期刊文献+
共找到8,156篇文章
< 1 2 250 >
每页显示 20 50 100
Strengthening Active Aging through Older People’s Association and Economic Activity of the Older People in Nepal
1
作者 Hom Nath Chalise James Brightman 《Advances in Aging Research》 CAS 2024年第2期15-24,共10页
Aging is a natural lifelong process ending in death. Many older people are living in poverty. Older people are generally considered dependent on others as they grow older. The purpose of this article is to explore the... Aging is a natural lifelong process ending in death. Many older people are living in poverty. Older people are generally considered dependent on others as they grow older. The purpose of this article is to explore the entrepreneurship activities of Nepalese older adults. Data for this study were collected from the project Help Age International (HAI) implemented in Nepal. Qualitative data observations and interviews were used to collect data. The findings of this study show the formation of the Older People’s Association (OPA) has supported many older people to participate outside the home in various social activities. Moreover, regular deposits through OPAs offer little help. OPAs support older people in their need of financial support to implement minor entrepreneurship. Older people who received support were pleased and were actively involved in their activities and also regularly deposited money in them. Subsequently, older people’s participation in social activities has increased and also helped to lower elderly abuse, loneliness, and depression. Local governments should promote such activities which will help with healthy aging. 展开更多
关键词 aging in Nepal Active aging Older People’s Association Older People Healthy aging
下载PDF
Effects of Maillard reaction and its product AGEs on aging and age-related diseases 被引量:1
2
作者 Huan Peng Yuqi Gao +4 位作者 Chenye Zeng Rui Hua Yannan Guo Yida Wang Zhao Wang 《Food Science and Human Wellness》 SCIE CSCD 2024年第3期1118-1134,共17页
Maillard reaction(MR)is a non-enzymatic browning reaction commonly seen in food processing,which occurs between reducing sugars and compounds with amino groups.Despite certain advantages based on Maillard reaction pro... Maillard reaction(MR)is a non-enzymatic browning reaction commonly seen in food processing,which occurs between reducing sugars and compounds with amino groups.Despite certain advantages based on Maillard reaction products(MRPs)found in some food for health and storage application have appeared,however,the MR occurring in human physiological environment can produce advanced glycation end products(AGEs)by non-enzymatic modification of macromolecules such as proteins,lipids and nucleic acid,which could change the structure and functional activity of the molecules themselves.In this review,we take AGEs as our main object,on the one hand,discuss physiologic aging,that is,age-dependent covalent cross-linking and modification of proteins such as collagen that occur in eyes and skin containing connective tissue.On the other hand,pathological aging associated with autoimmune and inflammatory diseases,neurodegenerative diseases,diabetes and diabetic nephropathy,cardiovascular diseases and bone degenerative diseases have been mainly proposed.Based on the series of adverse effects of accelerated aging and disease pathologies caused by MRPs,the possible harm caused by some MR can be slowed down or inhibited by artificial drug intervention,dietary pattern and lifestyle control.It also stimulates people's curiosity to continue to explore the potential link between the MR and human aging and health,which should be paid more attention to for the development of life sciences. 展开更多
关键词 Maillard reaction Advanced glycation end products Physiologic aging Pathological aging Drug intervention
下载PDF
Effect of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy
3
作者 Xian-wen YANG Ling-ying YE +1 位作者 Yong ZHANG Quan-shi CHENG 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2024年第8期2415-2430,共16页
The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties... The effects of interrupted aging on mechanical properties and corrosion resistance of 7A75 aluminum alloy extruded bar were investigated through various analyses,including electrical conductivity,mechanical properties,local corrosion properties,and slow strain rate tensile stress corrosion tests.Microstructure characterization techniques such as metallographic microscopy,scanning electron microscopy(SEM),and transmission electron microscopy(TEM)were also employed.The results indicate that the tensile strength of the alloy produced by T6I6 aging is similar to that produced by T6I4 aging,and it even exceeds 700 MPa.Furthermore,the yield strength increases by 52.7 MPa,reaching 654.8 MPa after T6I6 aging treatment.The maximum depths of intergranular corrosion(IGC)and exfoliation corrosion(EXCO)decrease from 116.3 and 468.5μm to 89.5 and 324.3μm,respectively.The stress corrosion factor also decreases from 2.1%to 1.6%.These findings suggest that the alloy treated with T6I6 aging exhibits both high strength and excellent stress corrosion cracking resistance.Similarly,when the alloy is treated with T6I4,T6I6 and T6I7 aging,the sizes of grain boundary precipitates(GBPs)are found to be 5.2,18.4,and 32.8 nm,respectively.The sizes of matrix precipitates are 4.8,5.7 and 15.7 nm,respectively.The atomic fractions of Zn in GBPs are 9.92 at.%,8.23 at.%and 6.87 at.%,respectively,while the atomic fractions of Mg are 12.66 at.%,8.43 at.%and 7.00 at.%,respectively.Additionally,the atomic fractions of Cu are 1.83 at.%,2.47 at.%and 3.41 at.%,respectively. 展开更多
关键词 7A75 aluminum alloy interrupted aging aging precipitation behavior mechanical properties intergranular corrosion exfoliation corrosion stress corrosion cracking
下载PDF
Skeletal phenotypes and molecular mechanisms in aging mice
4
作者 Qiao Guan Yuan Zhang +3 位作者 Zhi-Kun Wang Xiao-Hua Liu Jun Zou Ling-Li Zhang 《Zoological Research》 SCIE CSCD 2024年第4期724-746,共23页
Aging is an inevitable physiological process,often accompanied by age-related bone loss and subsequent bone-related diseases that pose serious health risks.Research on skeletal diseases caused by aging in humans is ch... Aging is an inevitable physiological process,often accompanied by age-related bone loss and subsequent bone-related diseases that pose serious health risks.Research on skeletal diseases caused by aging in humans is challenging due to lengthy study durations,difficulties in sampling,regional variability,and substantial investment.Consequently,mice are preferred for such studies due to their similar motor system structure and function to humans,ease of handling and care,low cost,and short generation time.In this review,we present a comprehensive overview of the characteristics,limitations,applicability,bone phenotypes,and treatment methods in naturally aging mice and prematurely aging mouse models(including SAMP6,POLG mutant,LMNA,SIRT6,ZMPSTE24,TFAM,ERCC1,WERNER,and KL/KL-deficient mice).We also summarize the molecular mechanisms of these aging mouse models,including cellular DNA damage response,senescence-related secretory phenotype,telomere shortening,oxidative stress,bone marrow mesenchymal stem cell(BMSC)abnormalities,and mitochondrial dysfunction.Overall,this review aims to enhance our understanding of the pathogenesis of aging-related bone diseases. 展开更多
关键词 aging Premature aging MICE BONE Gene knockout
下载PDF
Does young feces make the elderly live better? Application of fecal microbiota transplantation in healthy aging
5
作者 YUANYUAN LIAO XINSI LI +3 位作者 QIAN LI YIZHONG WANG XIUJUN TAN TING GONG 《BIOCELL》 SCIE 2024年第6期873-887,共15页
As we are facing an aging society,anti-aging strategies have been pursued to reduce the negative impacts of aging and increase the health span of human beings.Gut microbiota has become a key factor in the anti-aging p... As we are facing an aging society,anti-aging strategies have been pursued to reduce the negative impacts of aging and increase the health span of human beings.Gut microbiota has become a key factor in the anti-aging process.Modulation of gut microbiota by fecal microbiota transplantation(FMT)to prevent frailty and unhealthy aging has been a hot topic of research.This narrative review summarizes the benefits of FMT for health span and lifespan,brains,eyes,productive systems,bones,and others.The mechanisms of FMT in improving healthy aging are discussed.The increased beneficial bacteria and decreased pathological bacteria decreased gut permeability and systemic inflammation,increased short-chain fatty acid(SCFA)and SCFA-producing bacteria,and other factors are listed as mechanisms of FMT to improve healthy aging.The points that need to be considered to ensure the optimal outcomes of FMT are also discussed,such as recipients’age,sex,genetic background,and gut microbiota after FMT.Although thisfield is still in its infancy,it has shown that FMT has great potential to improve healthy aging. 展开更多
关键词 Gut microbiota Healthy aging LIFESPAN Fecal microbiota transplantation Co-housing Short-chain fatty acid Inflammaging
下载PDF
Six Amino Acids among Natural Moisturizing Factors Responsible for Skin Hydration: Improvement and Anti-Aging of Skin by Galactomyces Ferment Filtrate-PiteraTM Containing Skin Moisturizer
6
作者 Kukizo Miyamoto Yoko Munakata +4 位作者 Keisuke Fujii Wang Summer Ley Yang Suda Sudarsana Masutaka Furue 《Journal of Cosmetics, Dermatological Sciences and Applications》 2024年第2期113-127,共15页
Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reporte... Background: Natural moisturizing factors (NMFs) are filaggrin-derived components in the cornified layer that are critical for maintaining healthy skin moisturization and barrier function. However, studies have reported conflicting findings on the relationship between NMF levels and aging, while few studies have investigated this relationship clinically. To fill this research gap, we determined the levels of major NMF components such as free amino acids, pyrrolidone carboxylic acid, and urocanic acids, and individually verified their relationships with skin hydration, barrier function, age, and skin aging. Purpose: The objective of this study was to clinically investigate the relationship between NMF components levels and skin aging in facial skin. The main NMF components were obtained from facial skin and quantified. We then selected NMF components showing strong relationships to skin hydration, and analyzed the relationships of the levels of these selected NMF components with signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). We also examined the efficacy of treatment with a skin care formula (SK-II Facial Treatment Essence, called SK-II FTE hereafter) including Galactomyces ferment filtrate (GFF, PiteraTM) on the selected NMF component levels associated with skin hydration and barrier function, and the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Method: We conducted two clinical trials in this research. In Study 1, we measured 23 NMF components using tape-stripped cornified layer to quantify them via an HPLC method in 196 Asian females aged 20 to 59 (mean S.D., 38.6 9.4). Facial visual aging parameters [texture, pores, wrinkles, and dullness (L-value)], as well as elasticity (R7), skin hydration, and TEWL, were quantified using facial skin imaging and skin physical property measurement devices. Study 2 was performed to evaluate whether the facial application of SK-II FTE affects the NMF levels and skin aging parameters in 63 Asian female volunteers aged 20 to 55 (38.4 9.03). During the course of Study 2, 0.6 mL of SK-II FTE was applied to the face twice daily in the morning and afternoon. Skin measurements were performed at the start of the day (baseline) and at week 8. Results: In Study 1, we examined the stratum corneum levels of 23 NMF components comparing to the skin hydration status in 196 female subjects. The subjects were divided into two groups using the median of each measured NMF component. Skin hydration values were compared between the two groups defined for each NMF component. The results showed that subjects with higher levels of six amino acids, alanine, arginine, asparagine, glutamine, glycine, and histidine, exhibited significantly higher skin hydration than those with lower amino acid levels. No significant differences in skin hydration values were found for the other 17 NMF components. We then analyzed whether the sum of these six amino acid NMF components (called 6-AA-NMFs, hereafter) is affected by aging. The 6-AA-NMF level peaked in the subjects aged 25-29, and then gradually and significantly decreased with age. Interestingly, the 6-AA-NMF level was significantly correlated with the skin hydration value, but not with TEWL. In addition, the 6-AA-NMF level demonstrated significant correlations with the signs of skin aging of texture, pores, wrinkles, and dullness (L-value). Then, in Study 2, we examined whether the daily application of SK-II FTE affects the 6-AA-NMF level and visual aging parameters in 63 females. SK-II FTE demonstrated significant increases of the levels of 6-AA-NMFs and each of its components associated with hydration and barrier function, and improvements of skin texture, pores, wrinkles, and dullness (L-value) during the 8 weeks of treatment of facial skin. Conclusion: These clinical studies with large numbers of subjects across a wide age range revealed that six amino acids as NMF components were highly correlated with facial skin hydration in the stratum corneum. The levels of these six NMF components were also found to decrease at ages after the 30 s and were significantly correlated with major signs of skin aging. Notably, these six NMF components (6-AA-NMFs) were increased by SK-II FTE treatment associated with improvements of skin hydration and signs of skin aging, namely, texture, pores, wrinkles, and dullness (L-value). These studies were limited by the lack of investigation of why some NMF components were not associated with skin hydration. More clinical trials examining various NMF components and their relationship with aging are anticipated. 展开更多
关键词 NMF Amino Acid Visual aging Parameter Hydration aging Texture Pore Wrinkle Dullness Galactomyces Ferment Filtrate PiteraTM SK-II Facial Treatment Essence
下载PDF
Quantification of In Vivo Epidermal Keratinocyte Architecture Associated with the Signs of Skin Aging and the Skin Benefit Evaluation by Application of Galactomyces Ferment Filtrate (Pitera)-Containing Skin Care Product
7
作者 Kukizo Miyamoto Yoko Munakata +4 位作者 Keisuke Fujii Chenlu Lei Ley Yang Suda Sudarsana Masutaka Furue 《Journal of Cosmetics, Dermatological Sciences and Applications》 2024年第1期12-28,共17页
Background: Aged skin exhibits visual alterations such as wrinkles, rough texture, pore dilation, and dull skin tone, as well as physiological aging, namely, decreased hydration and increased transepidermal water loss... Background: Aged skin exhibits visual alterations such as wrinkles, rough texture, pore dilation, and dull skin tone, as well as physiological aging, namely, decreased hydration and increased transepidermal water loss (TEWL). Recent advances in coherence tomography have also revealed that skin aging affects in vivo epidermal keratinocyte architecture. However, the interconnectivity between spatial architectural aging and visual/physiological aging parameters remains largely unknown. Purpose: To elucidate whether the tomographic keratinocyte architectural aging is correlated with visual and physiological skin aging parameters and to quantitatively evaluate the improvements of the architectural, visual, and physiological aging parameters by the daily treatment of the skin care formula containing Galactomyces Ferment Filtrate (GFF, 8X Pitera<sup>TM</sup>). Method: We measured the in vivo keratinocyte cellular architecture with two-photon stereoscopic tomography obtaining by-layer epidermal section images in 78 Asian females of various ages. Visual aging parameters were analyzed using a portable image capture system. Hydration and TEWL were also assessed. The anti-aging effects of GFF-containing skin moisturizer (SK-II LXP Cream<sup>TM</sup>) were also examined in two studies after twice-daily application for 2 (N = 35) and 4 (N = 32) weeks. Results: As for the keratinocyte cellular architecture, skin aging was significantly associated with decreased cell density and increased cell uniformity. These architectural aging parameters were significantly correlated with visual and physiological aging parameters, namely, rough texture, wrinkles, pore dilation, dull skin tone, dehydration, and increased TEWL. The strong interconnectivity allowed us to develop formulae to estimate the keratinocyte architecture from visual aging parameters. Moreover, twice-daily application of SK-II significantly improved the keratinocyte architecture associated with multiple skin aging visual and physiological parameters. Conclusion: Skin aging is a process involving mutual interconnections among epidermal keratinocyte cellular architecture, visual, and physiological parameters. The GFF-containing moisturizer SK-II effectively improves spatial architecture of keratinocytes in epidermis and these evaluated skin aging parameters in a new trajectory over the course of treatment. . 展开更多
关键词 Facial Skin aging In Vivo Keratinocyte Cellular Architecture Visual aging Pa-rameter Dehydration INTERCONNECTIVITY New Trajectory Galactomyces Fer-ment Filtrate PiteraTM SK-II LXP CreamTM
下载PDF
Microglial response to aging and neuroinflammation in the development of neurodegenerative diseases 被引量:3
8
作者 Tingting Han Yuxiang Xu +2 位作者 Lin Sun Makoto Hashimoto Jianshe Wei 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第6期1241-1248,共8页
Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Review... Cellular senescence and chronic inflammation in response to aging are considered to be indicators of brain aging;they have a great impact on the aging process and are the main risk factors for neurodegeneration.Reviewing the microglial response to aging and neuroinflammation in neurodegenerative diseases will help understand the importance of microglia in neurodegenerative diseases.This review describes the origin and function of microglia and focuses on the role of different states of the microglial response to aging and chronic inflammation on the occurrence and development of neurodegenerative diseases,including Alzheimer's disease,Huntington's chorea,and Parkinson's disease.This review also describes the potential benefits of treating neurodegenerative diseases by modulating changes in microglial states.Therefore,inducing a shift from the neurotoxic to neuroprotective microglial state in neurodegenerative diseases induced by aging and chronic inflammation holds promise for the treatment of neurodegenerative diseases in the future. 展开更多
关键词 aging Alzheimer's disease cytokines Huntington's disease MICROGLIA neurodegenerative diseases NEUROINFLAMMATION NEUROPROTECTION NEUROTOXICITY Parkinson's disease
下载PDF
How do neurons age?A focused review on the aging of the microtubular cytoskeleton 被引量:1
9
作者 Brad Richardson Thomas Goedert +2 位作者 Shmma Quraishe Katrin Deinhardt Amritpal Mudher 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1899-1907,共9页
Aging is the leading risk factor for Alzheimer’s disease and other neurodegenerative diseases. We now understand that a breakdown in the neuronal cytoskeleton, mainly underpinned by protein modifications leading to t... Aging is the leading risk factor for Alzheimer’s disease and other neurodegenerative diseases. We now understand that a breakdown in the neuronal cytoskeleton, mainly underpinned by protein modifications leading to the destabilization of microtubules, is central to the pathogenesis of Alzheimer’s disease. This is accompanied by morphological defects across the somatodendritic compartment, axon, and synapse. However, knowledge of what occurs to the microtubule cytoskeleton and morphology of the neuron during physiological aging is comparatively poor. Several recent studies have suggested that there is an age-related increase in the phosphorylation of the key microtubule stabilizing protein tau, a modification, which is known to destabilize the cytoskeleton in Alzheimer’s disease. This indicates that the cytoskeleton and potentially other neuronal structures reliant on the cytoskeleton become functionally compromised during normal physiological aging. The current literature shows age-related reductions in synaptic spine density and shifts in synaptic spine conformation which might explain age-related synaptic functional deficits. However, knowledge of what occurs to the microtubular and actin cytoskeleton, with increasing age is extremely limited. When considering the somatodendritic compartment, a regression in dendrites and loss of dendritic length and volume is reported whilst a reduction in soma volume/size is often seen. However, research into cytoskeletal change is limited to a handful of studies demonstrating reductions in and mislocalizations of microtubule-associated proteins with just one study directly exploring the integrity of the microtubules. In the axon, an increase in axonal diameter and age-related appearance of swellings is reported but like the dendrites, just one study investigates the microtubules directly with others reporting loss or mislocalization of microtubule-associated proteins. Though these are the general trends reported, there are clear disparities between model organisms and brain regions that are worthy of further investigation. Additionally, longitudinal studies of neuronal/cytoskeletal aging should also investigate whether these age-related changes contribute not just to vulnerability to disease but also to the decline in nervous system function and behavioral output that all organisms experience. This will highlight the utility, if any, of cytoskeletal fortification for the promotion of healthy neuronal aging and potential protection against age-related neurodegenerative disease. This review seeks to summarize what is currently known about the physiological aging of the neuron and microtubular cytoskeleton in the hope of uncovering mechanisms underpinning age-related risk to disease. 展开更多
关键词 age-related changes aging CYTOSKELETON MICROTUBULES neuronal morphology
下载PDF
Hypothalamic circuits and aging:keeping the circadian clock updated 被引量:1
10
作者 Rosa Vázquez-Lizarraga Lucia Mendoza-Viveros +3 位作者 Carolina Cid-Castro Sareni Ruiz-Montoya Erick Carreño-Vázquez Ricardo Orozco-Solis 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期1919-1928,共10页
Over the past century,age-related diseases,such as cancer,type-2 diabetes,obesity,and mental illness,have shown a significant increase,negatively impacting overall quality of life.Studies on aged animal models have un... Over the past century,age-related diseases,such as cancer,type-2 diabetes,obesity,and mental illness,have shown a significant increase,negatively impacting overall quality of life.Studies on aged animal models have unveiled a progressive discoordination at multiple regulatory levels,including transcriptional,translational,and post-translational processes,resulting from cellular stress and circadian derangements.The circadian clock emerges as a key regulator,sustaining physiological homeostasis and promoting healthy aging through timely molecular coordination of pivotal cellular processes,such as stem-cell function,cellular stress responses,and inter-tissue communication,which become disrupted during aging.Given the crucial role of hypothalamic circuits in regulating organismal physiology,metabolic control,sleep homeostasis,and circadian rhythms,and their dependence on these processes,strategies aimed at enhancing hypothalamic and circadian function,including pharmacological and non-pharmacological approaches,offer systemic benefits for healthy aging.Intranasal brain-directed drug administration represents a promising avenue for effectively targeting specific brain regions,like the hypothalamus,while reducing side effects associated with systemic drug delivery,thereby presenting new therapeutic possibilities for diverse age-related conditions. 展开更多
关键词 aging ASTROCYTES cellular stress responses circadian clock HYPOTHALAMUS intranasal drug administration metabolic control nutrient sensor SIRT1 sleep homeostasis
下载PDF
Single-cell transcriptomic atlas of goat ovarian aging 被引量:1
11
作者 Dejun Xu Shuaifei Song +5 位作者 Fuguo Wang Yawen Li Ziyuan Li Hui Yao Yongju Zhao Zhongquan Zhao 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第1期146-161,共16页
Background The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process,and ovarian aging is shown by a decrease in the number and quality of oocytes.However,little is known a... Background The ovaries are one of the first organs that undergo degenerative changes earlier in the aging process,and ovarian aging is shown by a decrease in the number and quality of oocytes.However,little is known about the molecular mechanisms of female age-related fertility decline in different types of ovarian cells during aging,especially in goats.Therefore,the aim of this study was to reveal the mechanisms driving ovarian aging in goats at single-cell resolution.Results For the first time,we surveyed the single-cell transcriptomic landscape of over 27,000 ovarian cells from newborn,young and aging goats,and identified nine ovarian cell types with distinct gene-expression signatures.Functional enrichment analysis showed that ovarian cell types were involved in their own unique biological processes,such as Wnt beta-catenin signalling was enriched in germ cells,whereas ovarian steroidogenesis was enriched in granulosa cells(GCs).Further analysis showed that ovarian aging was linked to GCs-specific changes in the antioxidant system,oxidative phosphorylation,and apoptosis.Subsequently,we identified a series of dynamic genes,such as AMH,CRABP2,THBS1 and TIMP1,which determined the fate of GCs.Additionally,FOXO1,SOX4,and HIF1A were identified as significant regulons that instructed the differentiation of GCs in a distinct manner during ovarian aging.Conclusions This study revealed a comprehensive aging-associated transcriptomic atlas characterizing the cell typespecific mechanisms during ovarian aging at the single-cell level and offers new diagnostic biomarkers and potential therapeutic targets for age-related goat ovarian diseases. 展开更多
关键词 GOAT Granulosa cells Ovarian aging Single-cell transcriptomic
下载PDF
Dietary Lipid Intervention in the Prevention of Brain Aging
12
作者 Wei Xiong Bing Fang +9 位作者 Xiaoyu Wang Ming Zhang Min Du Jiazeng Sun Juan Chen Yixuan Li Changhao Sun Xingen Lei Xue Zhang Fazheng Ren 《Engineering》 SCIE EI CAS CSCD 2024年第6期128-137,共10页
As people live longer,the burden of aging-related brain diseases,especially dementia,is increasing.Brain aging increases the risk of cognitive impairment,which manifests as a progressive loss of neuron function caused... As people live longer,the burden of aging-related brain diseases,especially dementia,is increasing.Brain aging increases the risk of cognitive impairment,which manifests as a progressive loss of neuron function caused by the impairment of synaptic plasticity via disrupting lipid homeostasis.Therefore,supplemental dietary lipids have the potential to prevent brain aging.This review summarizes the important roles of dietary lipids in brain function from both structure and mechanism perspectives.Epidemiological and animal studies have provided evidence of the functions of polyunsaturated fatty acids(PUFAs)in brain health.The results of interventions indicate that phospholipids—including phosphatidylcholine,phosphatidylserine,and plasmalogen—are efficient in alleviating cognitive impairment during aging,with plasmalogen exhibiting higher efficacy than phosphatidylserine.Plasmalogen is a recognized nutrient used in clinical trials due to its special vinyl ether bonds and abundance in the postsynaptic membrane of neurons.Future research should determine the dose-dependent effects of plasmalogen in alleviating brain-aging diseases and should develop extraction and storage procedures for its clinical application. 展开更多
关键词 Brain aging Nutritional intervention PHOSPHOLIPIDS PHOSPHATIDYLCHOLINE PHOSPHATIDYLSERINE PLASMALOGEN
下载PDF
Neuronal regulated cell death in aging-related neurodegenerative diseases:key pathways and therapeutic potentials
13
作者 Run Song Shiyi Yin +1 位作者 Jiannan Wu Junqiang Yan 《Neural Regeneration Research》 SCIE CAS 2025年第8期2245-2263,共19页
Regulated cell death(such as apoptosis,necroptosis,pyroptosis,autophagy,cuproptosis,ferroptosis,disulfidptosis)involves complex signaling pathways and molecular effectors,and has been proven to be an important regulat... Regulated cell death(such as apoptosis,necroptosis,pyroptosis,autophagy,cuproptosis,ferroptosis,disulfidptosis)involves complex signaling pathways and molecular effectors,and has been proven to be an important regulatory mechanism for regulating neuronal aging and death.However,excessive activation of regulated cell death may lead to the progression of aging-related diseases.This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases.Notably,the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases.These forms of cell death exacerbate disease progression by promoting inflammation,oxidative stress,and pathological protein aggregation.The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms,with a focus on ferroptosis,cuproptosis,and disulfidptosis.For instance,FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation,while copper mediates glutathione peroxidase 4 degradation,enhancing ferroptosis sensitivity.Additionally,inhibiting the Xc-transport system to prevent ferroptosis can increase disulfide formation and shift the NADP^(+)/NADPH ratio,transitioning ferroptosis to disulfidptosis.These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms.In conclusion,identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions. 展开更多
关键词 apoptosis autophagy cuproptosis disulfidptosis ferroptosis NECROPTOSIS neurodegenerative disease neurological aging diseases PANoptosis PYROPTOSIS
下载PDF
Alginate oligosaccharide-mediated butyrate-HIF-1α axis improves skin aging in mice
14
作者 Ting Gao Yixuan Li +1 位作者 Xiaoyu Wang Fazheng Ren 《Journal of Pharmaceutical Analysis》 SCIE CAS CSCD 2024年第5期678-692,共15页
The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging... The“gut-skin”axis has been proved and is considered as a novel therapy for the prevention of skin aging.The antioxidant efficacy of oligomannonic acid(MAOS)makes it an intriguing target for use to improve skin aging.The present study further explored whereby MAOS-mediated gut-skin axis balance prevented skin aging in mice.The data indicated the skin aging phenotypes,oxidative stress,skin mitochondrial dysfunction,and intestinal dysbiosis(especially the butyrate and HIF-1a levels decreased)in aging mice.Similarly,fecal microbiota transplantation(FMT)from aging mice rebuild the aging-like phenotypes.Further,we demonstrated MAOS-mediated colonic butyrate-HIF-1a axis homeostasis promoted the entry of butyrate into the skin,upregulated mitophagy level and ultimately improving skin aging via HDAC3/PHD/HIF-1a/mitophagy loop in skin of mice.Overall,our study offered a better insights of the effectiveness of alginate oligosaccharides(AOS),promised to become a personalized targeted therapeutic agents,on gut-skin axis disorder inducing skin aging. 展开更多
关键词 Alginate oligosaccharide Skin aging BUTYRATE HIF-1A MITOPHAGY
下载PDF
Evolution of mechanical properties,localized corrosion resistance and microstructure of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging
15
作者 DAI Xuan-xuan LI Yu-zhang +2 位作者 LIU Sheng-dan YE Ling-ying BAO Chong-jun 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1790-1807,共18页
The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,inte... The evolution of mechanical properties,localized corrosion resistance of a high purity Al-Zn-Mg-Cu alloy during non-isothermal aging(NIA)was investigated by hardness test,electrical conductivity test,tensile test,intergranular corrosion test,exfoliation corrosion test,slow strain rate tensile test and electrochemical test,and the mechanism has been discussed based on microstructure examination by optical microscopy,electron back scattered diffraction,scanning electron microscopy and scanning transmission electron microscopy.The NIA treatment includes a heating stage from 40℃to 180℃with a rate of 20℃/h and a cooling stage from 180℃to 40℃with a rate of 10℃/h.The results show that the hardness and strength increase rapidly during the heating stage of NIA since the increasing temperature favors the nucleation and the growth of strengthening precipitates and promotes the transformation of Guinier-Preston(GPI)zones toη'phase.During the cooling stage,the sizes ofη'phase increase with a little change in the number density,leading to a further slight increase of the hardness and strength.As NIA proceeds,the corroded morphology in the alloy changes from a layering feature to a wavy feature,the maximum corrosion depth decreases,and the reason has been analyzed based on the microstructural and microchemical feature of precipitates at grain boundaries and subgrain boundaries. 展开更多
关键词 Al-Zn-Mg-Cu alloy non-isothermal aging mechanical properties localized corrosion resistance MICROSTRUCTURE
下载PDF
Mapping the evolution of liver aging research:A bibliometric analysis
16
作者 Qun-Hua Han Shun-Mei Huang +7 位作者 Sha-Sha Wu Sui-Sui Luo Zhi-Yuan Lou Hui Li Yun-Mei Yang Qin Zhang Ji-Min Shao Li-Jun Zhu 《World Journal of Gastroenterology》 SCIE CAS 2024年第41期4461-4480,共20页
BACKGROUND With the increasing of the global aging population,healthy aging and prevention of age-related diseases have become increasingly important.The liver,a vital organ involved in metabolism,detoxification,diges... BACKGROUND With the increasing of the global aging population,healthy aging and prevention of age-related diseases have become increasingly important.The liver,a vital organ involved in metabolism,detoxification,digestion,and immunity,holds a pivotal role in the aging process of organisms.Although extensive research on liver aging has been carried out,no bibliometric analysis has been conducted to evaluate the scientific progress in this area.AIM To analyze basic knowledge,development trends,and current research frontiers in the field via bibliometric methods.METHODS We conducted bibliometric analyses via a range of analytical tools including Python,the bibliometrix package in R,CiteSpace,and VOSviewer.We retrieved publication data on liver aging research from the Web of Science Core Collection Database.A scientific knowledge map was constructed to display the contributions from different authors,journals,countries,institutions,as well as patterns of co-occurrence keywords and co-cited references.Additionally,gene regulation pathways associated with liver aging were analyzed via the STRING database.RESULTS We identified 4288 articles on liver aging,authored by 24034 contributors from 4092 institutions across 85 countries.Notably,the years 1991 and 2020 presented significant bursts in publication output.The United States led in terms of publications(n=1008,25.1%),citations(n=55205),and international collaborations(multiple country publications=214).Keywords such as“lipid metabolism”,“fatty liver disease”,“inflammation”,“liver fibrosis”and“target”were prominent,highlighting the current research hotspots.Notably,the top 64 genes,each of which appeared in at least 8 articles,were involved in pathways essential for cell survival and aging,including the phosphatidylinositol 3-kinase/protein kinase B,Forkhead box O and p53 signaling pathways.CONCLUSION This study highlights key areas of liver aging and offers a comprehensive overview of research trends,as well as insights into potential value for collaborative pursuits and clinical implementations. 展开更多
关键词 aging LIVER BIBLIOMETRIC Gene regulation VOSviewer CITESPACE R language
下载PDF
Unraveling brain aging through the lens of oral microbiota
17
作者 Qinchao Hu Si Wang +2 位作者 Weiqi Zhang Jing Qu Guang-Hui Liu 《Neural Regeneration Research》 SCIE CAS 2025年第7期1930-1943,共14页
The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even... The oral cavity is a complex physiological community encompassing a wide range of microorganisms.Dysbiosis of oral microbiota can lead to various oral infectious diseases,such as periodontitis and tooth decay,and even affect systemic health,including brain aging and neurodegenerative diseases.Recent studies have highlighted how oral microbes might be involved in brain aging and neurodegeneration,indicating potential avenues for intervention strategies.In this review,we summarize clinical evidence demonstrating a link between oral microbes/oral infectious diseases and brain aging/neurodegenerative diseases,and dissect potential mechanisms by which oral microbes contribute to brain aging and neurodegeneration.We also highlight advances in therapeutic development grounded in the realm of oral microbes,with the goal of advancing brain health and promoting healthy aging. 展开更多
关键词 Alzheimer's disease brain aging multiple sclerosis NEURODEGENERATION neurodegenerative diseases oral microbiota Parkinson's disease PERIODONTITIS BACTERIA Porphyromonas gingivalis
下载PDF
Decoding molecular mechanisms:brain aging and Alzheimer's disease
18
作者 Mahnoor Hayat Rafay Ali Syed +9 位作者 Hammad Qaiser Mohammad Uzair Khalid Al-Regaiey Roaa Khallaf Lubna Abdullah Mohammed Albassam Imdad Kaleem Xueyi Wang Ran Wang Mehwish SBhatti Shahid Bashir 《Neural Regeneration Research》 SCIE CAS 2025年第8期2279-2299,共21页
The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions a... The complex morphological,anatomical,physiological,and chemical mechanisms within the aging brain have been the hot topic of research for centuries.The aging process alters the brain structure that affects functions and cognitions,but the worsening of such processes contributes to the pathogenesis of neurodegenerative disorders,such as Alzheimer's disease.Beyond these observable,mild morphological shifts,significant functional modifications in neurotransmission and neuronal activity critically influence the aging brain.Understanding these changes is important for maintaining cognitive health,especially given the increasing prevalence of age-related conditions that affect cognition.This review aims to explore the age-induced changes in brain plasticity and molecular processes,differentiating normal aging from the pathogenesis of Alzheimer's disease,thereby providing insights into predicting the risk of dementia,particularly Alzheimer's disease. 展开更多
关键词 Alzheimer’s disease brain aging cognitive health DEMENTIA molecular mechanisms neuronal activity NEUROPLASTICITY NEUROTRANSMISSION
下载PDF
A review of data-driven whole-life state of health prediction for lithium-ion batteries:Data preprocessing,aging characteristics,algorithms,and future challenges
19
作者 Yanxin Xie Shunli Wang +3 位作者 Gexiang Zhang Paul Takyi-Aninakwa Carlos Fernandez Frede Blaabjerg 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期630-649,I0013,共21页
Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance ... Lithium-ion batteries are the preferred green energy storage method and are equipped with intelligent battery management systems(BMSs)that efficiently manage the batteries.This not only ensures the safety performance of the batteries but also significantly improves their efficiency and reduces their damage rate.Throughout their whole life cycle,lithium-ion batteries undergo aging and performance degradation due to diverse external environments and irregular degradation of internal materials.This degradation is reflected in the state of health(SOH)assessment.Therefore,this review offers the first comprehensive analysis of battery SOH estimation strategies across the entire lifecycle over the past five years,highlighting common research focuses rooted in data-driven methods.It delves into various dimensions such as dataset integration and preprocessing,health feature parameter extraction,and the construction of SOH estimation models.These approaches unearth hidden insights within data,addressing the inherent tension between computational complexity and estimation accuracy.To enha nce support for in-vehicle implementation,cloud computing,and the echelon technologies of battery recycling,remanufacturing,and reuse,as well as to offer insights into these technologies,a segmented management approach will be introduced in the future.This will encompass source domain data processing,multi-feature factor reconfiguration,hybrid drive modeling,parameter correction mechanisms,and fulltime health management.Based on the best SOH estimation outcomes,health strategies tailored to different stages can be devised in the future,leading to the establishment of a comprehensive SOH assessment framework.This will mitigate cross-domain distribution disparities and facilitate adaptation to a broader array of dynamic operation protocols.This article reviews the current research landscape from four perspectives and discusses the challenges that lie ahead.Researchers and practitioners can gain a comprehensive understanding of battery SOH estimation methods,offering valuable insights for the development of advanced battery management systems and embedded application research. 展开更多
关键词 Lithium-ion batteries Whole life cycle aging mechanism Data-driven approach State of health Battery management system
下载PDF
Ultrahigh strength and improved electrical conductivity in an aging strengthened copper alloy processed by combination of equal channel angular pressing and thermomechanical treatment
20
作者 WANG Xu LI Zhou +1 位作者 MENG Xiang-peng XIAO Zhu 《Journal of Central South University》 SCIE EI CAS CSCD 2024年第6期1823-1837,共15页
In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and proper... In this paper,equal channel angular pressing and thermomechanical treatment was employed to improve the strength and electrical conductivity of an aging strengthened Cu-Ti-Cr-Mg alloy,and the microstructure and properties of the alloy were investigated in detail.The results showed that the samples deformed by the combination of cryogenic equal channel angular pressing(ECAP)and rolling had good comprehensive properties after aging at 400℃.The tensile strength of the peak-aged and over-aged samples was 1120 MPa and 940 MPa,with their corresponding electrical conductivity of 14.7%IACS and 22.1%IACS,respectively.ECAP and cryogenic rolling introduced high density dislocations,leading to the inhibition of the softening effects and refinement of the grains.After a long time aging at 400℃,the alloy exhibited ultra-high strength with obvious increasing electrical conductivity.The high strength was attributed to the synergistic effect of work hardening,grain refinement strengthening and precipitation strengthening.The precipitation of a large amount of Ti atoms from the matrix led to the high electrical conductivity of the over-aged sample. 展开更多
关键词 Cu-Ti alloy equal channel angular pressing ROLLING aging treatment high strength
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部