This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to...This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to coatings layered on leather,but could also be employed as a green alternative to petroleum-based carcinogen styrene(St).Herein,MV was copolymerized with butyl acrylate(BA)to obtain waterborne bio-based P(MV-BA)miniemulsion via miniemulsion polymerization.Subsequently,MXene nanosheets with excellent photothermal conversion performance and antibacterial properties,were introduced into the P(MV-BA)miniemulsion by ultrasonic dispersion.During the gradual solidification of P(MV-BA)/MXene nanocomposite miniemulsion on the leather surface,MXene gradually migrated to the surface of leather coatings due to the cavitation effect of ultrasonication and amphiphilicity of MXene,which prompted its full exposure to light and bacteria,exerting the maximum photothermal conversion efficiency and significant antibacterial efficacy.In particular,when the dosage of MXene nanosheets was 1.4 wt%,the surface temperature of P(MV-BA)/MXene nanocomposite miniemulsioncoated leather(PML)increased by about 15℃ in an outdoor environment during winter,and the antibacterial rate against Escherichia coli and Staphylococcus aureus was nearly 100%under the simulated sunlight treatment for 30 min.Moreover,the introduction of MXene nanosheets increased the air permeability,water vapor permeability,and thermal stability of these coatings.This study provides a new insight into the preparation of novel,green,and waterborne bio-based nanocomposite coatings for leather,with desired warmth retention and antibacterial properties.It can not only realize zerocarbon heating based on sunlight in winter,reducing the use of fossil fuels and greenhouse gas emissions,but also improve ability to fight off invasion by harmful bacteria,viruses,and other microorganisms.展开更多
Bacterial infection is a major problem following bone implant surgery.Moreover,poly-l-lactic acid/carbon nanotube/hydroxyapatite(PLLA/CNT/HAP)bone scaffolds possess enhanced mechanical properties and show good bioacti...Bacterial infection is a major problem following bone implant surgery.Moreover,poly-l-lactic acid/carbon nanotube/hydroxyapatite(PLLA/CNT/HAP)bone scaffolds possess enhanced mechanical properties and show good bioactiv-ityregardingbonedefectregeneration.Inthisstudy,wesynthesizedsilver(Ag)-dopedCNT/HAP(CNT/Ag-HAP)nanohybrids via the partial replacing of calcium ions(Ca2+)in the HAP lattice with silver ions(Ag+)using an ion doping technique under hydrothermal conditions.Specifically,the doping process was induced using the special lattice structure of HAP and the abundant surface oxygenic functional groups of CNT,and involved the partial replacement of Ca2+in the HAP lattice by doped Ag+as well as the in situ synthesis of Ag-HAP nanoparticles on CNT in a hydrothermal environment.The result-ing CNT/Ag-HAP nanohybrids were then introduced into a PLLA matrix via laser-based powder bed fusion(PBF-LB)to fabricate PLLA/CNT/Ag-HAP scaffolds that showed sustained antibacterial activity.We then found that Ag+,which pos-sesses broad-spectrum antibacterial activity,endowed PLLA/CNT/Ag-HAP scaffolds with this activity,with an antibacterial effectiveness of 92.65%.This antibacterial effect is due to the powerful effect of Ag+against bacterial structure and genetic material,as well as the physical destruction of bacterial structures due to the sharp edge structure of CNT.In addition,the scaffold possessed enhanced mechanical properties,showing tensile and compressive strengths of 8.49 MPa and 19.72 MPa,respectively.Finally,the scaffold also exhibited good bioactivity and cytocompatibility,including the ability to form apatite layers and to promote the adhesion and proliferation of human osteoblast-like cells(MG63 cells).展开更多
Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity ag...Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.展开更多
Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabrica...Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.展开更多
There is an increasing interest in the development of Mg alloys,both for industrial and biomedical applications,due to their favorable characteristics such as being lightweight and robust.However,the inadequate corros...There is an increasing interest in the development of Mg alloys,both for industrial and biomedical applications,due to their favorable characteristics such as being lightweight and robust.However,the inadequate corrosion resistance and lack of antibacterial properties pose significant challenges in the industrial and biomedical applications,necessitating the implementation of advanced coating engineering techniques.Plasma electrolytic oxidation(PEO)has emerged as a preferred coating technique because of its distinctive properties and successful surface modification results.However,there is a continuous need for further enhancements to optimize the performance and functionalities of protective surface treatments.The integration of layered double hydroxide(LDH)into PEO coatings on Mg alloys presents a promising approach to bolstering protective properties.This thorough review delves into the latest developments in integrating LDH into PEO coatings for corrosion-related purposes.It particularly emphasizes the significant improvements in corrosion resistance,antibacterial effectiveness,and photocatalytic performance resulting from the incorporation of LDH into PEO coatings.The two key mechanisms that enhance the corrosion resistance of PEO coatings containing LDH are the anion exchangeability of the LDH structure and the pore-sealing effect.Moreover,the antibacterial activity of PEO coatings with LDH stemmed from the release of antibacterial agents stored within the LDH structure,alterations in pH levels,and the photothermal conversion property.Furthermore,by incorporating LDH into PEO coatings,new opportunities emerge for tackling environmental issues through boosted photocatalytic properties,especially in the realm of pollutant degradation.展开更多
This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size ...This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size increased with longer annealing,reducing catalytic activity.UV–vis,XRD,TEM,and FTIR analyses probed optical structural,morphological,and vibrational features.XRD confirmed NiS2's anorthic structure,with crystallite size growing from 6.53 to 7.81 nm during extended annealing.UV–Vis exhibited a bathochromic shift,reflecting reduced band gap energy(Eg)in NiS_(2).TEM revealed NiS_(2)QD formation,with agglomerated QD average size increasing from 7.13 to 9.65 nm with prolonged annealing.Pure NiS_(2) showed significant MB decolorization(89.85%)in acidic conditions.Annealed NiS_(2) QDs demonstrated notable antibacterial activity,yielding a 6.15mm inhibition zone against Escherichia coli(E.coli)compared to Ciprofloxacin.First-principles computation supported a robust interaction between MB and NiS_(2),evidenced by obtained adsorption energies.This study highlights the nuanced relationship between annealing duration,structural changes,and functional properties in NiS_(2)QDs,emphasizing their potential applications in catalysis and antibacterial interventions.展开更多
Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance i...Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance in mammals,research on lncRNAs in lower vertebrates remains limited.In the present study,we characterized the first immune-related lncRNA(pol-lnc78)in the teleost Japanese flounder(Paralichthys olivaceus).Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein(SARM),the fifth discovered member of the Toll/interleukin 1(IL-1)receptor(TIR)adaptor family.This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor(TLR)signaling pathway.Specifically,SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1βand tumor necrosis factor-α(TNF-α).Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3’untranslated region(UTR),thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination.Furthermore,pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression.During infection,the negative regulators pol-lnc78 and SARM were significantly down-regulated,while pol-miR-n199-3p was significantly up-regulated,thus favoring host antibacterial defense.These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates.展开更多
Two new dihydropyrones,rhytismatones C(1)and D(2),and a known compound,penicillenol A1(3),were isolated from the co-culture broth of the deep-sea-derived fungus Penicillium crustosum PRB-2 and Suaeda salsa-derived end...Two new dihydropyrones,rhytismatones C(1)and D(2),and a known compound,penicillenol A1(3),were isolated from the co-culture broth of the deep-sea-derived fungus Penicillium crustosum PRB-2 and Suaeda salsa-derived endophytic fungus Peni-cillium citrinum HDN11-186.Their structures were elucidated through comprehensive analysis of nuclear magnetic resonance(NMR)spectra and mass spectra.The absolute configurations of new compounds were determined by calculating the electronic circular di-chroism(ECD)spectrum.UPLC-MS data showed that compounds 1–3 could only be detected in the media of co-culture,suggesting new biosynthetic pathways were activated in the co-cultured fungi.Compound 1 showed obvious antibacterial activities against Pro-teus sp.MMBC-1002 and Bacillus subtilis MMBC-1004 with minimum inhibitory concentration(MIC)both at 25μmolL^(-1).展开更多
Lysozyme(EC3.2.1.17)plays an important role in the immune response;as a nonspecific immune factor,it can resist causative agents.Lysozyme can be divided into c-type and g-type in fish.In a previous study,through genom...Lysozyme(EC3.2.1.17)plays an important role in the immune response;as a nonspecific immune factor,it can resist causative agents.Lysozyme can be divided into c-type and g-type in fish.In a previous study,through genome-wide association analysis,the g-type lysozyme gene,which is named NaLyg in yellow drum(Nibea albiflora),was found to be a key candidate gene for disease resistance in response to Vibrio harveyi infection.The cDNA of NaLyg was 1025 bp,including four exons and three introns,and its open reading frame(ORF)had a full-length of 582 bp,encoding 193 amino acids.NaLyg was found to be conserved during evolution through bioinformatic analyses.The NaLyg protein possessed a sugar binding domain and three catalytic sites,including Glu71,Asp84 and Asp101.Quantitative qRT-PCR results confirmed that NaLyg gene mRNA was visibly increased after V.harveyi infection.The NaLyg protein purified by prokaryotic expression killed some gram-negative bacterial pathogens by inducing cell wall destruction,including V.harveyi,Aeromonas hydrophila and Edwardsiella tarda.Moreover,the NaLyg protein killed two gram-positive bacteria,Bacillus subtilis and Staphylococcus aureus.Taken together,the experimental results suggested that the NaLyg protein of N.albiflora played an important role in fighting bacterial infections.展开更多
A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the s...A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the substrate,and functional coatings that contained bioceramics and Ag ions were prepared for coating on TiO_(2)nanotubes(diameter:(80±20)nm and(150±40)nm)using anodization,deposition,and spin-coating methods.The effects of the bioceramics(nano-β-tricalcium phosphate,microhydroxyapatite(micro-HA),and meso-CaSiO_(3))and Ag nanoparticles(size:(50±20)nm)on the antibacterial activity and the tribocorrosion,corrosion,and early in vitro osteogenic behaviors of the nanotubes were investigated.The tribocorrosion and corrosion results showed that the wear rate and corrosive rate were highly dependent on the features of the nanotube surface.Micro-HA showed great wear resistance with a wear rate of(1.26±0.06)×10^(−3)mm^(3)/(N·m)due to adhesive and abrasivewear.Meso-CaSiO_(3)showed enhanced cell adhesion,proliferation,and alkaline phosphatase activity.The coatings that contained nano-Ag exhibited good antibacterial activity with an antibacterial rate of≥89.5%against Escherichia coli.These findings indicate that hybrid coatings may have the potential to accelerate osteogenesis.展开更多
Herein,binary mixed brushes consisting of poly(2-methyl-2-oxazoline)(PMOXA)and poly(2-(dimethylamine)ethyl methacrylate)(PDMAEMA)with different chain lengths were fabricated by successive grafting of NH_(2)-terminated...Herein,binary mixed brushes consisting of poly(2-methyl-2-oxazoline)(PMOXA)and poly(2-(dimethylamine)ethyl methacrylate)(PDMAEMA)with different chain lengths were fabricated by successive grafting of NH_(2)-terminated PMOXA and SH-terminated PDMAEMA onto polydopamine-anchored substrates.The mixed-brush coating was characterized by variable-angle spectroscopic ellipsometry,X-ray photoelectron spectroscopy,Fourier transform infrared spectroscopy,zeta potential measurements,water contact angle,and atomic force microscopy.The mixed brushes showed tunable surface charge,wettability,and surface roughness,depending on the degree of PDMAEMA swelling under varying pH and ionic strength(Ⅰ).Then the adsorption behaviors of pepsin,bovine serum albumin(BSA),γ-globulin,and lysozyme,four very different proteins with regard to isoelectric point,on the mixed brushes coating were studied by using fluorescence microscopy and surface plasmon resonance.When the chain length of PDMAEMA was about twice as long as PMOXA,the mixed brushes not only had high adsorption capacity for pepsin,BSA,and y-globulin but also had a desorption efficiency of 86.9%,87.1%,and 93.5%,respectively.It is explained that electrostatic attraction between the protonated PDMAEMA and positively charged acidic proteins(pepsin and BSA,whose isoelectric points were below the pK_(a) of PDMAEMA)would drive the intensive adsorption(at pH 3,I=10^(-3)mol·L^(-1)for pepsin,and pH 5,I=10^(-5)mol·L^(-1)for BSA),while desorption was dominated by the hydrophilic PMOXA when PDMAEMA was shrinking(at pH 7,I=10^(-1)mol·L^(-1)for pepsin,and pH 9,I=10^(-1)mol·L^(-1)for BSA).Furthermore,the isoelectric precipitation led to the adsorption of neutral protein(γ-globulin,whose isoelectric point was near the pK_a of PDMAEMA)at pH 7,I=10^(-5)mol·L^(-1),while electrostatic repulsion and antifouling PMOXA triggered the desorption of y-globulin at pH 3,I-10^(-1)mol·L^(-1).However,alkaline protein(lysozyme,whose isoelectric point was higher than the pK_(a) of PDMAEMA)exhibited slight adsorption on PMOXA/PDMAEMA mixed brushes under test conditions,regardless of whether PMOXA or PDMAEMA occupied the outermost layer.The antibacterial property of the mixed brushes against Escherichia coli was investigated.PMOXA/PDMAEMA mixed brushes showed significant bactericidal activity at pH 3,I=10^(-3)mol·L^(-1),while the rinse of pH 9,I=10^(-1)mol·L^(-1)solution could remove most of the residual bacteria.This work not only enables controlled adsorption of proteins with different isoelectric points but also ensures that the surface of the coating is minimized from bacterial contamination.展开更多
A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial acti...A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial activity.Mussel-inspired DA was utilized to modify the GelMA molecules,which imparts good adhesive performance to the hydrogels.GO,interfacial enhancer,not only improves mechanical properties of the hydrogels,but also provides anchor sites for loading Ag NPs through numerous oxygencontaining functional groups on the surface.The experimental results show that the GelMA/Ag NPs/GO hydrogels have good biocompatibility,and exhibit a swelling rate of 202±16%,the lap shear strength of 147±17 kPa,and compressive modulus of 136±53 kPa,in the case of the Ag NPs/GO content of 2 mg/mL.Antibacterial activity of the hydrogels against both gram-negative and gram-positive bacteria is dependent on the Ag NPs/GO content derived from the release of Ag^(+).Furthermore,the GelMA/Ag NPs/GO hydrogels possess good adhesive ability,which is resistant to highly twisted state when stuck on the surface of pigskin.These results demonstrate promising potential of the GelMA-DA/Ag NPs/GO hydrogels as wound dressings for biomedical applications in clinical and emergent treatment.展开更多
The effective and safe healing of chronic wounds,such as diabetic ulcers,presents a significant clinical challenge due to the adverse microenvironment in the wound that hinders essential processes of wound healing,inc...The effective and safe healing of chronic wounds,such as diabetic ulcers,presents a significant clinical challenge due to the adverse microenvironment in the wound that hinders essential processes of wound healing,including angiogenesis,inflammation resolution,and bacterial control.Therefore,there is an urgent demand for the development of safe and cost-effective multifunctional therapeutic dressings.Silicon nitride,with its distinctive antibacterial properties and bioactivities,shows great potential as a promising candidate for the treatment of chronic wounds.In this study,a silicon nitride-incorporated collagen/chitosan nanofibrous dressing(CCS)were successfully fabricated using the solution blow spinning technique(SBS).SBS offers compelling advantages in fabricating uniform nanofibers,resulting in a three-dimensional fluffy nanofibrous scaffold that creates an optimal wound healing environment.This blow-spun nanofibrous dressing exhibits excellent hygroscopicity and breathability,enabling effective absorption of wound exudate.Importantly,the incorporated silicon nitride within the fibers triggers surface chemical reactions in the aqueous environment,leading to the release of bioactive ions that modulate the wound microenvironment.Here,the CCS demonstrated exceptional capabilities in absorbing wound exudate,facilitating water vapor transmission,and displaying remarkable antibacterial properties in vitro and in a rat infected wound model(up to 99.7%,4.5×10^(7)CFU/cm^(2)for Staphylococcus aureus).Furthermore,the CCS exhibited an enhanced wound closure rate,angiogenesis,and anti-inflammatory effects in a rat diabetic wound model,compared to the control group without silicon nitride incorporation.展开更多
Unpredictable pandemics are likely to pose a significant global threat in the future,and biologically protective textiles will play critical roles in controlling the spread of pathogens during outbreaks.Herein,we pres...Unpredictable pandemics are likely to pose a significant global threat in the future,and biologically protective textiles will play critical roles in controlling the spread of pathogens during outbreaks.Herein,we present a novel metal–organic framework(MOF)composed of repeating units of a Cu(II)/(L-Cys)_(2)complex formed through coordination bonds between Cu(II)and L-Cys,while being interconnected by ionic bonds involving Cu(II)and the carboxylate group of L-Cys.After covalently embedding the MOF nanofibers onto cotton fiber surfaces,the resulting fabrics exhibit remarkable virucidal and antibacterial capabilities.Remarkably,even after 200 friction or 50 laundering cycles,the high antiviral ability to inactivate all phi-×174 within 10 min was maintained,and the bacterial reduction rate against E.coli and S.aureus remained nearly at 100%.The remarkable virucidal effect of the L-Cys@Cu MOF structure is elucidated through a series ofα-amylase denaturation simulation tests,providing the first experimental demonstration of the antiviral mechanism,whereby MOF nanofibers induce protein denaturation to inactivate viruses.Moreover,cytotoxicity assessments confirm that the fabrics adorned with MOF nanofibers are safe for human skin.These advantages are promising for the development of protective textiles,highlighting the great potential of nanoscience in combating pandemics.展开更多
Starting from sissotrin (1), a natural isoflavonoid isolated from Trifolium baccarinii (Fabaceae), one new semisynthetic derivative, 6-nitrobiochanin A (1b) and two known derivatives, 8-nitrobiochanin A (1a) and 2&quo...Starting from sissotrin (1), a natural isoflavonoid isolated from Trifolium baccarinii (Fabaceae), one new semisynthetic derivative, 6-nitrobiochanin A (1b) and two known derivatives, 8-nitrobiochanin A (1a) and 2",3",4",6"-tetraacetylsissotrin (1c) have been obtained after performing nitration and acetylation reactions. Their structures were assigned after interpretation of their spectrometric (HR-ESI-MS) and spectroscopic (NMR 1D and 2D) data and by comparison with those reported in the literature. The substrate as well as the semisynthetic derivatives were evaluated for their antibacterial activities against six strains. The results reveal that they are inactive or weakly active on the strains tested with the exception of 8-nitrobiochanin A (1a) which showed moderate activity (MIC = 62.5 μg∙mL<sup>−1</sup>) on Staphylococcus aureus ATCC 43300.展开更多
[Objectives]To establish a new management model for rational use of perioperative antibacterial drugs in surgical departments.[Methods]Based on evidence-based medicine,the department s drug pathway was formulated,and ...[Objectives]To establish a new management model for rational use of perioperative antibacterial drugs in surgical departments.[Methods]Based on evidence-based medicine,the department s drug pathway was formulated,and the new mode of rational drug use control was established by using fine pharmaceutical technology intervention,and the intervention effect was evaluated by the intensity of antibacterial drug use,per capita drug costs and the proportion of drugs.[Results]After adopting drug pathway in departments,the intensity of antibacterial drug use,per capita drug costs and the proportion of drugs decreased significantly,and the effect of rational drug use control was remarkable.[Conclusions]The drug pathway provides a new management and control mode for the rational use of perioperative antibacterial drugs in surgical departments of hospitals.Thus,it is worthy of popularization and application.展开更多
[Objectives]To study the antibacterial effects of extracts from Pinus massoniana Lamb.needles.[Methods]In this experiment,the components from Pinus massoniana Lamb.needles were extracted by systematic solvent extracti...[Objectives]To study the antibacterial effects of extracts from Pinus massoniana Lamb.needles.[Methods]In this experiment,the components from Pinus massoniana Lamb.needles were extracted by systematic solvent extraction method,and the antibacterial activity against four common bacteria,Escherichia coli,Staphylococcus aureus,Bacillus subtilis,Aspergillus flavus and the antibacterial active component were examined for by punch method.[Results]Different solvent extraction rate was different,the rates of petroleum ether,chloroform,ethyl acetate,n-butanol,water extracts were 4.2%,16.7%,17.4%,21.1%,40.6%.All extracts showed inhibitory effect against test bacteria.It was observed that the inhibition of G+was stronger than G-,and the extracts had the best antibacterial activity to Staphylococcus aureus while the weakest to Aspergillus flavus.The antibacterial activity of the components decreased in the order:ethyl acetate extract>n-butanol extract>chloroform extract>petroleum ether extract>aqueous phase.The extracts were stable under ultraviolet radiation(UV)light and long term storage.The antibacterial activity of the extracts was weaker with the increase of pH value when the pH value≤8.[Conclusions]It is inferred that the antibacterial components in the extract of Pinus massoniana needles are widely distributed,and the components with medium polarity or above are the main antibacterial components.展开更多
ACAZY is a plant formula used in traditional medicine in Burkina Faso to treat respiratory infections. After phytochemical analysis, this study evaluated extracts’ anti-inflammatory, antioxidant and antibacterial pro...ACAZY is a plant formula used in traditional medicine in Burkina Faso to treat respiratory infections. After phytochemical analysis, this study evaluated extracts’ anti-inflammatory, antioxidant and antibacterial properties from the ACAZY recipe. Three extractions, an aqueous macerate (AM), an aqueous decoction (AD) and an hydroethanolic macerate (HEM) of the ACAZY recipe powder were carried out. Phytochemical screening of the extracts was carried out using high-performance thin-layer chromatography (HPTLC) and the determination of phenolic compounds. The anti-inflammatory potential was assessed in vitro using pro-inflammatory enzyme inhibition tests. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and Ferric-reducing antioxidant power (FRAP) antioxidant properties were also determined. The antibacterial activity was evaluated on Staphylococcus aureus and Streptococcus pneumoniae strains. Phytochemical analysis revealed the presence of flavonoids, saponins, tannins, anthracenosids, sterols and triterpenes in the extracts. The extracts inhibited pro-inflammatory enzymes by more than 40% at only 100 µg/mL. The extracts also showed potent antibacterial activity with a minimum inhibitory concentration 1 mg/mL on Staphylococcus aureus and 2 mg/mL on Streptococcus pneumoniae. The extracts in the ACAZY formula have shown anti-inflammatory and antioxidant properties in vitro. The AD also showed an antibacterial activity. This justifies its use in traditional medicine to treat acute respiratory infections.展开更多
Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics...Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics. Polyester fabric was first subjected to an alkaline hydrolysis to impart hydroxyl groups on the fiber surface. A natural antibacterial agent, betaine, was then covalently bonded to the hydrolyzed polyester fiber surface through esterification. XPS, Raman, SEM, and Wicking measurements were carried out to verify the esterification reaction. Antibacterial tests confirmed that betaine treatment grafted polyester fabrics revealed a remarkable antibacterial effect with inhibition rates > 99.9% against both E. coli and S. aureus and still remained inhibition rates of up to 91.5% against both bacteria after home washing for 20 cycles. Moreover, the modification significantly increased the capillary effect of polyester fabric but did not cause apparent adverse effects on the fabric’s hand or tensile strength. Overall, this grafting strategy for durable, antibacterial polyester fabric represents a significant practicality in the textile industry.展开更多
Bacterial infections are a growing global public health problem,exacerbated by the widespread and often inappropriate use of antibiotics,leading to the emergence of non-antibiotic pathogens.Herein,we synthesized a chi...Bacterial infections are a growing global public health problem,exacerbated by the widespread and often inappropriate use of antibiotics,leading to the emergence of non-antibiotic pathogens.Herein,we synthesized a chitosan-Prussian blue nanozyme(CS@PB),a non-antibiotic agent,for universal antibacterial and antiinflammatory treatment of bacterial infections.Confocal microscopy images showed that CS@PB significantly enhanced the physical interaction between chitosan and bacteria,thereby increasing the antibacterial ability.Moreover,these nanozymes exhibited potent antioxidant and anti-inflammatory properties,promoting macrophage polarization toward the M2-like phenotype,reducing oxidative stress,and alleviating inflammation.This dual-action approach effectively accelerates the healing of bacteria-infected inflammatory wounds.The synergistic bactericidal and anti-inflammatory properties of CS@PBs inhibited wound infection and promoted the healing of skin infections in a mouse model.In addition,CS@PB displayed remarkable lung retention and potent bactericidal effects,resulting in significantly improved survival rates in mouse models of acute pulmonary bacterial infections.In conclusion,CS@PBs exhibited exceptional bactericidal capabilities,anti-inflammatory properties,and minimal toxicity,suggesting that they are promising candidates for a new generation of non-antibiotic antimicrobial agents for the treatment of bacterial infections.展开更多
基金supported by the National Natural Science Foundation of China and(52073164 and 21838007).
文摘This study presents a solvent-free,facile synthesis of a bio-based green antibacterial agent and aromatic monomer methacrylated vanillin(MV)using vanillin.The resulting MV not only imparted antibacterial properties to coatings layered on leather,but could also be employed as a green alternative to petroleum-based carcinogen styrene(St).Herein,MV was copolymerized with butyl acrylate(BA)to obtain waterborne bio-based P(MV-BA)miniemulsion via miniemulsion polymerization.Subsequently,MXene nanosheets with excellent photothermal conversion performance and antibacterial properties,were introduced into the P(MV-BA)miniemulsion by ultrasonic dispersion.During the gradual solidification of P(MV-BA)/MXene nanocomposite miniemulsion on the leather surface,MXene gradually migrated to the surface of leather coatings due to the cavitation effect of ultrasonication and amphiphilicity of MXene,which prompted its full exposure to light and bacteria,exerting the maximum photothermal conversion efficiency and significant antibacterial efficacy.In particular,when the dosage of MXene nanosheets was 1.4 wt%,the surface temperature of P(MV-BA)/MXene nanocomposite miniemulsioncoated leather(PML)increased by about 15℃ in an outdoor environment during winter,and the antibacterial rate against Escherichia coli and Staphylococcus aureus was nearly 100%under the simulated sunlight treatment for 30 min.Moreover,the introduction of MXene nanosheets increased the air permeability,water vapor permeability,and thermal stability of these coatings.This study provides a new insight into the preparation of novel,green,and waterborne bio-based nanocomposite coatings for leather,with desired warmth retention and antibacterial properties.It can not only realize zerocarbon heating based on sunlight in winter,reducing the use of fossil fuels and greenhouse gas emissions,but also improve ability to fight off invasion by harmful bacteria,viruses,and other microorganisms.
基金the National Natural Science Foundation of China(Nos.52275393 and 51935014)Hunan Provincial Natural Science Foundation of China(Nos.2021JJ20061,2020JJ3047,and 2019JJ50588)+4 种基金Jiangxi Provincial Natural Science Foundation of China(No.20224ACB204013)the Project of State Key Laboratory of High Performance Complex ManufacturingTechnology Innovation Platform Project of Shenzhen Institute of Information Technology 2020(No.PT2020E002)Guangdong Province Precision Manufacturing and Intelligent Production Education Integration Innovation Platform(No.2022CJPT019)Independent Exploration and Innovation Project of Central South University(No.1053320220553).
文摘Bacterial infection is a major problem following bone implant surgery.Moreover,poly-l-lactic acid/carbon nanotube/hydroxyapatite(PLLA/CNT/HAP)bone scaffolds possess enhanced mechanical properties and show good bioactiv-ityregardingbonedefectregeneration.Inthisstudy,wesynthesizedsilver(Ag)-dopedCNT/HAP(CNT/Ag-HAP)nanohybrids via the partial replacing of calcium ions(Ca2+)in the HAP lattice with silver ions(Ag+)using an ion doping technique under hydrothermal conditions.Specifically,the doping process was induced using the special lattice structure of HAP and the abundant surface oxygenic functional groups of CNT,and involved the partial replacement of Ca2+in the HAP lattice by doped Ag+as well as the in situ synthesis of Ag-HAP nanoparticles on CNT in a hydrothermal environment.The result-ing CNT/Ag-HAP nanohybrids were then introduced into a PLLA matrix via laser-based powder bed fusion(PBF-LB)to fabricate PLLA/CNT/Ag-HAP scaffolds that showed sustained antibacterial activity.We then found that Ag+,which pos-sesses broad-spectrum antibacterial activity,endowed PLLA/CNT/Ag-HAP scaffolds with this activity,with an antibacterial effectiveness of 92.65%.This antibacterial effect is due to the powerful effect of Ag+against bacterial structure and genetic material,as well as the physical destruction of bacterial structures due to the sharp edge structure of CNT.In addition,the scaffold possessed enhanced mechanical properties,showing tensile and compressive strengths of 8.49 MPa and 19.72 MPa,respectively.Finally,the scaffold also exhibited good bioactivity and cytocompatibility,including the ability to form apatite layers and to promote the adhesion and proliferation of human osteoblast-like cells(MG63 cells).
基金supported by National Natural Science Foundation of China(31972021)R&D Projects in Key Areas of Guangdong Province(2019B020212003)+4 种基金the Science and Technology Program of Guangzhou,China(202206010177)Guangdong key research and development program(2021B0202060001)Foshan and agricultural academy cooperation projectGuangdong Modern Agriculture project(2022KJ117)Aquatic Products Center Project of GAAS。
文摘Escherichia coli O157:H7 is one of the major foodborne pathogenic bacterial that cause infectious diseases in humans.The previous found that a combination of kojic acid and tea polyphenols exhibited better activity against E.coli O157:H7 than using either alone.This study aimed to explore responses underlying the antibacterial mechanisms of kojic acid and tea polyphenols from the gene level.The functional enrichment analysis by comparing kojic acid and tea polyphenols individually or synergistically against E.coli O157:H7 found that acid resistance systems in kojic acid were activated,and the cell membrane and genomic DNA were destructed in the cells,resulting in“oxygen starvation”.The oxidative stress response triggered by tea polyphenols inhibited both sulfur uptake and the synthesis of ATP,which affected the bacteria's life metabolic process.Interestingly,we found that kojic acid combined with tea polyphenols hindered the uptake of iron that played an essential role in the synthesis of DNA,respiration,tricarboxylic acid cycle.The results suggested that the iron uptake pathways may represent a novel approach for kojic acid and tea polyphenols synergistically against E.coli O157:H7 and provided a theoretical basis for bacterial pathogen control in the food industry.
基金This work was financially supported by the Shandong Provincial Natural Science Foundation(ZR2020QB116)the Excellent Young Talents Foundation in Universities of Anhui Province(gxyq2021223)the Key Research Project of Natural Science in Universities of Anhui Province.(KJ2020A0749).
文摘Superwetting materials have drawn unprecedented attention in the treatment of oily wastewater due to their preferable anti-fouling property and selective oil/water separation.However,it is still a challenge to fabricate multifunctional and environmentally friendly materials,which can be stably applied to purify the actual complicated wastewater.Here,a Ag/Ag/α-Fe_(2)O_(3) heterostructure anchored copper mesh was intentionally synthesized using a facile two-step hydrothermal method.The resultant mesh with superhydrophilicity and underwater superoleophobicity was capable of separating various oil/water mixtures with superior separation efficiency and high permeationflux driven by gravity.Benefiting from the joint effects of the smaller band gap of Ag/α-Fe_(2)O_(3) heterojunction,inherent antibacterial capacity of Ag/α-Fe_(2)O_(3) and Ag nanoparticles,favorable conductive substrate,as well as the hierarchical structure with superwettability,such mesh presented remarkably enhanced degradation capability toward organic dyes under visible light irradiation and antibacterial activity against both Escherichia coli(E.coli)and Staphylococcus aureus(S.aureus)compared with the pure Ag/α-Fe_(2)O_(3) coated mesh.Impressively,the mesh exhibited bifunctional water purification performance,in which organic dyes were eliminated simultaneously from water during oil/water separation in onefiltration process.More importantly,this mesh behaved exceptional chemical resistance,mechanical stability and long-term reusability.Therefore,this material with multifunctional integration may hold promising potential for steady water purification in practice.
文摘There is an increasing interest in the development of Mg alloys,both for industrial and biomedical applications,due to their favorable characteristics such as being lightweight and robust.However,the inadequate corrosion resistance and lack of antibacterial properties pose significant challenges in the industrial and biomedical applications,necessitating the implementation of advanced coating engineering techniques.Plasma electrolytic oxidation(PEO)has emerged as a preferred coating technique because of its distinctive properties and successful surface modification results.However,there is a continuous need for further enhancements to optimize the performance and functionalities of protective surface treatments.The integration of layered double hydroxide(LDH)into PEO coatings on Mg alloys presents a promising approach to bolstering protective properties.This thorough review delves into the latest developments in integrating LDH into PEO coatings for corrosion-related purposes.It particularly emphasizes the significant improvements in corrosion resistance,antibacterial effectiveness,and photocatalytic performance resulting from the incorporation of LDH into PEO coatings.The two key mechanisms that enhance the corrosion resistance of PEO coatings containing LDH are the anion exchangeability of the LDH structure and the pore-sealing effect.Moreover,the antibacterial activity of PEO coatings with LDH stemmed from the release of antibacterial agents stored within the LDH structure,alterations in pH levels,and the photothermal conversion property.Furthermore,by incorporating LDH into PEO coatings,new opportunities emerge for tackling environmental issues through boosted photocatalytic properties,especially in the realm of pollutant degradation.
基金The authors thank the Deanship of Scientific Research at King Khalid University for funding this work through a large group Research Project under grant number(R.G.P.2/123/44).The author MBK would like to thank Prince Sultan University for their support.
文摘This research investigates the hydrothermal synthesis and annealing duration effects on nickel sulfide(NiS_(2) quantum dots(QDs)for catalytic decolorization of methylene blue(MB)dye and antimicrobial efficacy.QD size increased with longer annealing,reducing catalytic activity.UV–vis,XRD,TEM,and FTIR analyses probed optical structural,morphological,and vibrational features.XRD confirmed NiS2's anorthic structure,with crystallite size growing from 6.53 to 7.81 nm during extended annealing.UV–Vis exhibited a bathochromic shift,reflecting reduced band gap energy(Eg)in NiS_(2).TEM revealed NiS_(2)QD formation,with agglomerated QD average size increasing from 7.13 to 9.65 nm with prolonged annealing.Pure NiS_(2) showed significant MB decolorization(89.85%)in acidic conditions.Annealed NiS_(2) QDs demonstrated notable antibacterial activity,yielding a 6.15mm inhibition zone against Escherichia coli(E.coli)compared to Ciprofloxacin.First-principles computation supported a robust interaction between MB and NiS_(2),evidenced by obtained adsorption energies.This study highlights the nuanced relationship between annealing duration,structural changes,and functional properties in NiS_(2)QDs,emphasizing their potential applications in catalysis and antibacterial interventions.
基金supported by the National Natural Science Foundation of China(42006082)Natural Science Foundation of Jiangsu Province of China(BK20221323)+1 种基金“JBGS”Project of Seed Industry Revitalization in Jiangsu Province(JBGS[2021]034)State Key Laboratory of Developmental Biology of Freshwater Fish(2021KF009)。
文摘Long non-coding RNAs(lncRNAs)function as key modulators in mammalian immunity,particularly due to their involvement in lncRNA-mediated competitive endogenous RNA(ceRNA)crosstalk.Despite their recognized significance in mammals,research on lncRNAs in lower vertebrates remains limited.In the present study,we characterized the first immune-related lncRNA(pol-lnc78)in the teleost Japanese flounder(Paralichthys olivaceus).Results indicated that pol-lnc78 acted as a ceRNA for pol-miR-n199-3p to target the sterile alpha and armadillo motif-containing protein(SARM),the fifth discovered member of the Toll/interleukin 1(IL-1)receptor(TIR)adaptor family.This ceRNA network regulated the antibacterial responses of flounder via the Toll-like receptor(TLR)signaling pathway.Specifically,SARM acted as a negative regulator and exacerbated bacterial infection by inhibiting the expression of inflammatory cytokines IL-1βand tumor necrosis factor-α(TNF-α).Pol-miR-n199-3p reduced SARM expression by specifically interacting with the 3’untranslated region(UTR),thereby promoting SARM-dependent inflammatory cytokine expression and protecting the host against bacterial dissemination.Furthermore,pol-lnc78 sponged pol-miR-n199-3p to ameliorate the inhibition of SARM expression.During infection,the negative regulators pol-lnc78 and SARM were significantly down-regulated,while pol-miR-n199-3p was significantly up-regulated,thus favoring host antibacterial defense.These findings provide novel insights into the mechanisms underlying fish immunity and open new horizons to better understand ceRNA crosstalk in lower vertebrates.
基金supported by the National Natural Science Foundation of China(No.41806167)the High-Level Talents Research Fund of Qingdao Agricultural University(No.665/1120034)+4 种基金the NSFC-Shandong Joint Fund(No.U1906212)the Major Project of the 14th Five-Year Plan(No.2022QNLM030003-1)the Natural Science Foundation of Shandong Province(No.ZR2021ZD28)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(No.2021CXLH0012)the Youth Innovation Plan of Shandong Province(No.2019KJM004).
文摘Two new dihydropyrones,rhytismatones C(1)and D(2),and a known compound,penicillenol A1(3),were isolated from the co-culture broth of the deep-sea-derived fungus Penicillium crustosum PRB-2 and Suaeda salsa-derived endophytic fungus Peni-cillium citrinum HDN11-186.Their structures were elucidated through comprehensive analysis of nuclear magnetic resonance(NMR)spectra and mass spectra.The absolute configurations of new compounds were determined by calculating the electronic circular di-chroism(ECD)spectrum.UPLC-MS data showed that compounds 1–3 could only be detected in the media of co-culture,suggesting new biosynthetic pathways were activated in the co-cultured fungi.Compound 1 showed obvious antibacterial activities against Pro-teus sp.MMBC-1002 and Bacillus subtilis MMBC-1004 with minimum inhibitory concentration(MIC)both at 25μmolL^(-1).
基金supported by the National Natural Science Foundation of China(No.32072969)the National Key R&D Program of China(No.2022YFD2401002)+1 种基金the Natural Science Foundation of Fujian Province(No.2022 J01325)the Open Research Fund Program of Fujian Provincial Key Laboratory of Marine Fishery Resources and Eco-Environment(No.Z822280).
文摘Lysozyme(EC3.2.1.17)plays an important role in the immune response;as a nonspecific immune factor,it can resist causative agents.Lysozyme can be divided into c-type and g-type in fish.In a previous study,through genome-wide association analysis,the g-type lysozyme gene,which is named NaLyg in yellow drum(Nibea albiflora),was found to be a key candidate gene for disease resistance in response to Vibrio harveyi infection.The cDNA of NaLyg was 1025 bp,including four exons and three introns,and its open reading frame(ORF)had a full-length of 582 bp,encoding 193 amino acids.NaLyg was found to be conserved during evolution through bioinformatic analyses.The NaLyg protein possessed a sugar binding domain and three catalytic sites,including Glu71,Asp84 and Asp101.Quantitative qRT-PCR results confirmed that NaLyg gene mRNA was visibly increased after V.harveyi infection.The NaLyg protein purified by prokaryotic expression killed some gram-negative bacterial pathogens by inducing cell wall destruction,including V.harveyi,Aeromonas hydrophila and Edwardsiella tarda.Moreover,the NaLyg protein killed two gram-positive bacteria,Bacillus subtilis and Staphylococcus aureus.Taken together,the experimental results suggested that the NaLyg protein of N.albiflora played an important role in fighting bacterial infections.
基金supported by the National Natural Science Foundation of China(Nos.52071346,52111530193,and 52274387)the Natural Science Foundation of Hunan Province for Distinguished Young Scholars(No.2023JJ10075)+3 种基金the Hunan Provincial Natural Science Foundation of China(No.2021JJ30846)the Central South University Research Program of Advanced Interdisciplinary Studies(No.2023QYJC038)the Funding for the Medical Engineering Cross Disciplinary Project at Shanghai Jiao Tong University,and the Fundamental Research Funds for the Central Universities of Central South University(No.2022ZZTS0402)The authors would also thank Sinoma Institute of Materials Research(Guangzhou)Co.,Ltd.for the assistance with the TEM characterization.
文摘A good Ti-based joint implant should prevent stress shielding and achieve good bioactivity and anti-infection performance.To meet these requirements,the low-elastic-modulus alloy—Ti–35Nb–2Ta–3Zr—was used as the substrate,and functional coatings that contained bioceramics and Ag ions were prepared for coating on TiO_(2)nanotubes(diameter:(80±20)nm and(150±40)nm)using anodization,deposition,and spin-coating methods.The effects of the bioceramics(nano-β-tricalcium phosphate,microhydroxyapatite(micro-HA),and meso-CaSiO_(3))and Ag nanoparticles(size:(50±20)nm)on the antibacterial activity and the tribocorrosion,corrosion,and early in vitro osteogenic behaviors of the nanotubes were investigated.The tribocorrosion and corrosion results showed that the wear rate and corrosive rate were highly dependent on the features of the nanotube surface.Micro-HA showed great wear resistance with a wear rate of(1.26±0.06)×10^(−3)mm^(3)/(N·m)due to adhesive and abrasivewear.Meso-CaSiO_(3)showed enhanced cell adhesion,proliferation,and alkaline phosphatase activity.The coatings that contained nano-Ag exhibited good antibacterial activity with an antibacterial rate of≥89.5%against Escherichia coli.These findings indicate that hybrid coatings may have the potential to accelerate osteogenesis.
基金the financial support of the National Natural Science Foundation of China(21674102)。
文摘Herein,binary mixed brushes consisting of poly(2-methyl-2-oxazoline)(PMOXA)and poly(2-(dimethylamine)ethyl methacrylate)(PDMAEMA)with different chain lengths were fabricated by successive grafting of NH_(2)-terminated PMOXA and SH-terminated PDMAEMA onto polydopamine-anchored substrates.The mixed-brush coating was characterized by variable-angle spectroscopic ellipsometry,X-ray photoelectron spectroscopy,Fourier transform infrared spectroscopy,zeta potential measurements,water contact angle,and atomic force microscopy.The mixed brushes showed tunable surface charge,wettability,and surface roughness,depending on the degree of PDMAEMA swelling under varying pH and ionic strength(Ⅰ).Then the adsorption behaviors of pepsin,bovine serum albumin(BSA),γ-globulin,and lysozyme,four very different proteins with regard to isoelectric point,on the mixed brushes coating were studied by using fluorescence microscopy and surface plasmon resonance.When the chain length of PDMAEMA was about twice as long as PMOXA,the mixed brushes not only had high adsorption capacity for pepsin,BSA,and y-globulin but also had a desorption efficiency of 86.9%,87.1%,and 93.5%,respectively.It is explained that electrostatic attraction between the protonated PDMAEMA and positively charged acidic proteins(pepsin and BSA,whose isoelectric points were below the pK_(a) of PDMAEMA)would drive the intensive adsorption(at pH 3,I=10^(-3)mol·L^(-1)for pepsin,and pH 5,I=10^(-5)mol·L^(-1)for BSA),while desorption was dominated by the hydrophilic PMOXA when PDMAEMA was shrinking(at pH 7,I=10^(-1)mol·L^(-1)for pepsin,and pH 9,I=10^(-1)mol·L^(-1)for BSA).Furthermore,the isoelectric precipitation led to the adsorption of neutral protein(γ-globulin,whose isoelectric point was near the pK_a of PDMAEMA)at pH 7,I=10^(-5)mol·L^(-1),while electrostatic repulsion and antifouling PMOXA triggered the desorption of y-globulin at pH 3,I-10^(-1)mol·L^(-1).However,alkaline protein(lysozyme,whose isoelectric point was higher than the pK_(a) of PDMAEMA)exhibited slight adsorption on PMOXA/PDMAEMA mixed brushes under test conditions,regardless of whether PMOXA or PDMAEMA occupied the outermost layer.The antibacterial property of the mixed brushes against Escherichia coli was investigated.PMOXA/PDMAEMA mixed brushes showed significant bactericidal activity at pH 3,I=10^(-3)mol·L^(-1),while the rinse of pH 9,I=10^(-1)mol·L^(-1)solution could remove most of the residual bacteria.This work not only enables controlled adsorption of proteins with different isoelectric points but also ensures that the surface of the coating is minimized from bacterial contamination.
基金Funded by the National Key Research and Development(R&D) Program of China(No.2018YFB1105702)。
文摘A novel strategy was developed to prepare the methacrylic gelatin-dopamine(GelMA-DA)/Ag nanoparticles(NPs)/graphene oxide(GO) composite hydrogels with good biocompatibility,mechanical properties,and antibacterial activity.Mussel-inspired DA was utilized to modify the GelMA molecules,which imparts good adhesive performance to the hydrogels.GO,interfacial enhancer,not only improves mechanical properties of the hydrogels,but also provides anchor sites for loading Ag NPs through numerous oxygencontaining functional groups on the surface.The experimental results show that the GelMA/Ag NPs/GO hydrogels have good biocompatibility,and exhibit a swelling rate of 202±16%,the lap shear strength of 147±17 kPa,and compressive modulus of 136±53 kPa,in the case of the Ag NPs/GO content of 2 mg/mL.Antibacterial activity of the hydrogels against both gram-negative and gram-positive bacteria is dependent on the Ag NPs/GO content derived from the release of Ag^(+).Furthermore,the GelMA/Ag NPs/GO hydrogels possess good adhesive ability,which is resistant to highly twisted state when stuck on the surface of pigskin.These results demonstrate promising potential of the GelMA-DA/Ag NPs/GO hydrogels as wound dressings for biomedical applications in clinical and emergent treatment.
基金support from the National Key R&D Program of China(No.2023YFC2412302)the National Natural Science Foundation of China(No.32271414,52172065)+2 种基金the Key R&D Program in Shandong Province(No.2019JZZY011106)the Foshan-Tsinghua Innovation Special Fund(No.2020THFS05)the Beijing Natural Science Foundation(No.L234075).
文摘The effective and safe healing of chronic wounds,such as diabetic ulcers,presents a significant clinical challenge due to the adverse microenvironment in the wound that hinders essential processes of wound healing,including angiogenesis,inflammation resolution,and bacterial control.Therefore,there is an urgent demand for the development of safe and cost-effective multifunctional therapeutic dressings.Silicon nitride,with its distinctive antibacterial properties and bioactivities,shows great potential as a promising candidate for the treatment of chronic wounds.In this study,a silicon nitride-incorporated collagen/chitosan nanofibrous dressing(CCS)were successfully fabricated using the solution blow spinning technique(SBS).SBS offers compelling advantages in fabricating uniform nanofibers,resulting in a three-dimensional fluffy nanofibrous scaffold that creates an optimal wound healing environment.This blow-spun nanofibrous dressing exhibits excellent hygroscopicity and breathability,enabling effective absorption of wound exudate.Importantly,the incorporated silicon nitride within the fibers triggers surface chemical reactions in the aqueous environment,leading to the release of bioactive ions that modulate the wound microenvironment.Here,the CCS demonstrated exceptional capabilities in absorbing wound exudate,facilitating water vapor transmission,and displaying remarkable antibacterial properties in vitro and in a rat infected wound model(up to 99.7%,4.5×10^(7)CFU/cm^(2)for Staphylococcus aureus).Furthermore,the CCS exhibited an enhanced wound closure rate,angiogenesis,and anti-inflammatory effects in a rat diabetic wound model,compared to the control group without silicon nitride incorporation.
基金supported by the National Natural Science Foundation of China(Nos.51873195,51803186)the Natural Science Foundation of Zhejiang Province(No.LZ22E030004)+1 种基金Special Support Program for High-Level Talents of Zhejiang Province,Outstanding Talent Project(No.2021R51003)the National Key Research and Development Program of China(2021YFA1301100,2021YFA1301101).
文摘Unpredictable pandemics are likely to pose a significant global threat in the future,and biologically protective textiles will play critical roles in controlling the spread of pathogens during outbreaks.Herein,we present a novel metal–organic framework(MOF)composed of repeating units of a Cu(II)/(L-Cys)_(2)complex formed through coordination bonds between Cu(II)and L-Cys,while being interconnected by ionic bonds involving Cu(II)and the carboxylate group of L-Cys.After covalently embedding the MOF nanofibers onto cotton fiber surfaces,the resulting fabrics exhibit remarkable virucidal and antibacterial capabilities.Remarkably,even after 200 friction or 50 laundering cycles,the high antiviral ability to inactivate all phi-×174 within 10 min was maintained,and the bacterial reduction rate against E.coli and S.aureus remained nearly at 100%.The remarkable virucidal effect of the L-Cys@Cu MOF structure is elucidated through a series ofα-amylase denaturation simulation tests,providing the first experimental demonstration of the antiviral mechanism,whereby MOF nanofibers induce protein denaturation to inactivate viruses.Moreover,cytotoxicity assessments confirm that the fabrics adorned with MOF nanofibers are safe for human skin.These advantages are promising for the development of protective textiles,highlighting the great potential of nanoscience in combating pandemics.
文摘Starting from sissotrin (1), a natural isoflavonoid isolated from Trifolium baccarinii (Fabaceae), one new semisynthetic derivative, 6-nitrobiochanin A (1b) and two known derivatives, 8-nitrobiochanin A (1a) and 2",3",4",6"-tetraacetylsissotrin (1c) have been obtained after performing nitration and acetylation reactions. Their structures were assigned after interpretation of their spectrometric (HR-ESI-MS) and spectroscopic (NMR 1D and 2D) data and by comparison with those reported in the literature. The substrate as well as the semisynthetic derivatives were evaluated for their antibacterial activities against six strains. The results reveal that they are inactive or weakly active on the strains tested with the exception of 8-nitrobiochanin A (1a) which showed moderate activity (MIC = 62.5 μg∙mL<sup>−1</sup>) on Staphylococcus aureus ATCC 43300.
基金Supported by Science and Technology Innovation Plan for Medical Workers in Shandong Province(SDYWZGKCJH2023095)Clinical Pharmacy Research Project of Shandong Provincial Medical Association(YXH2022ZX010)+1 种基金Traditional Chinese Medicine Science and Technology Development Project of Shandong Province(2019-0400&2021Q097)Traditional Chinese Medicine Research Program of Qingdao City(2020-zyy031)Medical Research Guidance Plan of Qingdao City(2020-WJZD087).
文摘[Objectives]To establish a new management model for rational use of perioperative antibacterial drugs in surgical departments.[Methods]Based on evidence-based medicine,the department s drug pathway was formulated,and the new mode of rational drug use control was established by using fine pharmaceutical technology intervention,and the intervention effect was evaluated by the intensity of antibacterial drug use,per capita drug costs and the proportion of drugs.[Results]After adopting drug pathway in departments,the intensity of antibacterial drug use,per capita drug costs and the proportion of drugs decreased significantly,and the effect of rational drug use control was remarkable.[Conclusions]The drug pathway provides a new management and control mode for the rational use of perioperative antibacterial drugs in surgical departments of hospitals.Thus,it is worthy of popularization and application.
基金Supported by Zhanjiang Non-funded Science and Technology Research Plan in 2023(2023B01023)School-level Education and Teaching Reform Project of Lingnan Normal University in 2022(LingShiJiaoWu2022154).
文摘[Objectives]To study the antibacterial effects of extracts from Pinus massoniana Lamb.needles.[Methods]In this experiment,the components from Pinus massoniana Lamb.needles were extracted by systematic solvent extraction method,and the antibacterial activity against four common bacteria,Escherichia coli,Staphylococcus aureus,Bacillus subtilis,Aspergillus flavus and the antibacterial active component were examined for by punch method.[Results]Different solvent extraction rate was different,the rates of petroleum ether,chloroform,ethyl acetate,n-butanol,water extracts were 4.2%,16.7%,17.4%,21.1%,40.6%.All extracts showed inhibitory effect against test bacteria.It was observed that the inhibition of G+was stronger than G-,and the extracts had the best antibacterial activity to Staphylococcus aureus while the weakest to Aspergillus flavus.The antibacterial activity of the components decreased in the order:ethyl acetate extract>n-butanol extract>chloroform extract>petroleum ether extract>aqueous phase.The extracts were stable under ultraviolet radiation(UV)light and long term storage.The antibacterial activity of the extracts was weaker with the increase of pH value when the pH value≤8.[Conclusions]It is inferred that the antibacterial components in the extract of Pinus massoniana needles are widely distributed,and the components with medium polarity or above are the main antibacterial components.
文摘ACAZY is a plant formula used in traditional medicine in Burkina Faso to treat respiratory infections. After phytochemical analysis, this study evaluated extracts’ anti-inflammatory, antioxidant and antibacterial properties from the ACAZY recipe. Three extractions, an aqueous macerate (AM), an aqueous decoction (AD) and an hydroethanolic macerate (HEM) of the ACAZY recipe powder were carried out. Phytochemical screening of the extracts was carried out using high-performance thin-layer chromatography (HPTLC) and the determination of phenolic compounds. The anti-inflammatory potential was assessed in vitro using pro-inflammatory enzyme inhibition tests. 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and Ferric-reducing antioxidant power (FRAP) antioxidant properties were also determined. The antibacterial activity was evaluated on Staphylococcus aureus and Streptococcus pneumoniae strains. Phytochemical analysis revealed the presence of flavonoids, saponins, tannins, anthracenosids, sterols and triterpenes in the extracts. The extracts inhibited pro-inflammatory enzymes by more than 40% at only 100 µg/mL. The extracts also showed potent antibacterial activity with a minimum inhibitory concentration 1 mg/mL on Staphylococcus aureus and 2 mg/mL on Streptococcus pneumoniae. The extracts in the ACAZY formula have shown anti-inflammatory and antioxidant properties in vitro. The AD also showed an antibacterial activity. This justifies its use in traditional medicine to treat acute respiratory infections.
文摘Recently, the textile industry has increasingly advocated for natural resource-based healthcare textiles. This research presents a facile and eco-friendly approach to developing durable antibacterial polyester fabrics. Polyester fabric was first subjected to an alkaline hydrolysis to impart hydroxyl groups on the fiber surface. A natural antibacterial agent, betaine, was then covalently bonded to the hydrolyzed polyester fiber surface through esterification. XPS, Raman, SEM, and Wicking measurements were carried out to verify the esterification reaction. Antibacterial tests confirmed that betaine treatment grafted polyester fabrics revealed a remarkable antibacterial effect with inhibition rates > 99.9% against both E. coli and S. aureus and still remained inhibition rates of up to 91.5% against both bacteria after home washing for 20 cycles. Moreover, the modification significantly increased the capillary effect of polyester fabric but did not cause apparent adverse effects on the fabric’s hand or tensile strength. Overall, this grafting strategy for durable, antibacterial polyester fabric represents a significant practicality in the textile industry.
基金supported by the National Key Research and Development Program of China(No.2023YFA0915400,2022YFA1206500,2020YFA0909000)Fundamental Research Funds for the Central Universities(No.2020JCPT02)+2 种基金National Natural Science Foundation of China(No.22277072,22107065)“Clinic Plus”Outstanding Project(no.2023ZYB006,2023ZYB004,2023ZYB003,2023ZYA002)from Shanghai Key Laboratory for Nucleic Acid Chemistry and NanomedicineInnovative research team of high-level local universities in Shanghai.
文摘Bacterial infections are a growing global public health problem,exacerbated by the widespread and often inappropriate use of antibiotics,leading to the emergence of non-antibiotic pathogens.Herein,we synthesized a chitosan-Prussian blue nanozyme(CS@PB),a non-antibiotic agent,for universal antibacterial and antiinflammatory treatment of bacterial infections.Confocal microscopy images showed that CS@PB significantly enhanced the physical interaction between chitosan and bacteria,thereby increasing the antibacterial ability.Moreover,these nanozymes exhibited potent antioxidant and anti-inflammatory properties,promoting macrophage polarization toward the M2-like phenotype,reducing oxidative stress,and alleviating inflammation.This dual-action approach effectively accelerates the healing of bacteria-infected inflammatory wounds.The synergistic bactericidal and anti-inflammatory properties of CS@PBs inhibited wound infection and promoted the healing of skin infections in a mouse model.In addition,CS@PB displayed remarkable lung retention and potent bactericidal effects,resulting in significantly improved survival rates in mouse models of acute pulmonary bacterial infections.In conclusion,CS@PBs exhibited exceptional bactericidal capabilities,anti-inflammatory properties,and minimal toxicity,suggesting that they are promising candidates for a new generation of non-antibiotic antimicrobial agents for the treatment of bacterial infections.