The isolation, culture and the active determination of poplar ice nucleation active (INA) bacteria and the inoculation tests in laboratory and field were conducted, and the varieties, distribution and number of poplar...The isolation, culture and the active determination of poplar ice nucleation active (INA) bacteria and the inoculation tests in laboratory and field were conducted, and the varieties, distribution and number of poplar INA bacteria and its pathoge-nicity and freezing injury property were determined. The study results showed that the INA bacteria widely spread on poplar in Northeast China and caused the frozen injury for poplar under the frost condition in Spring or Autumn, which was the key factor to induce INA bacterial canker. Through evaluation and investigation of different poplar varieties and inoculation tests, fine dis-ease-resistant varieties and strains of poplar suitable for Northeast China were selected. Further tests for strong seedling showed that burying cuttings in sand and covering with plastic film could effectively avoid the frostbite, frozen and drought damage, reduce INA bacteria infection, and promote poplar growth. INA bacterial canker was detected early by highly special-ized antiserums of INA bacteria and the agglutinated test of ring-shaped boundary surface. The inducers such as streptomycin, phenylmercuric acetae, salicylic acid and heat-killed bacteria to immerse cuttings, have obvious induced disease-resistant effect. Before poplar sprouted in early spring, through spraying the solution of frostbite agent, the control effect also was obvious.展开更多
Based on the discussion of relationships between thinning and wind damage, and published information, a method for estimating risk ratios of wind damage was developed. Estimations of risk-ratio for Pinus thunbergii tr...Based on the discussion of relationships between thinning and wind damage, and published information, a method for estimating risk ratios of wind damage was developed. Estimations of risk-ratio for Pinus thunbergii trees and stands were de-duced from stem bending theory and coefficients characterizing wind profile, distribution of branches and optical stratification po-rosity. The results showed that if the value of constant b in the branch distribution-model equals the attenuation coefficient s in the wind profile model for a single tree crown, then the parameter H/D1.33 (height over stem diameter cubed) can be used to compare and evaluate the risk-ratio of wind damage for individual trees. The same method can be applied to stands using the coefficient of wind profile in a stand, i.e. attenuation coefficient , the coefficient from distributions of optical stratification porosity, i.e. extinction coefficient , and the parameter D1.33. The application of parameter H/D1.33 and the process of determining risk ra-tios of wind damage for stands were also given in the paper.展开更多
基金Supported by the National Natural Science Foundation of China (No. 81603342)the Guangdong Provincial Key Laboratory of Traditional Chinese Medicine Informatization (No. 2021B1212040007)+5 种基金the Guangdong Basic and Applied Basic Re-search Foundation (No. 2022A1515012641No. 2024A1515012948)the Guangdong Provincial Bureau of Traditional Chinese Medi-cine Research Project (No. 20221107)the Guangzhou Science and Technology Projects (No. 2024A03J0154No. 2023B01J1004)the Foshan “Summit Plan” of Building High-Level Hospitals。
基金National Foundation of Ninth Five-Year Plan (No. 96-005-04-01-03).
文摘The isolation, culture and the active determination of poplar ice nucleation active (INA) bacteria and the inoculation tests in laboratory and field were conducted, and the varieties, distribution and number of poplar INA bacteria and its pathoge-nicity and freezing injury property were determined. The study results showed that the INA bacteria widely spread on poplar in Northeast China and caused the frozen injury for poplar under the frost condition in Spring or Autumn, which was the key factor to induce INA bacterial canker. Through evaluation and investigation of different poplar varieties and inoculation tests, fine dis-ease-resistant varieties and strains of poplar suitable for Northeast China were selected. Further tests for strong seedling showed that burying cuttings in sand and covering with plastic film could effectively avoid the frostbite, frozen and drought damage, reduce INA bacteria infection, and promote poplar growth. INA bacterial canker was detected early by highly special-ized antiserums of INA bacteria and the agglutinated test of ring-shaped boundary surface. The inducers such as streptomycin, phenylmercuric acetae, salicylic acid and heat-killed bacteria to immerse cuttings, have obvious induced disease-resistant effect. Before poplar sprouted in early spring, through spraying the solution of frostbite agent, the control effect also was obvious.
基金This study was supported by Innovation Research Project of Chinese Academy of Sciences and the Ministry of Culture and Education Japanese Government.
文摘Based on the discussion of relationships between thinning and wind damage, and published information, a method for estimating risk ratios of wind damage was developed. Estimations of risk-ratio for Pinus thunbergii trees and stands were de-duced from stem bending theory and coefficients characterizing wind profile, distribution of branches and optical stratification po-rosity. The results showed that if the value of constant b in the branch distribution-model equals the attenuation coefficient s in the wind profile model for a single tree crown, then the parameter H/D1.33 (height over stem diameter cubed) can be used to compare and evaluate the risk-ratio of wind damage for individual trees. The same method can be applied to stands using the coefficient of wind profile in a stand, i.e. attenuation coefficient , the coefficient from distributions of optical stratification porosity, i.e. extinction coefficient , and the parameter D1.33. The application of parameter H/D1.33 and the process of determining risk ra-tios of wind damage for stands were also given in the paper.