PAC concentration was, the better the inhibiting effciency was, and PAM addition strengthened the inhibiting effciency significantly. For Fe2+, the corresponding values of E for the reactors 2#–5# were 22.9%, 47.2%, 34.3% and 46.2%, respectively. The inhibiting effect of PAC and PAM on Mn release remained positive for a relatively short time, about 10 days, and was not so effective as for PO43- and Fe2+. The average effciencies in inhibiting the release of UV254 were 35.3%, 25.9%, 35.5%, 38.9% and 39.5% for reactors 2#–5#, respectively. The inhibiting mechanisms of the agents for different pollutants varied among the conditions and should be studied further.展开更多
Thermal stratification is a common phenomenon in lakes and reservoirs and has a significant influence on water quality dynamics. Heihe Reservoir is a canyon-shaped reservoir in Shaanxi Province with strong thermal str...Thermal stratification is a common phenomenon in lakes and reservoirs and has a significant influence on water quality dynamics. Heihe Reservoir is a canyon-shaped reservoir in Shaanxi Province with strong thermal stratification. Therefore, eight water-lifting aerators (WLAs) were installed in this reservoir, which could overcome thermal stratification and increase oxygenation with gas flows between 20 and 50 m3/hr, and oxygenate the hypolimnion with gas flows less than 20 m3/hr. To examine the destratification efficiency of the WLA system, we used a three- dimensional hydrodynamic module based on MIKE 3 to simulate the thermal structure of Heihe Reservoir and compared the simulations with measured data. Results showed that operation of the WLA system promoted water mixing and effectively oxygenated the hypolimnion. Through the established energy utilization assessment method, the energy utilization efficiency of the WLA system was between 5.36% and 7.30%, indicating the capability of the technique for destratification in such a large reservoir. When the surface water temperature dropped to the theoretical mixed water temperature calculated by the energy utilization assessment method, reducing gas flow could save energy. This would prevent anaerobic conditions from occurring in the bottom water and maintain good water quality in Heihe Reservoir.展开更多
Aerator is an important device for release works of hydraulic structures with high-speed flow in order to protect them from cavitation damage. This kind of protecting effect is related closely to cavity length below t...Aerator is an important device for release works of hydraulic structures with high-speed flow in order to protect them from cavitation damage. This kind of protecting effect is related closely to cavity length below the aerator, while the cavity length is dominated by the emergence angle over the aerator. Therefore it is crucial to determine this angle accurately. In the present paper the affecting intensities of flow depth and the fluctuating velocity on this angle were analyzed through two introduced parameters. Furthermore, the improved expressions of emergence angle estimation, for both ramp-type and step-type aerators, were presented by means of 68 sets of experimental data from 6 projects based on error theory. The results showed that the present method has higher accuracy than the previously reported methods.展开更多
The flow regimes below an aerator influence directly the air entrainment and the cavitation damage control. Based on the theoretical considerations, the experiments of the aerator for a discharge tunnel were conducted...The flow regimes below an aerator influence directly the air entrainment and the cavitation damage control. Based on the theoretical considerations, the experiments of the aerator for a discharge tunnel were conducted, and the relationships between the flow regime and hydraulic and geometric parameters were investigated. The results showed that, there are two kinds of threshold values for the flow regime conversions. One is Fr1-2 standing for the conversion from the fully filled cavity to the partially filled cavity, and the other is Fr2-3 which shows the change from the partially filled cavity to the net air cavity. Two empirical expressions were obtained for the conversions of the flow regimes, which can be used in the designs of the aerators.展开更多
The selection of the configuration and size of an aerator was of importance for a tunnel spillway under the conditions of high speed flows. Experimental investigations were conducted on the effects of entrained air on...The selection of the configuration and size of an aerator was of importance for a tunnel spillway under the conditions of high speed flows. Experimental investigations were conducted on the effects of entrained air on the tunnel spillway in the Goupitan Project, based on the criterion of gravity similarity and the condition of aerated flow velocity of over 6 m/s, with physical models. The configurations of the aerators were presented of a larger bottom air concentration, to protect the tunnel spillway from cavitation as well as to see no water fills in the grooves.展开更多
The fins will be formed if the lateral deflectors in the side-walls with a bottom aerator device are improperly designed, and the flow regime downstream of the aerator device will be worsened. In this paper, the heigh...The fins will be formed if the lateral deflectors in the side-walls with a bottom aerator device are improperly designed, and the flow regime downstream of the aerator device will be worsened. In this paper, the height and the length of the fins induced by the lateral deflectors are theoretically analyzed along with their influencing factors, and the fin characteristics are experimentally investigated on the basis of the theoretical analysis. It is shown that the intensities of the fins are strongly dependent on the ratio of the lateral cavity length to the bottom cavity length, and other factors, like the working head, the height and the angle of the lateral deflector, the flow Froude number around the aerator device, affect the fins indirectly through the changes of the lateral cavity length. When an aerator device with lateral deflectors is designed, it is crucial to match the above mentioned ratio, and to make the ratio of the two cavity lengths less than 1.0 in order to avoid the generation of the fins.展开更多
Artificial aeration system for aquaculture ponds becomes essential to meet the oxygen requirement posed by the aquatic species.The performance of an aerator is generally mea-sured in terms of standard aeration efficie...Artificial aeration system for aquaculture ponds becomes essential to meet the oxygen requirement posed by the aquatic species.The performance of an aerator is generally mea-sured in terms of standard aeration efficiency(SAE),which is significantly affected by the different geometric and dynamic parameters of the aerator.Therefore,to enhance the aer-ation performance of an aerator,these parameters need to be optimized.In the present study,a perforated pooled circular stepped cascade(PPCSC)aerator was developed,and the geometric and dynamic parameters of the developed aerator were optimized using the hybrid ANN-PSO technique for maximizing its aeration efficiency.The geometric parameters include consecutive step width ratio(W_(i-1)/W_(i))and the perforation diameter to the bottom-most radius ratio(d/R_(b)),whereas the dynamic parameter includes the water flow rate(Q).A 3–6-1 ANN model coupled with particle swarm optimization(PSO)approach was used to obtain the optimum values of geometric and dynamic parameters correspond-ing to the maximum SAE.The optimal values of the consecutive step width ratio(W_(i-1)/W_(i)),the perforation diameter to the bottom-most radius ratio(d/R_(b)),and the water flow rate(Q)for maximizing the SAE were found to be 1.15,0.0027 and 0.0167 m^(3)/s,respectively.The cross-validation results showed a deviation of 3.07%between the predicted and experimen-tal SAE values,thus confirming the adequacy of the proposed hybrid ANN-PSO technique.展开更多
The hydraulic characteristics and cavitation erosion near the converse curvature section in the high-head and large discharge spillway tunnel have been important issues of concern to the hydropower project.In this pap...The hydraulic characteristics and cavitation erosion near the converse curvature section in the high-head and large discharge spillway tunnel have been important issues of concern to the hydropower project.In this paper,the evolutions of hydraulic elements such as pressure,flow velocity,wall shear stress,etc.in the converse curvature section are analyzed and the impacts of bottom aerator on hydraulic characteristics are discussed,with the commercial software FLUENT6.3 as a platform and combining the k-model and VOF method.The flow pattern in the converse curvature section of spillway tunnel is given by the three-dimensional numerical simulation.It indicates that the pressure changes rapidly with great pressure gradient from the beginning to the end of the curve.It also shows that the shear stress on side wall just downstream the end of the converse curvature curve is still increasing;the aeration cavity formed downstream the bottom aerator may cause the side wall pressure decreased to worsen the cavitation characteristics near the side wall.By means of the physical model experiment,the three-dimensional aerator composed of side wall baffling aerator and bottom aerator is studied,the baffling aerator suitable for the water flow conditions with water depth of 6.0 to 8.0 m and flow velocity of 35 to 50 m/s is proposed.展开更多
On the basis of model tests and theoretical analysis, hydraulic characteristics, air demand, air concentration distribution and their relationships between prototype and model of an aerator were studied. Some computat...On the basis of model tests and theoretical analysis, hydraulic characteristics, air demand, air concentration distribution and their relationships between prototype and model of an aerator were studied. Some computational examples show that the present methods have higher accuracy, and can meet the need of engineering design.展开更多
The chute aerators separate the flow from the chute bottom,and the violent turbulence is generated after the flow impacts the bottom.Although the chute aerators were widely investigated experimentally,the air concentr...The chute aerators separate the flow from the chute bottom,and the violent turbulence is generated after the flow impacts the bottom.Although the chute aerators were widely investigated experimentally,the air concentration distribution of the lower jet in the impact zone remains to be explored systematically.In the impact zone,it is observed that a portion of the air stays in the rollers instead of traveling with the flow,decreasing the air transportation capacity.Based on extensive tests,a comprehensive formula is developed to compute the air concentration distribution in the impact zone,with results in good agreement with the model tests.展开更多
Experimental observations show that the random process of two-phase flow behind an aerator is an ergodic process and its amplitude distribution is similar to a normal distribution. The maximum pressure fluctuation is ...Experimental observations show that the random process of two-phase flow behind an aerator is an ergodic process and its amplitude distribution is similar to a normal distribution. The maximum pressure fluctuation is at the re-attachment point where the jet-trajectory flow over the aerator re-attaches to the bottom of the channel, and its amplitude is 2—3 times larger than when there is no aerator. There is a dominant frequency of 1.24 Hz in the model, but the coherence in the frequency domain is not obvious for other frequencies beside the dominant frequency. There is a large vortex at the re-attachment point behind the aerator but correlation among the measurement points is not obvious in the time domain.展开更多
文摘The dissipation rate of turbulent kinetic energy ( ε ) is the key process parameters for mixing in surface aerators. At constant dynamic variables (rotational speed), ε is greatly affected by the geometric parameters, such as impeller diameter, cross-sectional area of the tank, liquid height, rotor blade length and immersion height. By doing numerical computation by visimix, present work analyzes the effect of non-dimensional (which is non-dimensionalized through rotor diameter) geometric parameters on ε. With an increase in liquid height, there is an increase in the case of energy dissipation. In the case of tank area and blade length, it is vice versa. Energy dissipation is not affected by the variation in immersion height of the impeller.
基金part of research project "Hydraulic design of spillway aerators"funded in part by Swedish Hydropower Centre(SVC)+2 种基金Vattenfall R&DFortum GenerationUniper/Sweco have indirectly facilitated the study
文摘A spillway aerator should guarantee favorable flow conditions in the coupled water-air system even if the aerator is unconventionally wide. Eight air-vent configurations are devised and incorporated into a 35-m wide chute aerator for a generalized study. Computational fluid dynamics(CFD) simulations are performed to explore their effects on water-jet and air-cavity features. The Re-normalisation group(RNG) k-ε turbulence model and the two-fluid model are combined to predict the two-phase flow field. The results demonstrate appreciable influences of the vent layouts on the water-air flow. The air vents stir the air motion and re-distribute the cavity air pressure. Once the vent layout is modified, reciprocal adjustments exist between the jet behavior and air-pressure field in the cavity, thus leading to considerable differences in air-flow rate, jet-trajectory length, vent air-flow distribution across the chute, etc. The large width plays a discernable role in affecting the aerated flow. Telling differences exist between the near-wall region and the central part of the chute. To improve the duct pressure propagation, a gradual augment of the vent area should be assigned towards the chute center. Relative to single-slot vents across the flow, the layouts with segregated vents gain by comparison. A designer should see to it that a vented aerator operates satisfactorily for a given range of flow discharges.
文摘This study evaluated the effects of increased reservoir conservation level by 40 ft (12.2 m), on spillway velocities;it’s discharging capacity and associated cavitation risk. The study optimized the aerators size and shape to avoid cavitations. The mathematical model was used to estimate the flow velocities and cavitation risk, when scale model study assessed the spillway discharging capacity and optimized the performance of the aerators for modified conditions. The mathematical model simulations showed increased flow velocities and damage index for modified conditions. The damage potential was 2 - 3 times higher with modifications and falls within the major to catastrophic region. The scale model study showed that discharging capacity of the spillway can effectively be restricted to original design by raising spillway crest by 5.0 ft (1.52 m). The scale model study also showed that the two aerators near sluice and at the chute with an air duct pipe of 3.0 ft diameter can improve the free surface flow profile reducing the risks of cavitation. Simulations for several configurations demonstrated clearer affect of aerators ramps on flow trajectory and gate opening. It also depicted that the height of the ramp of sluice aerator has a positive effect on the flow performance to about 7.5 inches (19 cm), when further increase in the ramp height reduced the flow performance.
基金Supported by Project of National Natural Science Foundation(31272248)International Sci-tech Cooperation Program of Ministry of Education of China(2013DFG91190)
文摘In order to improve the efficiency of water aerator,based on Venturi experimental principle in hydraulics and fluid dynamic ultrasonic generator,the inlet section,throat section,and outlet section of reed whistle ultrasonic generator were designed,and the effect of the water aerator on dissolved oxygen was preliminarily studied. Results indicate that using this water aerator,the dissolved oxygen was 7. 94 mg / L,exceeding the saturation value of dissolved oxygen( 7. 82 mg / L) at current water temperature,reaching the supersaturation. Therefore,the designed water aerator will have a bright application prospect in sewage treatment,aquaculture and aerated irrigation of plants.
基金Project supported by the National Natural Science Foundation of China(Grant No.50879021).
文摘In the present work,a 3-D aerator device with backward lateral deflectors,called BLD-3-D aerator device,is developed,and the lateral cavity and fin performance of the BLD-3-D aerator device are experimentally investigated.The findings show that,the relative lateral cavity length with backward lateral deflectors is shorter than that with current lateral deflectors under the same approach flow conditions,and on the basis of the results of the relative cavity length ratio between the lateral and bottom aerators the BLD-3-D aerator device is of remarkable performance for the water fin control thanks to the decrease of the relative lateral cavity length.
基金the National Natural Science Foundation of China (Grant No. 50539060)the Innovative Project of Graduate Student in Jiangsu Province (Grant No. 2005-60)
文摘It is proved that air entrainment is one of the efficient measures dealing with cavi-tation control for the release works of hydropower projects. There are many factors to be considered in designing a chute aerator. One of the most important factors concerns the cavity length below the aerator,which has outstanding effects on air entrainment against cavitation damage. It is crucial to determine reasonable emergence angle for the calculation of the cavity length. In the present paper the overall effects of structural and hydraulic parameters on the emergence angle of the flow from the aerator were analyzed. Four improved expressions of the emer-gence angle with weight coefficient were investigated through experimental data of 68 points observed from 12 aerators of 6 hydropower projects,of both model and prototype,on the basis of error theory. A method to calculate the cavity length be-low aerators was suggested,which considers overall effects of the above men-tioned parameters. Comparison between the method in this paper and the other five methods of calculating the cavity length showed that the present method is much more reliable than the existing methods while the mean error of the method is less than others.
基金Project supported by the National Natural Science Foundation of China (Grant No: 50539060) and the Innovative Project of Graduate Student in Jiangsu Province (Grant No: 2005-60)
文摘The air entrainment for avoiding cavitation damage has been widely used in long free flow tunnels. It is crucial to determine whether an aerator is needed for shorter tunnels. In this article, the bottom discharge tunnel at the Longtan Hydropower Station was involved, for which the free flow tunnel section was only 50.00 m long. The cavitation in the tunnel with and without the aerator was investigated using the physical models of the scale 1/30, through the measurements of cavitation noise. The experimental results show that it is necessary to place the aerator at the inlet of the free flow section for higher reservoir level to protect this tunnel from cavitation damage.
基金supported by the National Natural Science Foundation of China (Grant No. 51179114)the Innovative Project of Graduate Student in Jiangsu Province (Grant No. CXLX11_0443)
文摘It is well known that the effect of air entrainment for cavitation damage controls is related not only to the air discharge into aerator devices but also the flow regime of the cavity below them.On the basis of the hydraulic characteristics of the flow,the aerator devices were for the first time classified.The theoretical considerations were performed about the jet length and cavity flow regime with the influencing factors.Comparing with the behavior of the flow through the aerator of discharge tunnels,the flow regimes of the cavity below spillway aerators were experimentally investigated,and the empirical expressions were presented to identify the conversions of the cavity flow regimes,including fully filled cavity,partially filled cavity,and net air cavity.Some issues of the design of the aerator devices were suggested in the present work.
基金Project supported by the Key Science Foundation of Ministry of Education of China (Grant No. 2008108111)the National Basic Research Program of China (973 Program, Grant No. 2007CB714105)the Program of New Century Excellent Talents in University (Grant No. NCET-08-0378)
文摘Air entrainment is known to be one of efficient and inexpensive methods to prevent cavitation damages in hydropower projects.The shape of sudden expansion-fall is used as a common device for mitigating cavitation erosions.The complex flow patterns with cavitation are numerically simulated by using the realizable k-εturbulence model and the air-water mixture model.The calculated results are compared well with the experimental results as well as those obtained with the k-εturbulence model with the Volume Of Fluid(VOF)Model.The calculated results agree well with the experimental data for the aeration cavity and wall pressure.Moreover,the air concentration near sidewall is simulated by a mixture model.It is found that the mixture turbulence model is superior to the VOF turbulence model.
基金supported by the Major Science and Technology Program for Water Pollution Control and Treatment (No. 2009ZX07424-006)the National Natural Science Foundation of China (No. 50830303)the Program for Changjiang Scholars and Innovative Research Team in University of MOE of China (PCSIRT) (No.IRT0853)
文摘Source water reservoirs easily become thermally and dynamically stratified. Internal pollution released from reservoir sediments is the main cause of water quality problems. To mitigate the internal pollution more effectively, a new method, which combined chemical stabilization with water lifting aerator (WLA) technology, was proposed and its effciency in inhibiting pollutant release was studied by controlled sediment-water interface experiments. The results showed that this new method can inhibit pollutant release from sediment effectively. The values of mean effciency (E) in different reactors 2#–5# (1# with no agent, 2# 10 mg/L polymeric aluminum chloride (PAC) was added, 3# 20 mg/L PAC was added, 4# 30 mg/L PAC was added, 5# 20 mg/L PAC and 0.2 mg/L palyacrylamide (PAM) were added) for PO43- were 35.0%, 43.9%, 50.4% and 63.6%, respectively. This showed that the higher the PAC concentration was, the better the inhibiting effciency was, and PAM addition strengthened the inhibiting effciency significantly. For Fe2+, the corresponding values of E for the reactors 2#–5# were 22.9%, 47.2%, 34.3% and 46.2%, respectively. The inhibiting effect of PAC and PAM on Mn release remained positive for a relatively short time, about 10 days, and was not so effective as for PO43- and Fe2+. The average effciencies in inhibiting the release of UV254 were 35.3%, 25.9%, 35.5%, 38.9% and 39.5% for reactors 2#–5#, respectively. The inhibiting mechanisms of the agents for different pollutants varied among the conditions and should be studied further.
基金supported by the National Natural Science Foundation of China(Nos.51478378 and 50830303)
文摘Thermal stratification is a common phenomenon in lakes and reservoirs and has a significant influence on water quality dynamics. Heihe Reservoir is a canyon-shaped reservoir in Shaanxi Province with strong thermal stratification. Therefore, eight water-lifting aerators (WLAs) were installed in this reservoir, which could overcome thermal stratification and increase oxygenation with gas flows between 20 and 50 m3/hr, and oxygenate the hypolimnion with gas flows less than 20 m3/hr. To examine the destratification efficiency of the WLA system, we used a three- dimensional hydrodynamic module based on MIKE 3 to simulate the thermal structure of Heihe Reservoir and compared the simulations with measured data. Results showed that operation of the WLA system promoted water mixing and effectively oxygenated the hypolimnion. Through the established energy utilization assessment method, the energy utilization efficiency of the WLA system was between 5.36% and 7.30%, indicating the capability of the technique for destratification in such a large reservoir. When the surface water temperature dropped to the theoretical mixed water temperature calculated by the energy utilization assessment method, reducing gas flow could save energy. This would prevent anaerobic conditions from occurring in the bottom water and maintain good water quality in Heihe Reservoir.
基金supported by the National Natural Science Foundation of China (Grant No. 50539060)the Innovative Project of Graduate Student in Jiangsu Province (Grant No.2005-60).
文摘Aerator is an important device for release works of hydraulic structures with high-speed flow in order to protect them from cavitation damage. This kind of protecting effect is related closely to cavity length below the aerator, while the cavity length is dominated by the emergence angle over the aerator. Therefore it is crucial to determine this angle accurately. In the present paper the affecting intensities of flow depth and the fluctuating velocity on this angle were analyzed through two introduced parameters. Furthermore, the improved expressions of emergence angle estimation, for both ramp-type and step-type aerators, were presented by means of 68 sets of experimental data from 6 projects based on error theory. The results showed that the present method has higher accuracy than the previously reported methods.
基金supported by the National Natural Science Function of China(Grant No.50879021)the Innovative Project of Graduate Student in Jiangsu Province(Grant No.CXLX11_0443)
文摘The flow regimes below an aerator influence directly the air entrainment and the cavitation damage control. Based on the theoretical considerations, the experiments of the aerator for a discharge tunnel were conducted, and the relationships between the flow regime and hydraulic and geometric parameters were investigated. The results showed that, there are two kinds of threshold values for the flow regime conversions. One is Fr1-2 standing for the conversion from the fully filled cavity to the partially filled cavity, and the other is Fr2-3 which shows the change from the partially filled cavity to the net air cavity. Two empirical expressions were obtained for the conversions of the flow regimes, which can be used in the designs of the aerators.
基金Project supported by the National Natural Science Foundation of China (Grant No. 50539060)the Innovative Project of Graduate Student in Jiangsu Province (Grant No.2005-60).
文摘The selection of the configuration and size of an aerator was of importance for a tunnel spillway under the conditions of high speed flows. Experimental investigations were conducted on the effects of entrained air on the tunnel spillway in the Goupitan Project, based on the criterion of gravity similarity and the condition of aerated flow velocity of over 6 m/s, with physical models. The configurations of the aerators were presented of a larger bottom air concentration, to protect the tunnel spillway from cavitation as well as to see no water fills in the grooves.
基金supported by the National Basic Research Development Program of China(973Program,Grant No.2012CB723200)the National Natural Science Foundation of China(Grant No.510879021)
文摘The fins will be formed if the lateral deflectors in the side-walls with a bottom aerator device are improperly designed, and the flow regime downstream of the aerator device will be worsened. In this paper, the height and the length of the fins induced by the lateral deflectors are theoretically analyzed along with their influencing factors, and the fin characteristics are experimentally investigated on the basis of the theoretical analysis. It is shown that the intensities of the fins are strongly dependent on the ratio of the lateral cavity length to the bottom cavity length, and other factors, like the working head, the height and the angle of the lateral deflector, the flow Froude number around the aerator device, affect the fins indirectly through the changes of the lateral cavity length. When an aerator device with lateral deflectors is designed, it is crucial to match the above mentioned ratio, and to make the ratio of the two cavity lengths less than 1.0 in order to avoid the generation of the fins.
文摘Artificial aeration system for aquaculture ponds becomes essential to meet the oxygen requirement posed by the aquatic species.The performance of an aerator is generally mea-sured in terms of standard aeration efficiency(SAE),which is significantly affected by the different geometric and dynamic parameters of the aerator.Therefore,to enhance the aer-ation performance of an aerator,these parameters need to be optimized.In the present study,a perforated pooled circular stepped cascade(PPCSC)aerator was developed,and the geometric and dynamic parameters of the developed aerator were optimized using the hybrid ANN-PSO technique for maximizing its aeration efficiency.The geometric parameters include consecutive step width ratio(W_(i-1)/W_(i))and the perforation diameter to the bottom-most radius ratio(d/R_(b)),whereas the dynamic parameter includes the water flow rate(Q).A 3–6-1 ANN model coupled with particle swarm optimization(PSO)approach was used to obtain the optimum values of geometric and dynamic parameters correspond-ing to the maximum SAE.The optimal values of the consecutive step width ratio(W_(i-1)/W_(i)),the perforation diameter to the bottom-most radius ratio(d/R_(b)),and the water flow rate(Q)for maximizing the SAE were found to be 1.15,0.0027 and 0.0167 m^(3)/s,respectively.The cross-validation results showed a deviation of 3.07%between the predicted and experimen-tal SAE values,thus confirming the adequacy of the proposed hybrid ANN-PSO technique.
基金supported by the National Natural Science Foundation of China(Grant No.50539070)the National Science and Technology Support Project and the Special Fund Project of the China Institute of Water Resources and Hydropower Research
文摘The hydraulic characteristics and cavitation erosion near the converse curvature section in the high-head and large discharge spillway tunnel have been important issues of concern to the hydropower project.In this paper,the evolutions of hydraulic elements such as pressure,flow velocity,wall shear stress,etc.in the converse curvature section are analyzed and the impacts of bottom aerator on hydraulic characteristics are discussed,with the commercial software FLUENT6.3 as a platform and combining the k-model and VOF method.The flow pattern in the converse curvature section of spillway tunnel is given by the three-dimensional numerical simulation.It indicates that the pressure changes rapidly with great pressure gradient from the beginning to the end of the curve.It also shows that the shear stress on side wall just downstream the end of the converse curvature curve is still increasing;the aeration cavity formed downstream the bottom aerator may cause the side wall pressure decreased to worsen the cavitation characteristics near the side wall.By means of the physical model experiment,the three-dimensional aerator composed of side wall baffling aerator and bottom aerator is studied,the baffling aerator suitable for the water flow conditions with water depth of 6.0 to 8.0 m and flow velocity of 35 to 50 m/s is proposed.
文摘On the basis of model tests and theoretical analysis, hydraulic characteristics, air demand, air concentration distribution and their relationships between prototype and model of an aerator were studied. Some computational examples show that the present methods have higher accuracy, and can meet the need of engineering design.
基金supported by the National Key Research and Development Program opf China(Grant No.2016YFC0401707).
文摘The chute aerators separate the flow from the chute bottom,and the violent turbulence is generated after the flow impacts the bottom.Although the chute aerators were widely investigated experimentally,the air concentration distribution of the lower jet in the impact zone remains to be explored systematically.In the impact zone,it is observed that a portion of the air stays in the rollers instead of traveling with the flow,decreasing the air transportation capacity.Based on extensive tests,a comprehensive formula is developed to compute the air concentration distribution in the impact zone,with results in good agreement with the model tests.
文摘Experimental observations show that the random process of two-phase flow behind an aerator is an ergodic process and its amplitude distribution is similar to a normal distribution. The maximum pressure fluctuation is at the re-attachment point where the jet-trajectory flow over the aerator re-attaches to the bottom of the channel, and its amplitude is 2—3 times larger than when there is no aerator. There is a dominant frequency of 1.24 Hz in the model, but the coherence in the frequency domain is not obvious for other frequencies beside the dominant frequency. There is a large vortex at the re-attachment point behind the aerator but correlation among the measurement points is not obvious in the time domain.