期刊文献+
共找到152篇文章
< 1 2 8 >
每页显示 20 50 100
On the Extension of Goldbach-Vinogradov's Theorem in Arithmetical Progressions(续) 被引量:1
1
作者 王天泽 《河南大学学报(自然科学版)》 CAS 1998年第4期1-9,共9页
设k,l1,l2,l3是适合k≥1,(lj,k)=1,1≤j≤3的整数.N是满足同余条件N≡l1+l2+l3(modk)的大奇数。则存在实效可计算常数0<θ<1使得对任何整数k≤Nθ,方程N=p1+p2+p3对于素变... 设k,l1,l2,l3是适合k≥1,(lj,k)=1,1≤j≤3的整数.N是满足同余条件N≡l1+l2+l3(modk)的大奇数。则存在实效可计算常数0<θ<1使得对任何整数k≤Nθ,方程N=p1+p2+p3对于素变数pj=lj(modk)。 展开更多
关键词 哥德巴赫问题 算术数列 素数 G-V定理
下载PDF
On the Distribution of Values of Euler's Function over Integers in Arithmetic Progressions 被引量:2
2
作者 FENG Bin 《Chinese Quarterly Journal of Mathematics》 2017年第2期111-117,共7页
Let φ(n) denote the Euler-totient function, we study the distribution of solutions of φ(n) ≤ x in arithmetic progressions, where n ≡ l(mod q) and an asymptotic formula was obtained by Perron formula.
关键词 Perron formula Euler-totient function arithmetic progressions
下载PDF
ON POINTS CONTAIN ARITHMETIC PROGRESSIONS IN THEIR LROTH EXPANSION 被引量:1
3
作者 张振亮 曹春云 《Acta Mathematica Scientia》 SCIE CSCD 2016年第1期257-264,共8页
For any x ∈ (0, 1] (except at most countably many points), there exists a unique sequence {dn(x)}n≥1 of integers, called the digit sequence of x, such that x =∞ ∑j=1 1/d1(x)(d1(x)-1)……dj-1(x)(dj-1... For any x ∈ (0, 1] (except at most countably many points), there exists a unique sequence {dn(x)}n≥1 of integers, called the digit sequence of x, such that x =∞ ∑j=1 1/d1(x)(d1(x)-1)……dj-1(x)(dj-1(x)-1)dj(x). The dexter infinite series expansion is called the Liiroth expansion of x. This paper is con- cerned with the size of the set of points x whose digit sequence in its Liiroth expansion is strictly increasing and contains arbitrarily long arithmetic progressions with arbitrary com- mon difference. More precisely, we determine the Hausdorff dimension of the above set. 展开更多
关键词 Luroth expansion arithmetic progression Hausdorff dimension
下载PDF
Primes in Arithmetic Progressions to Moduli with a Large Power Factor
4
作者 Ruting Guo 《Advances in Pure Mathematics》 2013年第7期25-32,共8页
Recently Elliott studied the distribution of primes in arithmetic progressions whose moduli can be divisible by highpowers of a given integer and showed that for integer a≥2 and real number A>0. There is a B=B(A)&... Recently Elliott studied the distribution of primes in arithmetic progressions whose moduli can be divisible by highpowers of a given integer and showed that for integer a≥2 and real number A>0. There is a B=B(A)>0 such that , holds uniformly for moduli that are powers of a. In this paper we are able to improve his result. 展开更多
关键词 PRIMES arithmetic progressions RIEMANN HYPOTHESIS
下载PDF
光通信系统中一种低复杂度的AP-QC-LDPC码新颖构造方法 被引量:1
5
作者 袁建国 汪哲 +2 位作者 吴英冬 郭乔 胡潇月 《半导体光电》 CAS 北大核心 2017年第1期75-78,共4页
提出了一种低复杂度的具有等差数列(AP)特性的准循环低密度奇偶校验(QCLDPC)码构造方法,该方法结构简单,节省了存储空间,可根据实际需要灵活地改变码长和码率。利用该方法构造出的AP-QC-LDPC(4599,4307)码的校验矩阵的每行元素为等差数... 提出了一种低复杂度的具有等差数列(AP)特性的准循环低密度奇偶校验(QCLDPC)码构造方法,该方法结构简单,节省了存储空间,可根据实际需要灵活地改变码长和码率。利用该方法构造出的AP-QC-LDPC(4599,4307)码的校验矩阵的每行元素为等差数列,且公差单调递增,所以该校验矩阵不含有4环。仿真结果表明:在误码率(BER)为10-6时,该AP-QC-LDPC(4599,4307)码比ITU-T G.975中的RS(255,239)码和ITU-T G.975.1中LDPC(32640,30592)码的净编码增益(NCG)分别改善了约2.19和1.48dB,比基于有限域乘群的eIRA-QC-LDPC(4599,4307)码和QC-LDPC(3780,3540)码的净编码增益分别提高了约0.16和0.2dB。该方法构造的AP-QC-LDPC(4599,4307)码具有更好的纠错性能,能更好地适应光通信系统的需求。 展开更多
关键词 准循环低密度奇偶校验码 等差数列 复杂度 误码率 光通信系统
下载PDF
一种基于AP与消除基本陷阱集的低错误平层QC-LDPC码构造方法 被引量:2
6
作者 袁建国 王宏森 +1 位作者 张希瑞 赖春红 《半导体光电》 CAS 北大核心 2020年第1期146-150,共5页
针对准循环低密度奇偶校验(LDPC)码在高信噪比区域可能存在错误平层的问题,提出了一种基于等差数列(AP)和消除基本陷阱集(ETS)的低错误平层QC-LDPC码构造方法。该方法利用改进的ETS消除算法构造基矩阵,以减少基本矩阵中的小基本陷阱集... 针对准循环低密度奇偶校验(LDPC)码在高信噪比区域可能存在错误平层的问题,提出了一种基于等差数列(AP)和消除基本陷阱集(ETS)的低错误平层QC-LDPC码构造方法。该方法利用改进的ETS消除算法构造基矩阵,以减少基本矩阵中的小基本陷阱集。然后利用特殊性质的等差数列(AP)确定循环移位系数,扩展得到最终的校验矩阵。该构造方法的计算复杂度低且码字的码长、码率可灵活设计。并且仿真结果表明,所构造码率为0.5的PEG-Trap set-AP(PTAP)-QC-LDPC(1200,600)码,在误码率为10-6时,与IEEE 802.16标准中QC-LDPC(1200,600)码、利用PEG算法与AP的PEG-AP-QC-LDPC(1200,600)码、通过控制环(CC)的CC-QCLDPC(1200,600)码和基于等差数列的AP-QC-LDPC(1200,600)码相比较,其净编码增益分别提升了0.08,0.31,0.57和0.64dB,有效地改善了高信噪比区域的纠错性能,且未出现明显的错误平层。 展开更多
关键词 准循环低密度奇偶校验(QC-LDPC)码 陷阱集 等差数列 错误平层
下载PDF
不具有3AP整数集的一个新问题
7
作者 姚兵 陈祥恩 《数学物理学报(A辑)》 CSCD 北大核心 2013年第1期145-151,共7页
一个反平均k集包含k个互不相同的整数,最小整数为零,且没有3项满足等差级数.反平均问题是对k≥3,确定反平均数λ~*(k)=min{max S|S是反平均k集}.反平均集的一些性质得到研究,给出反平均数λ~*(k)的性质和界,以及可算法化的反平... 一个反平均k集包含k个互不相同的整数,最小整数为零,且没有3项满足等差级数.反平均问题是对k≥3,确定反平均数λ~*(k)=min{max S|S是反平均k集}.反平均集的一些性质得到研究,给出反平均数λ~*(k)的性质和界,以及可算法化的反平均集构造方法. 展开更多
关键词 等差级数 反平均数 对偶集
下载PDF
推进式话语标记语“更AP地(的)说/讲”的语用功能考察
8
作者 周明强 姜哲宇 《嘉兴学院学报》 2019年第1期73-80,共8页
推进式话语标记语是一种推进话题的标记语,常用于明示所表达的信息、解释所陈述的内容、凸显所表达的态度。推进式话语标记语"更AP地(的)说/讲"的使用模式多样,在句中的位置灵活,还可与语气副词连用。多样的推进词使得推进式... 推进式话语标记语是一种推进话题的标记语,常用于明示所表达的信息、解释所陈述的内容、凸显所表达的态度。推进式话语标记语"更AP地(的)说/讲"的使用模式多样,在句中的位置灵活,还可与语气副词连用。多样的推进词使得推进式话语标记语具有强调信息的准确、强调判断的明确、解释话语内容、转换言说方式、增强态度情感等多种语用功能。人们在选择话语标记语时,不仅要考虑话语标记语在意义上与上下文语境的联系,还要考虑话语标记语与言外语境联系所能产生的言外之意。对推进式话语标记语语用功能的认知直接影响到交际双方对话语标记语的使用与理解。 展开更多
关键词 推进式 “更ap地(的)说/讲” 话语标记语 语用功能 认知特征
下载PDF
The Ternary Goldbach Problem with Primes in Arithmetic Progressions 被引量:3
9
作者 Zhen Feng ZHANG Tian Ze WANG State Key Laboratory of Information Security, Graduate School, Chinese Academy of Sciences, Beijing 100039, P. R. China Depariment of Mathematics, Henan University, Kaifeng 475001, P. R. China Department of Mathematics, Henan University, Kaifeng 475001, P. R. China 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2001年第4期679-696,共18页
In this paper, we give an explicit numerical upper bound for the moduli of arithmetic progressions, in which the ternary Goldbach problem is solvable. Our result implies a quantitative upper bound for the Linnik const... In this paper, we give an explicit numerical upper bound for the moduli of arithmetic progressions, in which the ternary Goldbach problem is solvable. Our result implies a quantitative upper bound for the Linnik constant. 展开更多
关键词 Ternary Goldbach problem PRIME arithmetic progression Circle method
原文传递
On the Density of Integers of the Form 2~k + p in Arithmetic Progressions 被引量:2
10
作者 Xue Gong SUN 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2010年第1期155-160,共6页
Consider all the arithmetic progressions of odd numbers, no term of which is of the form 2^k + p, where k is a positive integer and p is an odd prime. ErdSs ever asked whether all these progressions can be obtained f... Consider all the arithmetic progressions of odd numbers, no term of which is of the form 2^k + p, where k is a positive integer and p is an odd prime. ErdSs ever asked whether all these progressions can be obtained from covering congruences. In this paper, we characterize all arithmetic progressions in which there are positive proportion natural numbers that can be expressed in the form 2^k + p, and give a quantitative form of Romanoff's theorem on arithmetic progressions. As a corollary, we prove that the answer to the above Erdos problem is affirmative. 展开更多
关键词 covering system Romanoff's theorem arithmetic progression
原文传递
Primes in arithmetic progressions with friable indices 被引量:1
11
作者 Jianya Liu Jie Wu Ping X 《Science China Mathematics》 SCIE CSCD 2020年第1期23-38,共16页
We consider the numberπ(x,y;q,a)of primes p≤such that p≡a(mod q)and(p-a)/q is free of prime factors greater than y.Assuming a suitable form of Elliott-Halberstam conjecture,it is proved thatπ(x,y:q,a)is asymptotic... We consider the numberπ(x,y;q,a)of primes p≤such that p≡a(mod q)and(p-a)/q is free of prime factors greater than y.Assuming a suitable form of Elliott-Halberstam conjecture,it is proved thatπ(x,y:q,a)is asymptotic to p(log(x/q)/log y)π(x)/φ(q)on average,subject to certain ranges of y and q,where p is the Dickman function.Moreover,unconditional upper bounds are also obtained via sieve methods.As a typical application,we may control more effectively the number of shifted primes with large prime factors. 展开更多
关键词 primes in arithmetic progression friable numbers shifted primes SIEVE
原文传递
On infinite arithmetic progressions in sumsets 被引量:1
12
作者 Yong-Gao Chen Quan-Hui Yang Lilu Zhao 《Science China Mathematics》 SCIE CSCD 2023年第12期2669-2682,共14页
Let k be a positive integer.Denote by D_(1/k)the least integer d such that for every set A of nonnegative integers with the lower density 1/k,the set(k+1)A contains an infinite arithmetic progression with difference a... Let k be a positive integer.Denote by D_(1/k)the least integer d such that for every set A of nonnegative integers with the lower density 1/k,the set(k+1)A contains an infinite arithmetic progression with difference at most d,where(k+1)A is the set of all sums of k+1 elements(not necessarily distinct)of A.Chen and Li(2019)conjectured that D_(1/k)=k~2+o(k~2).The purpose of this paper is to confirm the above conjecture.We also prove that D_(1/k)is a prime for all sufficiently large integers k. 展开更多
关键词 infinite arithmetic progressions SUMSETS PRIMES circle method
原文传递
Rankin-Selberg coefficients in large arithmetic progressions 被引量:1
13
作者 Emmanuel Kowalski Yongxiao Lin Philippe Michel 《Science China Mathematics》 SCIE CSCD 2023年第12期2767-2778,共12页
Let(λ_f(n))_(n≥1)be the Hecke eigenvalues of either a holomorphic Hecke eigencuspform or a Hecke-Maass cusp form f.We prove that,for any fixedη>0,under the Ramanujan-Petersson conjecture for GL_(2)Maass forms,th... Let(λ_f(n))_(n≥1)be the Hecke eigenvalues of either a holomorphic Hecke eigencuspform or a Hecke-Maass cusp form f.We prove that,for any fixedη>0,under the Ramanujan-Petersson conjecture for GL_(2)Maass forms,the Rankin-Selberg coefficients(λ_f(n)^(2))_(n≥1)admit a level of distributionθ=2/5+1/260-ηin arithmetic progressions. 展开更多
关键词 arithmetic progressions Rankin-Selberg L-functions δ-method
原文传递
New Lower Bounds for the Least Common Multiples of Arithmetic Progressions 被引量:1
14
作者 Rongjun WU Qianrong TAN Shaofang HONG 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2013年第6期861-864,共4页
Abstract For relatively prime positive integers u0 and r, and for 0 〈 k ≤ n, define uk := u0 + kr. Let Ln := 1cm(u0,u1,... ,un) and let a,l≥2 be any integers. In this paper, the authors show that, for integers... Abstract For relatively prime positive integers u0 and r, and for 0 〈 k ≤ n, define uk := u0 + kr. Let Ln := 1cm(u0,u1,... ,un) and let a,l≥2 be any integers. In this paper, the authors show that, for integers α≥ a, r ≥max(a,l - 1) and n ≥lατ, the following inequality holds Ln≥u0r^(l-1)α+a-l(r+1)^n.Particularly, letting l = 3 yields an improvement on the best previous lower bound on Ln obtained by Hong and Kominers in 2010. 展开更多
关键词 arithmetic progression Least common multiple Lower bound
原文传递
General divisor functions in arithmetic progressions to large moduli 被引量:1
15
作者 WEI Fei XUE BoQing ZHANG YiTang 《Science China Mathematics》 SCIE CSCD 2016年第9期1663-1668,共6页
We prove a result on the distribution of the general divisor functions in arithmetic progressions to smooth moduli which exceed the square root of the length.
关键词 divisor function arithmetic progression to large moduli mean-value estimate
原文传递
ON THE LEAST PRIME IN AN ARITHMETICAL PROGRESSION(Ⅲ)
16
作者 陈景润 刘健民 《Science China Mathematics》 SCIE 1989年第6期654-673,共20页
Let D be a large integer, and P(D,K) the least prime in the progression {Dn + K:n∈ N, 0<K≤D, (D,K) = 1}. In this paper, we shall prove P(D, K)? D^(13.5).
关键词 the least PRIME arithmetical progression.
原文传递
The divisor problem for arithmetic progressions
17
作者 李红泽 《Chinese Science Bulletin》 SCIE EI CAS 1995年第4期265-267,共3页
Let n≥1 and r≥2 be integers and let d<sub>r</sub>(n) denote the number of ordered r-tuples (n<sub>1</sub>,…,n<sub>r</sub>) of natural numbers for which multiply from 1≤j≤r ... Let n≥1 and r≥2 be integers and let d<sub>r</sub>(n) denote the number of ordered r-tuples (n<sub>1</sub>,…,n<sub>r</sub>) of natural numbers for which multiply from 1≤j≤r (n<sub>j</sub>)=n For (a,q)=1,define D<sub>r</sub>(X,q,a)=sum from n≤X n≡a(modg) (d<sub>r</sub>(n)). We are interested in finding numbers θ<sub>r</sub> as large as possible such that the following statement holds. 展开更多
关键词 arithmetic progression DIVISOR problem.
原文传递
ON DISTRIBUTION OF PRIMES IN AN ARITHMETICAL PROGRESSION
18
作者 陈景润 王天泽 《Science China Mathematics》 SCIE 1990年第4期397-408,共12页
Let x≥exp(exp(11 .5)) be a real number, a and q be positive integers satisfying (logx)3, (a,q) = 1. In this paper we prove0.13xq0.5(logx)-10.33, where denotes ,μ(n) denotes the Mobius function, ψ(x;q,l) (?)(n), and... Let x≥exp(exp(11 .5)) be a real number, a and q be positive integers satisfying (logx)3, (a,q) = 1. In this paper we prove0.13xq0.5(logx)-10.33, where denotes ,μ(n) denotes the Mobius function, ψ(x;q,l) (?)(n), and T(~X) = ~X(h)e(h/q). If there exists a real character ~X (mod q)such that L(~β,~X) = 0, ~β≥1-0.1077/logq, then ~E =1; otherwise ~E = 0. 展开更多
关键词 arithmetical progression PRIMES character.
原文传递
An Additive Problem with Primes in Arithmetic Progressions
19
作者 ZhenFengZHANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2005年第1期155-168,共14页
In this paper, we extend a classical result of Hua to arithmetic progressionswith large moduli. The result implies the Linnik Theorem on the least prime in an arithmeticprogression.
关键词 Additive problem PRIME arithmetic progression Circle method
原文传递
Small Solutions of Quadratic Equations with Prime Variables in Arithmetic Progressions
20
作者 Tian Ze WANG 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2009年第2期299-320,共22页
A necessary and sufficient solvable condition for diagonal quadratic equation with prime variables in arithmetic progressions is given, and the best qualitative bound for small solutions of the equation is obtained,
关键词 quadratic equation prime variable small solution arithmetic progression
原文传递
上一页 1 2 8 下一页 到第
使用帮助 返回顶部