The two novel green oxidation processes of p/o-cresols to p/o-hydroxybenzaldehydes catalyzed by metalloporphyrins in the presence of molecular oxygen were developed in this work.Among the metalloporphyrins with differ...The two novel green oxidation processes of p/o-cresols to p/o-hydroxybenzaldehydes catalyzed by metalloporphyrins in the presence of molecular oxygen were developed in this work.Among the metalloporphyrins with different central ions and substituents studied,T(p-NO 2)PPCoCl and T(p-OCH 3)PPFeCl presented the highest activities for p-cresol and o-cresol oxidation reactions respectively.The molar ratio of sodium hydroxide to cresols and different reaction parameters including reaction temperature,reaction time and reaction pressure have been investigated,and 69.8%/50.4% conversions of p/o-cresol and 86.6%/26.6% selectivities for p/o-hydroxybenzaldehydes were reached under optimized conditions.展开更多
Degradation of dyes is an important environmental issue. In order to avoid the carcinogenic risks in anaerobic-aerobic biological process for wastewater containing azo dyes, a hemin based biomimetic oxidative degradat...Degradation of dyes is an important environmental issue. In order to avoid the carcinogenic risks in anaerobic-aerobic biological process for wastewater containing azo dyes, a hemin based biomimetic oxidative degradation of azo dyes was developed. Acid orange 7 (AO7) was selected as the model for azo dye and the high efficient degradation was achieved in hemin/H2O2 system at pH 11.0. Degradation could be described by a pseudo-first-order kinetic model. The order of dependence on H2O2 concentration was significantly larger than that of hemin. Coexisting anions sulphate and chloride had little effect on the degradation, but reductive sulphite dramatically inhibited the degradation. The protic solvent 2-prophanol obviously promoted the degradation. Azo chromogenic group was destroyed quickly and some smaller intermediates formed. Active species oxoferryl porphyrin p-cation radical +PFeIV=O generated from heterolytic cleavage of O-O in H2O2 catalyzed by hemin play the main roles in degradation and reaction pathways were proposed.展开更多
Enzymes are the core for biological transformations in nature.Their structures and functions have drawn enormous attention from biologists as well as chemists since last century.The large demand of bioactive molecules...Enzymes are the core for biological transformations in nature.Their structures and functions have drawn enormous attention from biologists as well as chemists since last century.The large demand of bioactive molecules and the pursuit of efficiency and greenness of synthesis have spurred the rapid development of biomimetic chemistry in the past several decades.Biomimetic asymmetric catalysis,mimicking the structures and functions of enzymes,has been recognized as one of the most promising synthetic strategies for the synthesis of valuable chiral compounds.This review summarizes the evolution of asymmetric catalysis inspired by aldolases,vitamin B_(1)/B_(6)-dependent enzymes,NAD(P)H,flavin,hydrogenases,heme oxygenases,nonheme oxygenases,and dinuclear/multinuclear metalloenzymes in aspects of biomimetic design,catalyst development and related catalytic transformations.Those well-established synthetic approaches originating from biological reactions have demonstrated the unique prowess of biomimetic asymmetric catalysis in bridging the gap between bio-catalysis and chemical synthesis.展开更多
High costs and low catalytic efficiency of metalloporphyrins, which are an analogue of cytochrome P450 enzyme, are the bot-tlenecks in the industrialization of biomimetic hydrocarbon oxidation reactions. The basic pri...High costs and low catalytic efficiency of metalloporphyrins, which are an analogue of cytochrome P450 enzyme, are the bot-tlenecks in the industrialization of biomimetic hydrocarbon oxidation reactions. The basic principle and research technique of physical organic chemistry were applied to the process of biomimetic oxidation of hydrocarbon catalyzed by metalloporphyrins. This biomimetic technology could be adapted to bulk chemicals production by developing the new methods for efficient scale-up synthesis of metalloporphyrins, new pathways for molecular oxygen activation on an industrial scale and new approaches to elevate the catalytic efficiency of metalloporphyrins. This review mainly focuses on research carried out in our group.展开更多
基金Supported by the Key Project of National Natural Science Foundation of China (21036009, 20776003)the Key Project of Natural Science Foundation of Beijing (2061001)the Funding Project for Academic Human Resources Development in Institutions of Higher Learning under the Jurisdiction of the Beijing Municipality (PHR 200907105, PHR 201107104)
文摘The two novel green oxidation processes of p/o-cresols to p/o-hydroxybenzaldehydes catalyzed by metalloporphyrins in the presence of molecular oxygen were developed in this work.Among the metalloporphyrins with different central ions and substituents studied,T(p-NO 2)PPCoCl and T(p-OCH 3)PPFeCl presented the highest activities for p-cresol and o-cresol oxidation reactions respectively.The molar ratio of sodium hydroxide to cresols and different reaction parameters including reaction temperature,reaction time and reaction pressure have been investigated,and 69.8%/50.4% conversions of p/o-cresol and 86.6%/26.6% selectivities for p/o-hydroxybenzaldehydes were reached under optimized conditions.
文摘Degradation of dyes is an important environmental issue. In order to avoid the carcinogenic risks in anaerobic-aerobic biological process for wastewater containing azo dyes, a hemin based biomimetic oxidative degradation of azo dyes was developed. Acid orange 7 (AO7) was selected as the model for azo dye and the high efficient degradation was achieved in hemin/H2O2 system at pH 11.0. Degradation could be described by a pseudo-first-order kinetic model. The order of dependence on H2O2 concentration was significantly larger than that of hemin. Coexisting anions sulphate and chloride had little effect on the degradation, but reductive sulphite dramatically inhibited the degradation. The protic solvent 2-prophanol obviously promoted the degradation. Azo chromogenic group was destroyed quickly and some smaller intermediates formed. Active species oxoferryl porphyrin p-cation radical +PFeIV=O generated from heterolytic cleavage of O-O in H2O2 catalyzed by hemin play the main roles in degradation and reaction pathways were proposed.
基金supported by the National Natural Science Foundation of China(22231011,22221002,22031006,21831008,22271192,92256301,92256303,91956116)the NSFC Distinguished Young Scholars(22225107)the Major Program of the Lanzhou Institute of Chemical Physics,Chinese Academy of Sciences(ZYFZFX-9)。
文摘Enzymes are the core for biological transformations in nature.Their structures and functions have drawn enormous attention from biologists as well as chemists since last century.The large demand of bioactive molecules and the pursuit of efficiency and greenness of synthesis have spurred the rapid development of biomimetic chemistry in the past several decades.Biomimetic asymmetric catalysis,mimicking the structures and functions of enzymes,has been recognized as one of the most promising synthetic strategies for the synthesis of valuable chiral compounds.This review summarizes the evolution of asymmetric catalysis inspired by aldolases,vitamin B_(1)/B_(6)-dependent enzymes,NAD(P)H,flavin,hydrogenases,heme oxygenases,nonheme oxygenases,and dinuclear/multinuclear metalloenzymes in aspects of biomimetic design,catalyst development and related catalytic transformations.Those well-established synthetic approaches originating from biological reactions have demonstrated the unique prowess of biomimetic asymmetric catalysis in bridging the gap between bio-catalysis and chemical synthesis.
基金supported by the National Natural Science Foundation of China (0142003, 20376018, 2890047, 29372047 , 2950041)National High-Tech Research & Development Program of China (863 Program, 2002AA321070 and 2006AA32Z467)National Key Technologies R & D Program of China (2004BA322B)
文摘High costs and low catalytic efficiency of metalloporphyrins, which are an analogue of cytochrome P450 enzyme, are the bot-tlenecks in the industrialization of biomimetic hydrocarbon oxidation reactions. The basic principle and research technique of physical organic chemistry were applied to the process of biomimetic oxidation of hydrocarbon catalyzed by metalloporphyrins. This biomimetic technology could be adapted to bulk chemicals production by developing the new methods for efficient scale-up synthesis of metalloporphyrins, new pathways for molecular oxygen activation on an industrial scale and new approaches to elevate the catalytic efficiency of metalloporphyrins. This review mainly focuses on research carried out in our group.