期刊文献+
共找到133,986篇文章
< 1 2 250 >
每页显示 20 50 100
Thermodynamics and characterization of shape memory Cu-Al-Zn alloys 被引量:2
1
作者 Lidija GOMIDZELOVIC Emina POZEGA +4 位作者 Ana KOSTOV Nikola VUKOVIC Vesna KRSTIC Dragana ZIVKOVIC Ljubisa BALANOVIC 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第8期2630-2636,共7页
The thermodynamic properties and the microstructure, hardness and electrical conductivity of shape memory alloys (SMAs) belonging to ternary Cu?Al?Zn system were studied by Muggianu model and experiment, respectiv... The thermodynamic properties and the microstructure, hardness and electrical conductivity of shape memory alloys (SMAs) belonging to ternary Cu?Al?Zn system were studied by Muggianu model and experiment, respectively. The isothermal section of phase diagram at 293 K was calculated using Thermo-Calc software. Experiments were conducted by X-ray diffraction, light optic microscopy, scanning electron microscopy with energy dispersive X-ray spectrometry, hardness and electrical conductivity measurements. The calculated values of thermodynamic properties indicate that Cu shows good miscibility with Al and Zn in all investigated alloys. The microstructural analysis of samples reveals that the structure consists of large and polygonal grains. 展开更多
关键词 THERMODYNAMICS shape memory alloy Cu-al-zn alloys HARDNESS electrical conductivity
下载PDF
Comparative study on corrosion behaviors of Mg-Al-Zn alloys 被引量:2
2
作者 Sennur CANDAN Ercan CANDAN 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第4期642-650,共9页
A comparative study on corrosion behaviors of various Mg-Al-Zn alloys(AZ21,AZ41,AZ61 and AZ91 series,cast under same cooling conditions and controlled alloying composition)was carried out.Scanning electron microscopy(... A comparative study on corrosion behaviors of various Mg-Al-Zn alloys(AZ21,AZ41,AZ61 and AZ91 series,cast under same cooling conditions and controlled alloying composition)was carried out.Scanning electron microscopy(SEM)and X-ray diffraction(XRD)were used for microstructural examinations.The corrosion behaviors were evaluated by immersion tests and potentiodynamic polarization measurements in 3.5%NaCl solution.The results showed that the influence of Al addition on corrosion resistance was more pronounced up to 4%(i.e.AZ41)above which its influence was at less extent.The deterioration of the corrosion resistance of the alloys,at higher Al contents,was attributed to the amount and morphology ofβ-Mg17Al12 intermetallics and the interruption of continuity of the oxide film on the surface of the alloys owing to coarsenedβintermetallics. 展开更多
关键词 Mg alloy AZ series alloys CASTING CORROSION
下载PDF
Synergistic effect of gradient Zn content and multiscale particles on the mechanical properties of Al-Zn-Mg-Cu alloys with coupling distribution of coarse-fine grains 被引量:1
3
作者 Liangliang Yuan Mingxing Guo +2 位作者 Yi Wang Yun Wang Linzhong Zhuang 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第6期1392-1405,共14页
This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy w... This study investigated the influence of graded Zn content on the evolution of precipitated and iron-rich phases and grain struc-ture of the alloys,designed and developed the Al–8.0Zn–1.5Mg–1.5Cu–0.2Fe(wt%)alloy with high strength and formability.With the increase of Zn content,forming the coupling distribution of multiscale precipitates and iron-rich phases with a reasonable matching ratio and dispersion distribution characteristics is easy.This phenomenon induces the formation of cell-like structures with alternate distribu-tion of coarse and fine grains,and the average plasticity–strain ratio(characterizing the formability)of the pre-aged alloy with a high strength is up to 0.708.Results reveal the evolution and influence mechanisms of multiscale second-phase particles and the corresponding high formability mechanism of the alloys.The developed coupling control process exhibits considerable potential,revealing remarkable improvements in the room temperature formability of high-strength Al–Zn–Mg–Cu alloys. 展开更多
关键词 Al–Zn–Mg–Cu alloy iron-rich phase high formability microstructure MECHANISMS
下载PDF
Hot deformation behavior of Al-Zn-Mg-Cu-Zr aluminum alloys during compression at elevated temperature 被引量:17
4
作者 张辉 金能萍 陈江华 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第3期437-442,共6页
The hot compression tests of Al-Zn-Mg-Cu-Zr aluminum alloys (7056 alloy and 7150 alloy) were performed in a temperature range from 300 to 450 °C and at strain rate range from 0.01 to 10 s-1. The results show th... The hot compression tests of Al-Zn-Mg-Cu-Zr aluminum alloys (7056 alloy and 7150 alloy) were performed in a temperature range from 300 to 450 °C and at strain rate range from 0.01 to 10 s-1. The results show that the true stress-true strain curves exhibit a peak stress at a critical strain, then the flow stresses decrease monotonically until high strains, showing a dynamic flow softening. The peak stresses depend on the temperature compensated strain rate, which can be represented by the Zener-Hollomon parameter Z in the hyperbolic-sine equation with hot deformation activation energy of 244.64 kJ/mol for 7056 alloy and 229.75 kJ/mol for 7150 alloy, respectively, while the peak stresses for the former are lower than those for the latter under the similar compression condition. The deformed microstructures consist of a great amount of precipitates within subgrains in the elongated grains at high Z value and exhibit well formed subgrains in the recrystallized grains at low Z value. The smaller subgrains and greater density of fine precipitates in 7150 alloy are responsible for the high peak stresses because of the substructural strengthening and precipitating hardening compared with 7056 alloy. 展开更多
关键词 al-zn-Mg-Cu-Zr aluminum alloys flow stress dynamic recrystallization dynamic precipitation
下载PDF
Microstructure and mechanical properties of high strength Al-Zn-Mg-Cu alloys used for oil drill pipes 被引量:7
5
作者 冯春 寿文彬 +2 位作者 刘会群 易丹青 冯耀荣 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3515-3522,共8页
Three Al?Zn?Mg?Cu alloys used for oil drill pipes (Alloy A: Al?6.9Zn?2.3Mg?1.7Cu?0.3Mn?0.17Cr; Alloy B: Al?8.0Zn?2.3Mg?2.6Cu?0.2Zr, Alloy C: Al?8.0Zn?2.3Mg?1.8Cu?0.18Zr) were studied by hardness tests, tensile tests a... Three Al?Zn?Mg?Cu alloys used for oil drill pipes (Alloy A: Al?6.9Zn?2.3Mg?1.7Cu?0.3Mn?0.17Cr; Alloy B: Al?8.0Zn?2.3Mg?2.6Cu?0.2Zr, Alloy C: Al?8.0Zn?2.3Mg?1.8Cu?0.18Zr) were studied by hardness tests, tensile tests and transmission electron microscopy (TEM). The results show that the ultimate tensile strength, yield strength and elongation for Alloys A, B and C are 736 MPa, 695.5 MPa and 7%; 711 MPa, 674 MPa and 12.5%; 740.5 MPa, 707.5 MPa and 13%, respectively after solid solution treatment ((450 °C, 2 h)+(470 °C, 1 h)) followed by aging at 120 °C for 12 h. The dominant strengthening phases in Alloy A are GPII zone andη′ phase, the main precipitate in Alloy B isη′ phase, and the main precipitates in Alloy C are GPI zone, GPII zone andη′ phase, which are the reason for better comprehensive properties of Alloy C. The increase of zinc content leads to the improvement of the strength. The increase of copper content improves the elongation but slightly decreases the strength. Large second-phase particles formed by the increase in the manganese content induce a decrease in the elongation of alloys. 展开更多
关键词 al-zn-Mg-Cu alloy aging time PRECIPITATE microstructure mechanical properties
下载PDF
Low cycle fatigue behavior of T4-treated Al-Zn-Mg-Cu alloys prepared by squeeze casting and gravity die casting 被引量:6
6
作者 郑成坤 张卫文 +1 位作者 张大童 李元元 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2015年第11期3505-3514,共10页
Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that m... Gravity die casting(GC) and squeeze casting(SC) T4-treated Al-7.0Zn-2.5Mg-2.1Cu alloys were employed to investigate the microstructures,mechanical properties and low cycle fatigue(LCF) behavior.The results show that mechanical properties of SC specimens are significantly better than those of GC specimens due to less cast defects and smaller secondary dendrite arm spacing(SDAS).Excellent fatigue properties are obtained for the SC alloy compared with the GC alloy.GC and SC alloys both exhibit cyclic stabilization at low total strain amplitudes(less than 0.4%) and cyclic hardening at higher total strain amplitudes.The degree of cyclic hardening of SC samples is greater than that of GC samples.Fatigue cracks of GC samples dominantly initiate from shrinkage porosities and are easy to propagate along them,while the crack initiation sites for SC samples are slip bands,eutectic phases and inclusions at or near the free surface. 展开更多
关键词 al-zn-Mg-Cu alloy squeeze casting gravity die casting microstructure mechanical properties low cycle fatigue
下载PDF
A comparative study on the hot flow stress of Mg-Al-Zn magnesium alloys using a simple physically-based approach 被引量:10
7
作者 Hamed Mirzadeh 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第3期225-229,共5页
A comparative study was carried out on the hot flow stress of AZ31,AZ61,and AZ91 magnesium alloys.Their hot working behaviors were studied through constitutive analysis based on a simple physically-based approach whic... A comparative study was carried out on the hot flow stress of AZ31,AZ61,and AZ91 magnesium alloys.Their hot working behaviors were studied through constitutive analysis based on a simple physically-based approach which accounts for the dependence of the Young's modulus and the self-diffusion coefficient of magnesium on temperature.Since the main difference between these alloys is the difference in their amount of aluminum,the differences in constitutive behavior were quantitatively characterized by relating the hot flow stress to amount of Al,which was not possible without the consideration of physically-based parameters.It was concluded that the used approach in the current work can be considered as a versatile tool in future hot working and alloy development studies. 展开更多
关键词 Mg-al-zn alloys Hot deformation Constitutive equations Activation energy DIFFUSION
下载PDF
Recrystallization of the cold-deformed discontinuous precipitation microstructure in Al-Zn (-Cu) alloys 被引量:2
8
作者 DINGHua RENYuping HAOShiming WANGDapeng ZHAOGang 《Rare Metals》 SCIE EI CAS CSCD 2004年第4期358-363,共6页
Recrystallization of cold-rolled discontinuous, precipitation microstructurewhich has fine laminar structure in an Al-40 percent Zn (atom fraction) binary alloy is investigatedby optical microscopy, SEM and TEM. It is... Recrystallization of cold-rolled discontinuous, precipitation microstructurewhich has fine laminar structure in an Al-40 percent Zn (atom fraction) binary alloy is investigatedby optical microscopy, SEM and TEM. It is found that there are two kinds of recrystallizationmechanisms: continuous coarsening (CC) and discontinuous coarsening (DC). The latter can be dividedinto coarsening mainly driven by stored deformation energy at colony boundaries and slip bands andthe one mainly driven by boundary energy in the area with little deformation. It is shown that theaddition of Cu can retard the nucleation of coarsening cells and their growth. X-Ray diffractionanalysis indicated the metastable phase CuZn_4 transformed into equilibrium phase A;_4Cu_3Zn duringthe heating process. 展开更多
关键词 al-zn(-Cu) alloy RECRYSTALLIZATION discontinuous precipitation discontinuous coarsening cold deformation microstructure
下载PDF
Effects of minor Sc on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Zr based alloys 被引量:14
9
作者 LI Wenbin PAN Qinglin +3 位作者 ZOU Liang LIANG Wenjie HE Yunbin LIU Junsheng 《Rare Metals》 SCIE EI CAS CSCD 2009年第1期102-106,共5页
Five kinds of Al-Zn-Mg-Cu-Zr based alloys with different Sc additions were prepared by ingot metallurgy. The effects of minor Sc on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Zr based alloys were inve... Five kinds of Al-Zn-Mg-Cu-Zr based alloys with different Sc additions were prepared by ingot metallurgy. The effects of minor Sc on the microstructure and mechanical properties of Al-Zn-Mg-Cu-Zr based alloys were investigated using tensile tests, optical microscopy (OM), and transmission electron microscopy (TEM). The results show that the ultimate tensile strength and yield strength are improved by 94 and 110 MPa, respectively, and the elongation to failure remains at a reasonable extent (11.1%) in the Al-Zn-Mg-Cu-Zr based alloy with 0.21 wt.% Sc addition after solution heat treatment at 475°C for 40 min and then aged at 120°C for 24 h. The addition of minor Sc induces the formation of Al3(Sc,Zr) particles, which are highly effective in refining the cast microstructures, retarding recrystallization, and pinning dislocations. The increment of strength is attributed mainly to fine grain strengthening, precipitation strengthening of Al3(Sc,Zr) particles, and substructure strengthening. 展开更多
关键词 aluminum alloy SCANDIUM ingot metallurgy microstructure mechanical properties
下载PDF
Effect of minor Sc and Zr on microstructures and mechanical properties of Al-Zn-Mg based alloys 被引量:13
10
作者 尹志民 杨磊 +1 位作者 潘青林 姜锋 《中国有色金属学会会刊:英文版》 CSCD 2001年第6期822-825,共4页
Two kinds of Al Zn Mg based alloys with and without Sc, Zr addition were prepared by ingot metallurgy. The tensile mechanical properties and microstructures of the studied alloys at different treatment conditions were... Two kinds of Al Zn Mg based alloys with and without Sc, Zr addition were prepared by ingot metallurgy. The tensile mechanical properties and microstructures of the studied alloys at different treatment conditions were studied. The results show that addition of minor Sc and Zr can remarkably improve the strength of Al Zn Mg based alloys, but the ductility remains on a higher level. The strength increment is mainly due to fine grain strengthening, substructure strengthening and precipitation strengthening of Al 3(Sc,Zr). 展开更多
关键词 aluminum alloy SC ZR microstructure mechanical properties
下载PDF
Production of high strength Al-Zn-Mg-Cu alloys by spray forming process 被引量:8
11
作者 韦强 熊柏青 +6 位作者 张永安 朱宝宏 石力开 ZHU Bao-hong SHI Li-kai 《中国有色金属学会会刊:英文版》 CSCD 2001年第2期258-261,共4页
High strength Al Zn Mg Cu alloys were produced by spray forming process, and compacted by hot extrusion. The results show that the as deposited billets have fine grained microstructure and low porosity. After heat tre... High strength Al Zn Mg Cu alloys were produced by spray forming process, and compacted by hot extrusion. The results show that the as deposited billets have fine grained microstructure and low porosity. After heat treatment, mechanical properties increase greatly: tensile strength up to 754 MPa, yield strength up to 722 MPa, fracture elongation up to 8%, and elastic modulus up to 72 GPa, respectively. [ 展开更多
关键词 spray forming Al Zn alloy hot extrusion mechanical properties
下载PDF
Microstructures and Mechanical Properties of Rapidly Solidified Mg-Al-Zn-MM Alloys 被引量:4
12
作者 Yeon-Wook Kim 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2008年第1期89-92,共4页
Mg-Al-Zn-M M (misch metal) alloy powders were manufactured by inert gas atomization and the characteristics of alloy powders were investigated.In spite of the low fluidity and easy oxidation of the magnesium melt,th... Mg-Al-Zn-M M (misch metal) alloy powders were manufactured by inert gas atomization and the characteristics of alloy powders were investigated.In spite of the low fluidity and easy oxidation of the magnesium melt,the spherical powder was made successfully with the improved three piece nozzle systems of gas atomization unit. It was found that most of the solidified powders with particles size of less than 50μm in diameter were single crystal and the solidification structure of rapidly solidified powders showed a typical dendritic morphology because of supercooling prior to nucleation.The spacing of secondary denrite arms was deceasing as the size of powders was decreasing.The rapidly solidified powders were consolidated by vacuum hot extrusion and the effects of misch metal addition to AZ91 on mechanical properties of extruded bars were also examined.During extrusion of the rapidly solidified powders,their dendritic structure was broken into fragments and remained as grains of about 3μm in size.The Mg-Al-Ce intermetallic compounds formed in the interdendritic regions of powders were finely broken,too.The tensile strength and ductility obtained in as-extruded Mg-9 wt pct Al-1 wt pct Zn-3 wt pct MM alloy wereσ-(T.S.) =383 MPa andε=10.6%,respectively.All of these improvements on mechanical properties were resulted from the refined microstructure and second-phase dispersions. 展开更多
关键词 Mg alloy Gas atomization Misch metal Hot extrusion
下载PDF
Solidification microstructures of Al-Zn-Mg-Cu alloys prepared by spraydeposition and conventional casting methods 被引量:3
13
作者 HE Xiaoqing XIONG Baiqing SUN Zeming ZHANG Yongan WANG Feng ZHU Baohong 《Rare Metals》 SCIE EI CAS CSCD 2008年第2期210-215,共6页
High strength Al-Zn-Mg-Cu alloys were prepared by spray deposition and casting techniques. The microstructures of the Al-Zn-Mg-Cu alloys were studied using scanning electron microscopy, transmission electron microscop... High strength Al-Zn-Mg-Cu alloys were prepared by spray deposition and casting techniques. The microstructures of the Al-Zn-Mg-Cu alloys were studied using scanning electron microscopy, transmission electron microscopy, and X-ray diffraction. Secondary phases in the microstructures of the alloys prepared by spray deposition and conventional cast were examined. The results indicate that under the conventional casting condition, the microstructure of the alloy revealed the presence of coarse Al/Mg(ZnCu)2 eutectic phases, and the spray deposited process causes an obvious modification in size, morphology, and distribution of secondary phases in the microstructure as well as reduction of segregation. The superior microstructure of the spray-deposited Al-Zn-Mg-Cu alloy was attributed to the high cooling rate, and associated with the rapid solidification process. 展开更多
关键词 aluminium alloys spray deposition conventional casting MICROSTRUCTURE
下载PDF
Small Angle X-ray Scattering Study of Precipitation Kinetics in Al-Zn-Mg-Cu Alloys 被引量:3
14
作者 Zhiwei DU Tietao ZHOU +3 位作者 Peiying LIU Huanxi LI Baozhong DONG Changqi CHEN 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2005年第4期479-483,共5页
The evolution of microstructure parameters (precipitate size and volume fraction) for two types of Al-Zn-Mg-Cu alloys (7075 and 7055) during aging has been studied by synchrotron-radiation small angle X-ray scatte... The evolution of microstructure parameters (precipitate size and volume fraction) for two types of Al-Zn-Mg-Cu alloys (7075 and 7055) during aging has been studied by synchrotron-radiation small angle X-ray scattering (SAXS).The results show that the precipitates are only a few nanorneters for both alloys ageing even at higher temperature of 160℃ for 72 h (4.44 and 5.82 nm, respectively). The maximum of the precipitate volume fraction increases with in creasing Zn content and is about 0.023-0.028 and 0.052-0.054, respectively. The coarsening of precipitate is consistent with LSW (Lifshitz-Slyozov-Wagner) model even at the initial stage where volume fraction is still varying.The activation energy of coarsening regime has been determined to be about 1.22±0.02 eV and 1.25±0.02 eV for alloys 7075 and 7055, respectively. 展开更多
关键词 Small angle X-ray scattering (SAXS) AI-Zn-Mg-Cu alloys Ageing Precipitate size Volume fraction
下载PDF
Influence of cerium on microstructures and mechanical properties of Al-Zn-Mg-Cu alloys 被引量:6
15
作者 赖建平 姜荣票 +3 位作者 刘华山 敦小龙 李艳芬 李晓谦 《Journal of Central South University》 SCIE EI CAS 2012年第4期869-874,共6页
Effect of element cerium (Ce) on microstructure and mechanical properties of A1-Zn-Mg-Cu alloys has been investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential s... Effect of element cerium (Ce) on microstructure and mechanical properties of A1-Zn-Mg-Cu alloys has been investigated by transmission electron microscopy (TEM), scanning electron microscopy (SEM), differential scanning calorimetry (DSC) and hardness test. The results show that addition of Ce can remarkably refine the as-cast grains and eutectic microstructure. A transformation from Mg(Zn,Cu,A1)2 phase to A12CuMg phase is observed during homogenization. Furthermore, the Ce addition introduces changes in the precipitation process and consequently in the age-hardening behavior of the alloy. Microstructural measurements reveal that the addition of Ce promotes the precipitation of η' phase, but it also partly retards the precipitation of GP zones. The density of precipitates decreases in a certain degree and rod-like η' precipitates increase when Ce content is from 0.2% to 0.4% (mass fraction). 展开更多
关键词 AI-Zn-Mg-Cu alloy CERIUM microstructure HOMOGENIZATION PRECIPITATION
下载PDF
Correlations among stress corrosion cracking,grain-boundary microchemistry,and Zn content in high Zn-containing Al-Zn-Mg-Cu alloys 被引量:11
16
作者 Ding-ling YUAN Song-yi CHEN +4 位作者 Kang-hua CHEN Lan-ping HUANG Jiang-yu CHANG Liang ZHOU Yun-feng DING 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2021年第8期2220-2231,共12页
The correlations among the corrosion behaviour,grain-boundary microchemistry,and Zn content in Al-Zn-Mg-Cu alloys were studied using stress corrosion cracking(SCC)and intergranular corrosion(IGC)tests,combined with sc... The correlations among the corrosion behaviour,grain-boundary microchemistry,and Zn content in Al-Zn-Mg-Cu alloys were studied using stress corrosion cracking(SCC)and intergranular corrosion(IGC)tests,combined with scanning electron microscopy(SEM)and high-angle angular dark field scanning transmission electron microscopy(HAADF-STEM)microstructural examinations.The results showed that the tensile strength enhancement of high Zn-containing Al-Zn-Mg-Cu alloys was mainly attributed to the high density nano-scale matrix precipitates.The SCC plateau velocity for the alloy with 11.0 wt.%Zn was about an order of magnitude greater than that of the alloy with 7.9 wt.%Zn,which was mainly associated with Zn enrichment in grain boundary precipitates and wide precipitates-free zones.The SCC mechanisms of different Zn-containing alloys were discussed based on fracture features,grain-boundary microchemistry,and electrochemical properties. 展开更多
关键词 al-zn-Mg-Cu alloy stress corrosion cracking Zn content grain-boundary microchemistry
下载PDF
Creep aging behavior and performance of Al-Zn-Mg-Cu alloys under different parameters in retrogression aging treatment 被引量:7
17
作者 PENG Nan-hui ZHAN Li-hua +4 位作者 MA Bo-lin WANG Qing XU Ling-zhi YUWen-fang SHEN Feng 《Journal of Central South University》 SCIE EI CAS CSCD 2022年第3期986-998,共13页
A study was conducted to better understand how different parameters, namely, regression aging time and regression aging temperature, affect the creep aging properties, i.e., the creep deformation and performance of Al... A study was conducted to better understand how different parameters, namely, regression aging time and regression aging temperature, affect the creep aging properties, i.e., the creep deformation and performance of Al-Zn-MgCu alloy during regressive reaging. The corresponding creep strain and mechanical properties of samples were studied by conducting creep tests and uniaxial tensile tests. The electrical conductivity was measured using an eddy-current conductivity meter. The microstructures were observed by transmission electron microscopy(TEM). With the increase in regression aging time, the steady creep strain first increased and then decreased, and reached the maximum at 45 min.The steady creep strain increased with the increase in regression aging temperature, and reached the maximum at 200 ℃.The level of steady creep strain was determined by precipitation and dislocation recovery. Creep aging strengthens 7B50-RRA treated with regression aging time at 190 ℃ for 10 min, and the difference in the mechanical properties of alloy becomes smaller. The diffusion of solute atoms reduces the scattering of electrons, leading to a significant improvement in electrical conductivity and stress corrosion cracking(SCC) resistance after creep aging. The findings of this study could help in the application of creep aging forming(CAF) technology in Al-Zn-Mg-Cu alloy under RRA treatment. 展开更多
关键词 al-zn-Mg-Cu alloy retrogression parameters creep aging behavior performance MICROSTRUCTURE
下载PDF
Quantitative analysis of mechanical properties associated with aging treatment and microstructure in Mg-Al-Zn alloys through machine learning 被引量:5
18
作者 Joung Sik Suh Byeong-Chan Suh +2 位作者 Sang Eun Lee Jun Ho Bae Byoung Gi Moon 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第12期52-63,共12页
The present study proposes a methodology for predicting the mechanical properties of AZ61 and AZ91alloys associated with microstructure,texture and aging parameters and estimating predictor importance.For this,we inve... The present study proposes a methodology for predicting the mechanical properties of AZ61 and AZ91alloys associated with microstructure,texture and aging parameters and estimating predictor importance.For this,we investigate quantitative correlations between microstructure,texture and mechanical properties of aged AZ61 and AZ91 rods through machine learning.This regression analysis focuses on the precipitation behavior of Mg17Al12as the main second phase of Mg-Al-Zn alloys with respect to aging conditions.To simplify data generation,only SEM images were used to quantify the features of discontinuous and continuous precipitates.To overcome the lack of data and make the most of the measured data,we devised a method to extend the existing dataset by a factor of 9 using the mean and standard deviation of the measured data.Artificial neural networks predicted tensile and compressive yield strengths and resultant yield asymmetry with a high accuracy of over 98%using 11 predictors for a total of 288datasets.Decision tree learning quantitatively assessed the importance of predictors in determining the mechanical properties of aged AZ61 and AZ91 rods. 展开更多
关键词 Magnesium alloy Aging treatment MICROSTRUCTURE Mechanical properties Machine learning
原文传递
Microstructure and tensile properties of Mg-Li-Al-Zn based alloys with Ce addition 被引量:4
19
作者 吴利斌 刘旭贺 +3 位作者 巫瑞智 崔崇亮 张景怀 张密林 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第4期779-785,共7页
Mg-5Li-3Al-2Zn-xCe(x=0-2.5;mass fraction,%) alloys were prepared by casting,and heat treatments of homogenization at 300 °C and solid solution at 370 °C were carried out.The microstructure and tensile prop... Mg-5Li-3Al-2Zn-xCe(x=0-2.5;mass fraction,%) alloys were prepared by casting,and heat treatments of homogenization at 300 °C and solid solution at 370 °C were carried out.The microstructure and tensile properties of as-cast alloys and their evolutions after solid solution were investigated.The results show that with the increase of Ce content,Al2Ce/Al3Ce precipitates are formed and the alloys mainly consist of α-Mg,Al2Ce,Al3Ce and AlLi phases,and the amount of AlLi and Al-Ce intermetallics decreases after solid solution.The content and morphology of the second phases have important effects on the mechanical properties of the alloys;the alloy with 1.0%Ce content exhibits excellent tensile strength.The tensile strength and elongation of Mg-5Li-3Al-2Zn-0.5Ce alloy is remarkably improved by the solution strengthening effect because of the addition of Ce. 展开更多
关键词 Mg-Li alloy CE heat treatments solution strengthening tensile properties
下载PDF
高强Al-Zn-Mg-Cu合金静态再结晶模型及组织演变
20
作者 付薛洁 于惠玲 《塑性工程学报》 CAS CSCD 北大核心 2024年第7期160-167,共8页
采用Gleeble 3800热模拟试验机对航空用Al-Zn-Mg-Cu合金的热变形行为进行了测试,对变形后的微观组织进行了表征,系统分析了静态软化行为,建立了静态再结晶动力学模型。结果表明:实验用航空Al-Zn-Mg-Cu合金的静态再结晶激活能为129162 J&... 采用Gleeble 3800热模拟试验机对航空用Al-Zn-Mg-Cu合金的热变形行为进行了测试,对变形后的微观组织进行了表征,系统分析了静态软化行为,建立了静态再结晶动力学模型。结果表明:实验用航空Al-Zn-Mg-Cu合金的静态再结晶激活能为129162 J·mol^(-1),静态再结晶体积分数受变形温度、变形程度、变形速率的影响,且变形温度对静态再结晶影响最明显;变形速率一定时,变形温度越高,道次停留时间的影响越不明显;350℃低温变形后,α-Al基体晶粒内部仍存在大量的位错缠结;400℃中温变形后,位错运动能够充分进行,部分晶粒发生了再结晶;450℃高温变形后,基体晶粒基本全部完成了再结晶,基体晶粒内部发现5~25 nm尺寸范围的Al-Zn-Mg-Cu四元相粒子;对于不同热变形条件,模型预测值的误差在0.008~0.0625范围内,动力学模型的计算结果精确度较高。 展开更多
关键词 al-zn-MG-CU铝合金 静态再结晶 本构模型 微观组织
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部