For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geomet...For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.展开更多
The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the bas...The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.展开更多
The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and elemen...The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.展开更多
The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral ...The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.展开更多
When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current p...When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new al- gorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore, when solving the Helmholtz problems, the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.展开更多
Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, a...Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated.展开更多
Based on the second kind of Green’s identity,a boundary integral equation forarbitrary cross-section waveguide is transformed to a system of linear homogeneous algebraicequations by means of expansion of boundary bas...Based on the second kind of Green’s identity,a boundary integral equation forarbitrary cross-section waveguide is transformed to a system of linear homogeneous algebraicequations by means of expansion of boundary bases and by using the eigenfunctions of a fictitiousregular boundary as weighting functions,which corresponds to less algebraic equations than BEMand simpler coefficients than the modified BEM.The numerical results for some typical metallicwaveguides are given by using the method of eigen-weighted boundary integral equation,and theyare accurate enough with fast convergence.展开更多
This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integ...This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integrals) in nonlinear crack analysis. When viscoplastic deformation happens, the effective stresses around the crack tip in the nonlinear region is allowed to exceed the loading surface, and the pure plastic theory is not suitable for this situation. The concept of consistency employed in the solution of increment viscoplastic problem, plays a crucial role in preserving the quadratic rate asymptotic convergence of iteractive schemes based on Newton's method. Therefore, this paper investigates the viscoplastic crack problem, and presents an implicit viscoplastic algorithm using the CTO concept in a boundary element framework for path-domain independentJ integrals. Applications are presented with two numerical examples for viscoplastic crack problems andJ integrals.展开更多
A general algorithm is applied to the regularization of nearly singular integrals in the boundary element method of planar potential problems. For linear elements, the strongly singular and hypersingular integrals of ...A general algorithm is applied to the regularization of nearly singular integrals in the boundary element method of planar potential problems. For linear elements, the strongly singular and hypersingular integrals of the interior points very close to boundary were categorized into two forms. The factor leading to the singularity was transformed out of the integral representations with integration by parts, so non-singular regularized formulas were presented for the two forms of integrals. Furthermore, quadratic elements are used in addition to linear ones. The quadratic element very close to the internal point can be divided into two linear ones, so that the algorithm is still valid. Numerical examples demonstrate the effectiveness and accuracy of this algorithm. Especially for problems with curved boundaries, the combination of quadratic elements and linear elements can give more accurate results.展开更多
The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealin...The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealing with multi-moving boundary problems continuously with time up to the end of the process with high accuracy and minimum number of iterations. A new numerical iterative scheme based the boundary integral equation method is developed to track the moving boundaries as well as compute all unknowns in the problem. Three practical applications, one for vaporization and two for ablation were solved and their results were compared with finite element, heat balance integral and the source and sink results and a good agreement were obtained.展开更多
A radial integral boundary element method(BEM)is used to simulate the phase change problem with a mushy zone in this paper.Three phases,including the solid phase,the liquid phase,and the mushy zone,are considered in t...A radial integral boundary element method(BEM)is used to simulate the phase change problem with a mushy zone in this paper.Three phases,including the solid phase,the liquid phase,and the mushy zone,are considered in the phase change problem.First,according to the continuity conditions of temperature and its gradient on the liquid-mushy interface,the mushy zone and the liquid phase in the simulation can be considered as a whole part,namely,the non-solid phase,and the change of latent heat is approximated by heat source which is dependent on temperature.Then,the precise integration BEM is used to obtain the differential equations in the solid phase zone and the non-solid phase zone,respectively.Moreover,an iterative predictor-corrector precise integration method(PIM)is needed to solve the differential equations and obtain the temperature field and the heat flux on the boundary.According to an energy balance equation and the velocity of the interface between the solid phase and the mushy zone,the front-tracking method is used to track the move of the interface.The interface between the liquid phase and the mushy zone is obtained by interpolation of the temperature field.Finally,four numerical examples are provided to assess the performance of the proposed numerical method.展开更多
The boundary-volume integral equation numerical technique can be a powerful tool for piecewise heterogeneous media, but it is limited to small problems or low frequencies because of great computational cost. Therefore...The boundary-volume integral equation numerical technique can be a powerful tool for piecewise heterogeneous media, but it is limited to small problems or low frequencies because of great computational cost. Therefore, a restarted GMRES method is applied to solve large-scale boundary-volume scattering problems in this paper to overcome the computational barrier. The iterative method is firstly applied to responses of dimensionless frequency to a semicircular alluvial valley filled with sediments, compared with the standard Gaussian elimination method. Then the method is tested by a heterogeneous multilayered model to show its applicability. Numerical experiments indicate that the preconditioned GMRES method can significantly improve computational efficiency especially for large Earth models and high frequencies, but with a faster convergence for the left diagonal preconditioning.展开更多
By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is exp...By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is expanded into a uniformly convergent series. On the basis of the above work, two boundary integral equations which are suitable to arbitrary shapes and arbitrary boundary conditions are established by means of the Rayleigh-Green identity. The content of the paper provides the powerful theories for the application of BEM in this problem.展开更多
In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the met...In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.展开更多
This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structu...This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structures,are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations.Bezier extraction technique is employed to accelerate the evaluation of NURBS basis functions.We adopt a radial integration method to address the additional domain integrals.The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis.展开更多
This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven appro...This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven approach of a typical boundary element (BEM) technique. While its discretization keeps faith with the second order accurate BEM formulation, its implementation is element-based. This leads to a local solution of all integral equation and their final assembly into a slender and banded coefficient matrix which is far easier to manipulate numerically. This outcome is much better than working with BEM’s fully populated coefficient matrices resulting from a numerical encounter with the problem domain especially for nonlinear, transient, and heterogeneous problems. Faithful results of high accuracy are achieved when the results obtained herein are compared with those available in literature.展开更多
A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity poten...A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM.展开更多
By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. I...By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. In the numerical analysis, unknown displacement discontinuities are approximated with the products of the fundamental density functions and power series. The fundamental functions are chosen to express a two-dimensional interface crack rigorously. As illustrative examples, the stress intensity factors for two rectangular interface cracks are calculated for various spacing, crack shape and elastic constants. It is shown that the stress intensity factors decrease with the crack spacing.展开更多
Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical techniq...Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.展开更多
文摘For reaction-diffusion equations in irregular domains with moving boundaries,the numerical stability constraints from the reaction and diffusion terms often require very restricted time step sizes,while complex geometries may lead to difficulties in the accuracy when discretizing the high-order derivatives on grid points near the boundary.It is very challenging to design numerical methods that can efficiently and accurately handle both difficulties.Applying an implicit scheme may be able to remove the stability constraints on the time step,however,it usually requires solving a large global system of nonlinear equations for each time step,and the computational cost could be significant.Integration factor(IF)or exponential time differencing(ETD)methods are one of the popular methods for temporal partial differential equations(PDEs)among many other methods.In our paper,we couple ETD methods with an embedded boundary method to solve a system of reaction-diffusion equations with complex geometries.In particular,we rewrite all ETD schemes into a linear combination of specificФ-functions and apply one state-of-the-art algorithm to compute the matrix-vector multiplications,which offers significant computational advantages with adaptive Krylov subspaces.In addition,we extend this method by incorporating the level set method to solve the free boundary problem.The accuracy,stability,and efficiency of the developed method are demonstrated by numerical examples.
文摘The meshless method is a new numerical technique presented in recent years.It uses the moving least square(MLS)approximation as a shape function.The smoothness of the MLS approximation is determined by that of the basic function and of the weight function,and is mainly determined by that of the weight function.Therefore,the weight function greatly affects the accuracy of results obtained.Different kinds of weight functions,such as the spline function, the Gauss function and so on,are proposed recently by many researchers.In the present work,the features of various weight functions are illustrated through solving elasto-static problems using the local boundary integral equation method.The effect of various weight functions on the accuracy, convergence and stability of results obtained is also discussed.Examples show that the weight function proposed by Zhou Weiyuan and Gauss and the quartic spline weight function are better than the others if parameters c and α in Gauss and exponential weight functions are in the range of reasonable values,respectively,and the higher the smoothness of the weight function,the better the features of the solutions.
文摘The meshless local boundary integral equation method is a currently developed numerical method, which combines the advantageous features of Galerkin finite element method(GFEM), boundary element method(BEM) and element free Galerkin method(EFGM), and is a truly meshless method possessing wide prospects in engineering applications. The companion solution and all the other formulas required in the meshless local boundary integral equation for a thin plate were presented, in order to make this method apply to solve the thin plate problem.
基金This study was funded by the National Natural Science Foundation of China(NSFC)(Grant Nos.11702238,51904202 and 11902212)and Nanhu Scholars Program for Young Scholars of XYNU.
文摘The paper applied the isogeometric boundary element method(IGABEM)to thermoelastic problems.The Non-Uniform Rational B-splines(NURBS)used to construct geometric models are employed to discretize the boundary integral formulation of the governing equation.Due to the existence of thermal stress,the domain integral term appears in the boundary integral equation.We resolve this problem by incorporating radial integration method into IGABEM which converts the domain integral to the boundary integral.In this way,IGABEM can maintain its advantages in dimensionality reduction and more importantly,seamless integration of CAD and numerical analysis based on boundary representation.The algorithm is verified by numerical examples.
文摘When the source nodes are on the global boundary in the implementation of local boundary integral equation method (LBIEM), singularities in the local boundary integrals need to be treated specially. In the current paper, local integral equations are adopted for the nodes inside the domain and moving least square approximation (MLSA) for the nodes on the global boundary, thus singularities will not occur in the new al- gorithm. At the same time, approximation errors of boundary integrals are reduced significantly. As applications and numerical tests, Laplace equation and Helmholtz equation problems are considered and excellent numerical results are obtained. Furthermore, when solving the Helmholtz problems, the modified basis functions with wave solutions are adapted to replace the usually-used monomial basis functions. Numerical results show that this treatment is simple and effective and its application is promising in solutions for the wave propagation problem with high wave number.
文摘Using the method of the boundary integral equation, a set of singular integral equations of the hear transfer problems and the thermo-elastic problems of a crack embedded in a two-dimensional finite body is derived, and then,its numerical method is proposed by the numerical method of the singular integral equations combined with boundary element method. Moreover, the singular nature of temperature gradient field near the crack front is proved by the main-part analysis method of the singular integral equation, and the singular temperature gradients are exactly obtained. Finally, several typical examples calculated.
基金This project is supported by the Natural Science Foundation of China
文摘Based on the second kind of Green’s identity,a boundary integral equation forarbitrary cross-section waveguide is transformed to a system of linear homogeneous algebraicequations by means of expansion of boundary bases and by using the eigenfunctions of a fictitiousregular boundary as weighting functions,which corresponds to less algebraic equations than BEMand simpler coefficients than the modified BEM.The numerical results for some typical metallicwaveguides are given by using the method of eigen-weighted boundary integral equation,and theyare accurate enough with fast convergence.
基金The project supported by National Natural Science Foundation of China(9713008)Zhejiang Natural Science Foundation Special Funds No. RC.9601
文摘This paper presents an elasto-viscoplastic consistent tangent operator (CTO) based boundary element formulation, and application for calculation of path-domain independentJ integrals (extension of the classicalJ integrals) in nonlinear crack analysis. When viscoplastic deformation happens, the effective stresses around the crack tip in the nonlinear region is allowed to exceed the loading surface, and the pure plastic theory is not suitable for this situation. The concept of consistency employed in the solution of increment viscoplastic problem, plays a crucial role in preserving the quadratic rate asymptotic convergence of iteractive schemes based on Newton's method. Therefore, this paper investigates the viscoplastic crack problem, and presents an implicit viscoplastic algorithm using the CTO concept in a boundary element framework for path-domain independentJ integrals. Applications are presented with two numerical examples for viscoplastic crack problems andJ integrals.
文摘A general algorithm is applied to the regularization of nearly singular integrals in the boundary element method of planar potential problems. For linear elements, the strongly singular and hypersingular integrals of the interior points very close to boundary were categorized into two forms. The factor leading to the singularity was transformed out of the integral representations with integration by parts, so non-singular regularized formulas were presented for the two forms of integrals. Furthermore, quadratic elements are used in addition to linear ones. The quadratic element very close to the internal point can be divided into two linear ones, so that the algorithm is still valid. Numerical examples demonstrate the effectiveness and accuracy of this algorithm. Especially for problems with curved boundaries, the combination of quadratic elements and linear elements can give more accurate results.
文摘The present paper deals with very important practical problems of wide range of applications. The main target of the present paper is to track all moving boundaries that appear throughout the whole process when dealing with multi-moving boundary problems continuously with time up to the end of the process with high accuracy and minimum number of iterations. A new numerical iterative scheme based the boundary integral equation method is developed to track the moving boundaries as well as compute all unknowns in the problem. Three practical applications, one for vaporization and two for ablation were solved and their results were compared with finite element, heat balance integral and the source and sink results and a good agreement were obtained.
基金the National Natural Science Foundation of China(No.11672064)。
文摘A radial integral boundary element method(BEM)is used to simulate the phase change problem with a mushy zone in this paper.Three phases,including the solid phase,the liquid phase,and the mushy zone,are considered in the phase change problem.First,according to the continuity conditions of temperature and its gradient on the liquid-mushy interface,the mushy zone and the liquid phase in the simulation can be considered as a whole part,namely,the non-solid phase,and the change of latent heat is approximated by heat source which is dependent on temperature.Then,the precise integration BEM is used to obtain the differential equations in the solid phase zone and the non-solid phase zone,respectively.Moreover,an iterative predictor-corrector precise integration method(PIM)is needed to solve the differential equations and obtain the temperature field and the heat flux on the boundary.According to an energy balance equation and the velocity of the interface between the solid phase and the mushy zone,the front-tracking method is used to track the move of the interface.The interface between the liquid phase and the mushy zone is obtained by interpolation of the temperature field.Finally,four numerical examples are provided to assess the performance of the proposed numerical method.
基金supported by the National Natural Science Foundation of China(Nos. 41130418 and 40925013)the National Basic Research Program(973 Program)(No.2009CB219403)
文摘The boundary-volume integral equation numerical technique can be a powerful tool for piecewise heterogeneous media, but it is limited to small problems or low frequencies because of great computational cost. Therefore, a restarted GMRES method is applied to solve large-scale boundary-volume scattering problems in this paper to overcome the computational barrier. The iterative method is firstly applied to responses of dimensionless frequency to a semicircular alluvial valley filled with sediments, compared with the standard Gaussian elimination method. Then the method is tested by a heterogeneous multilayered model to show its applicability. Numerical experiments indicate that the preconditioned GMRES method can significantly improve computational efficiency especially for large Earth models and high frequencies, but with a faster convergence for the left diagonal preconditioning.
文摘By means of Fourier integral transformation of generalized function, the fundamental solution for the bending problem of plates on two-parameter foundation is derived in this paper, and the fundamental solution is expanded into a uniformly convergent series. On the basis of the above work, two boundary integral equations which are suitable to arbitrary shapes and arbitrary boundary conditions are established by means of the Rayleigh-Green identity. The content of the paper provides the powerful theories for the application of BEM in this problem.
基金supported by the National Natural Science Foundation of China (11132004 and 51078145)the Natural Science Foundation of Guangdong Province (9251064101000016)
文摘In this paper we present a precise integration method based on high order multiple perturbation method and reduction method for solving a class of singular twopoint boundary value problems.Firstly,by employing the method of variable coefficient dimensional expanding,the non-homogeneous ordinary differential equations(ODEs) are transformed into homogeneous ODEs.Then the interval is divided evenly,and the transfer matrix in every subinterval is worked out using the high order multiple perturbation method,and a set of algebraic equations is given in the form of matrix by the precise integration relation for each segment,which is worked out by the reduction method.Finally numerical examples are elaboratedd to validate the present method.
基金funded by National Natural Science Foundation of China(NSFC)under Grant Nos.11702238,51904202,and 11902212Nanhu Scholars Program for Young Scholars of XYNU.
文摘This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structures,are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations.Bezier extraction technique is employed to accelerate the evaluation of NURBS basis functions.We adopt a radial integration method to address the additional domain integrals.The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis.
文摘This study is concerned with the numerical approximation of the extended Fisher-Kolmogorov equation with a modified boundary integral method. A key aspect of this formulation is that it relaxes the domain-driven approach of a typical boundary element (BEM) technique. While its discretization keeps faith with the second order accurate BEM formulation, its implementation is element-based. This leads to a local solution of all integral equation and their final assembly into a slender and banded coefficient matrix which is far easier to manipulate numerically. This outcome is much better than working with BEM’s fully populated coefficient matrices resulting from a numerical encounter with the problem domain especially for nonlinear, transient, and heterogeneous problems. Faithful results of high accuracy are achieved when the results obtained herein are compared with those available in literature.
基金financially supported by the National Natural Science Foundation of China (Grant Nos.52271276,52271319,and 52201364)the Natural Science Foundation of Jiangsu Province (Grant No.BK20201006)。
文摘A higher order boundary element method(HOBEM)is presented for inviscid flow passing cylinders in bounded or unbounded domain.The traditional boundary integral equation is established with respect to the velocity potential and its normal derivative.In present work,a new integral equation is derived for the tangential velocity.The boundary is discretized into higher order elements to ensure the continuity of slope at the element nodes.The velocity potential is also expanded with higher order shape functions,in which the unknown coefficients involve the tangential velocity.The expansion then ensures the continuities of the velocity and the slope of the boundary at element nodes.Through extensive comparison of the results for the analytical solution of cylinders,it is shown that the present HOBEM is much more accurate than the conventional BEM.
基金supported by the National Natural Science Foundation of China (No. 10872213)
文摘By using the concept of finite-part integral, a set of hypersingular integro-differential equations for multiple interracial cracks in a three-dimensional infinite bimaterial subjected to arbitrary loads is derived. In the numerical analysis, unknown displacement discontinuities are approximated with the products of the fundamental density functions and power series. The fundamental functions are chosen to express a two-dimensional interface crack rigorously. As illustrative examples, the stress intensity factors for two rectangular interface cracks are calculated for various spacing, crack shape and elastic constants. It is shown that the stress intensity factors decrease with the crack spacing.
文摘Equivalent Boundary Integral Equations (EBIE) with indirect unknowns for thin elastic plate bending theory, which is equivalent to the original boundary value problem, is established rigorously by mathematical technique of non-analytic continuation and is fully proved by means of the variational principle. The previous three kinds of boundary integral equations with indirect unknowns are discussed thoroughly and it is shown that all previous results are not EBIE.