期刊文献+
共找到190篇文章
< 1 2 10 >
每页显示 20 50 100
Investigating the impact of dynamic structural changes of Au/rutile catalysts on the catalytic activity of CO oxidation 被引量:1
1
作者 Xiaochun Hu Qianwenhao Fan +9 位作者 Mingwu Tan Yuqing Luo Xianyue Wu Manoel Y.Manuputty Jie Ding Tej S.Choksi Markus Kraft Rong Xu Zhiqiang Sun Wen Liu 《Carbon Energy》 SCIE EI CAS CSCD 2024年第4期222-232,共11页
The surface properties of oxidic supports and their interaction with the supported metals play critical roles in governing the catalytic activities of oxide‐supported metal catalysts.When metals are supported on redu... The surface properties of oxidic supports and their interaction with the supported metals play critical roles in governing the catalytic activities of oxide‐supported metal catalysts.When metals are supported on reducible oxides,dynamic surface reconstruction phenomena,including strong metal–support interaction(SMSI)and oxygen vacancy formation,complicate the determination of the structural–functional relationship at the active sites.Here,we performed a systematic investigation of the dynamic behavior of Au nanocatalysts supported on flame‐synthesized TiO_(2),which takes predominantly a rutile phase,using CO oxidation above room temperature as a probe reaction.Our analysis conclusively elucidated a negative correlation between the catalytic activity of Au/TiO_(2) and the oxygen vacancy at the Au/TiO_(2) interface.Although the reversible formation and retracting of SMSI overlayers have been ubiquitously observed on Au/TiO_(2) samples,the catalytic consequence of SMSI remains inconclusive.Density functional theory suggests that the electron transfer from TiO_(2) to Au is correlated to the presence of the interfacial oxygen vacancies,retarding the catalytic activation of CO oxidation. 展开更多
关键词 co oxidation electronic metal-support interactions flame‐synthesis metal-support interactions oxygen vacancy strong metal-support interaction
下载PDF
Tandem catalysis for enhanced CO oxidation over the Bi-Au-SiO_(2)interface 被引量:1
2
作者 Huan Zhang Lei Xie +5 位作者 Zhao-Feng Liang Chao-Qin Huang Hong-Bing Wang Jin-Ping Hu Zheng Jiang Fei Song 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2023年第7期198-205,共8页
Bimetallic catalysts typically exploit unique synergetic effects between two metal species to achieve their catalytic effect.Understanding the mechanism of CO oxidation using hybrid heterogeneous catalysts is importan... Bimetallic catalysts typically exploit unique synergetic effects between two metal species to achieve their catalytic effect.Understanding the mechanism of CO oxidation using hybrid heterogeneous catalysts is important for effective catalyst design and environmental protection.Herein,we report a Bi-Au/SiO_(2)tandem bimetallic catalyst for the oxidation of CO over the Au/SiO_(2)surface,which was monitored using near-ambient-pressure X-ray photoelectron spectroscopy.The Au-decorated SiO_(2)catalyst exhibited scarce activity in the CO oxidation reaction;however,the introduction of Bi to the Au/SiO_(2)system promoted the catalytic activity.The mechanism is thought to involve the dissociation O_(2)molecules in the presence of Bi,which results in spillover of the O species to adjacent Au atoms,thereby forming Au^(δ+).Further CO adsorption,followed by thermal treatment,facilitated the oxidation of CO at the Au-Bi interface,resulting in a reversible reversion to the neutral Au valence state.Our work provides insight into the mechanism of CO oxidation on tandem surfaces and will facilitate the rational design of other Au-based catalysts. 展开更多
关键词 APXPS co oxidation Au-Bi interface Tandem catalysis In situ
下载PDF
High catalytic performance of CuCe/Ti for CO oxidation and the role of TiO_(2)
3
作者 Tingting Chang Ziyan Wang +4 位作者 Zhimiao Wang Hualiang An Fang Li Wei Xue Yanji Wang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第10期1-10,共10页
CuCe/Ti-A and CuCe/Ti-R catalysts were prepared using anatase TiO_(2)(TiO_(2)-A)and rutile TiO_(2)(TiO_(2)-R)as supports using the incipient wetness impregnation method for the carbon monoxide(CO)oxidation reaction an... CuCe/Ti-A and CuCe/Ti-R catalysts were prepared using anatase TiO_(2)(TiO_(2)-A)and rutile TiO_(2)(TiO_(2)-R)as supports using the incipient wetness impregnation method for the carbon monoxide(CO)oxidation reaction and were compared with a CuCe-C catalyst prepared using the co-precipitation method.The CuCe/Ti-A catalyst exhibited the highest activity,with complete CO conversion at 90℃,when the gas hourly space velocity was 24000 ml.g^(-1).h^(-1) and the CO concentration was approximately 1%(vol).A series of characterizations of the catalysts revealed that the CuCe/Ti-A catalyst has a larger specific surface area,more Cu+species and oxygen vacancies,and the Cu species of CuCe/Ti-A catalyst is more readily reduced.In situ FT-IR results indicate that the bicarbonate species generated on the CuCe/Ti-A catalyst have lower thermal stability than the carbonate species on CuCe/Ti-R,and will decompose more readily to form CO_(2).Therefore,CuCe/Ti-A has excellent catalytic activity for CO oxidation. 展开更多
关键词 co oxidation TiO_(2)crystal phase CuCe/Ti Reaction mechanism
下载PDF
Single atom gold catalysts for low-temperature CO oxidation 被引量:9
4
作者 乔波涛 梁锦霞 +2 位作者 王爱琴 刘景月 张涛 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2016年第10期1580-1587,共8页
Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The... Low‐temperature CO oxidation is important for both fundamental studies and practical applica‐tions. Supported gold catalysts are generally regarded as the most active catalysts for low‐temperature CO oxidation. The active sites are traditionally believed to be Au nanoclusters or nanoparticles in the size range of 0.5–5 nm. Only in the last few years have single‐atom Au catalysts been proved to be active for CO oxidation. Recent advances in both experimental and theoretical studies on single‐atom Au catalysts unambiguously demonstrated that when dispersed on suitable oxide supports the Au single atoms can be extremely active for CO oxidation. In this mini‐review, recent advances in the development of Au single‐atom catalysts are discussed, with the aim of illus‐trating their unique catalytic features during CO oxidation. 展开更多
关键词 GOLD Single atom catalyst co oxidation STABILITY Low temperature
下载PDF
Comparative studies of leached Pt-Fe and Pt-Co catalysts for CO oxidation reactions 被引量:1
5
作者 徐红 倪可 +2 位作者 李小昆 朱胜 范果红 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第7期1261-1269,共9页
Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of... Leached Pt-Fe and Pt-Co catalysts were prepared by acid leaching the reduced catalysts in acid solution. Oxidation treatments of leached catalysts produced the structure o f metal oxides decorat-ing the surface of nanoparticles. The fully oxidized Fe2O3 and Co3O4 species on Pt nanoparticle sur-faces result in the low performance of the CO complete oxidation (COOX) reaction. In contrast, un-saturated FeO and CoO surface species can be formed during exposure to the CO preferential oxida-tion (CO-PROX) reaction with an excess of H2, leading to a high O2 activation ability and enhancing the CO-PROX activity. The FeOx surface structures can be transformed between these two states by varying the reactive gas environments, exhibiting oscillating activity in these two reactions. Con-versely, the CoO surface structure formed in the H2 -rich atmosphere is stable when exposed to the COOX reaction and exhibits similar activity in these two reactions. It is hoped that this work may assist in understanding the important role of surface oxides in real reactions. 展开更多
关键词 Pt-Fe Pt-co Acid leaching co oxidation Surface oxide
下载PDF
Effect of Precipitation Method and Ce Doping on the Catalytic Activity of Copper Manganese Oxide Catalysts for CO Oxidation 被引量:2
6
作者 张学彬 马扩颜 +3 位作者 张灵辉 雍国平 戴亚 刘少民 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2011年第1期97-102,I0004,共7页
The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were... The influence of Ce doping and the precipitation method on structural properties and the catalytic activity of copper manganese oxides for CO oxidation at ambient temperature have been investigated. The catalysts were characterized by means of the powder X-ray diffraction and N2 adsorption-desorption, the inductively coupled plasma atomic emission spectrometry, the temperature programmed reduction, diffuse reflectance UV-Vis spectra, and the X-ray photoelectron spectroscopy. It was found that after doping little amount of Ce in copper manganese oxide, CeO2 phase was highly dispersed and could prevent sintering and aggregating of the catalyst, the size of the catalytic material was decreased, the reducibility was enhanced, the specific surface area was increased and the formation of the active sites for the oxidation of CO was improved significantly. Therefore, the activity of the rare earth promoted catalyst was enhanced remarkably. 展开更多
关键词 co oxidation Ce-doped copper manganese oxide Catalytic activity Reverse co-precipitation
下载PDF
Effect of Calcination Temperature on Surface Oxygen Vacancies and Catalytic Performance Towards CO Oxidation of Co3O4 Nanoparticles Supported on SiO2 被引量:1
7
作者 李金兵 姜志全 +1 位作者 王坤 黄伟新 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2012年第1期103-109,I0004,共8页
Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD),... Co3O4/SiO2 catalysts for CO oxidation were prepared by conventional incipient wetness impregnation followed by calcination at various temperatures. Their structures were char- acterized with X-ray diffraction (XRD), laser Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR) and X-ray absorption fine structure (XAFS) spectroscopy. Both XRD and Raman spectroscopy only detect the existence of Co3O4 crystallites in all catalysts. However, XPS results indicate that excess Co2+ ions are present on the surface of Co3O4 in Co3O4(200)/Si02 as compared with bulk Co3O4. Meanwhile, TPR results suggest the presence of surface oxygen vacancies on Co3O4 in Co3O4(200)/SiO2, and XAFS results demonstrate that Co3O4 in Co3O4(200)/SIO2 contains excess Co2+. Increasing calcination temperature results in oxidation of excess Co2+ and the decrease of the concentration of surface oxygen vacancies, consequently the for- mation of stoichiometric Co3O4 on supported catalysts. Among all Co3O4/SiO2 catalysts, Co3O4(200)/SiO2 exhibits the best catalytic performance towards CO oxidation, demonstrating that excess Co2+ and surface oxygen vacancies can enhance the catalytic activity of Co3O4 towards CO oxidation. These results nicely demonstrate the effect of calcination temperature on the structure and catalytic performance towards CO oxidation of silicasupported Co3O4 catalysts and highlight the important role of surface oxygen vacancies on Co3O4. 展开更多
关键词 co3O4/8iO2 catalyst co oxidation Calcination temperature Surface oxygen vacancies
下载PDF
Enhanced CO oxidation over potassium-promoted Pt/Al_2O_3 catalysts:Kinetic and infrared spectroscopic study 被引量:1
8
作者 刘欢欢 贾爱平 +2 位作者 王瑜 罗孟飞 鲁继青 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2015年第11期1976-1986,共11页
A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-co... A series of K-promoted Pt/Al2O3 catalysts were tested for CO oxidation. It was found that the addition of K significantly enhanced the activity. A detailed kinetic study showed that the activation energies of the K-containing catalysts were lower than those of the K-free ones, particularly for catalysts with high Pt contents (51.6 k)/mol for 0.42K-2.0Pt/Al2O3 and 6:3.6 kJ/mol for 2.0Pt/Al2O3 ). The CO reaction orders were higher for the K-containing catalysts (about -0.2) than for the K-free ones (about -0.5), with the former having much lower equilibrium constants for CO adsorption than the latter. In situ Fourier-transform infrared spectroscopy showed that surface CO desorption from the 0.42K-2.0Pt/Al2O3 catalyst was easier than from 2.0Pt/Al2O3. The promoting effect of K was therefore caused by weakening of the interactions between CO and surface Pt atoms. This decreased coverage of the catalyst with CO and facilitated competitive O2 chemisorption on the Pt surface, and significantly lowered the reaction barrier between chemisorbed CO and O2 species. 展开更多
关键词 co oxidation Potassium Kinetics Pt/Al2O3 catalyst Promoting effect
下载PDF
Insights into facet-dependent reactivity of CuO–CeO2 nanocubes and nanorods as catalysts for CO oxidation reaction 被引量:9
9
作者 Yu Aung May Wei-Wei Wang +2 位作者 Han Yan Shuai Wei Chun-Jiang Jia 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第6期1017-1027,共11页
Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2... Copper–ceria(Cu O–CeO2) catalysts have been known to be very effective for the oxidation of CO, and their chemical behavior has been extensively studied during the last decades. However, the effect of different CeO2 crystal surfaces on the catalytic activity of Cu O–CeO2 for the oxidation of CO is still unclear and should be further elucidated. In this study, we deposited 1 wt% Cu on mostly {100}-exposed CeO2 nanocubes(1 Cu Ce NC) and mostly {110}-exposed CeO2 nanorods(1 Cu Ce NR), respectively. Both 1 Cu Ce NC and 1 Cu Ce NR have been used as catalysts for the oxidation of CO and achieved 100% and 50% CO conversion at 130 ℃, respectively. The differences in the catalytic activity of 1 Cu Ce NC and 1 Cu Ce NR were analyzed using temperature-programmed reduction of H2 and temperature-programmed desorption of CO techniques. The results confirmed the excellent reducibility of the 1 Cu Ce NC catalyst, which was attributed to the weak interactions between Cu and the CeO2 support. Moreover, in situ diffuse reflectance infrared Fourier-transform spectroscopy studies indicated that the {100} planes of 1 Cu Ce NC facilitated the generation of active Cu(I) sites, which resulted in the formation of highly reactive Cu(I)-CO species during the oxidation of CO. Both the excellent redox properties and effective CO adsorption capacity of the 1 Cu Ce NC catalyst increased its catalytic reactivity. 展开更多
关键词 copper–ceria catalyst Crystal facets co oxidation Redox property Active site
下载PDF
Promotion effects of nickel-doped Al2O3-nanosheet-supported Au catalysts for CO oxidation 被引量:8
10
作者 Rao Lu Lei He +2 位作者 Yang Wang Xin-Qian Gao Wen-Cui Li 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2020年第2期350-356,共7页
Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via ... Supported gold catalysts show high activity toward CO oxidation, and the nature of the support significantly affects the catalytic activity. Herein, serial Ni doping of thin porous Al2 O3 nanosheets was performed via a precipitation-hydrothermal method by varying the amount of Ni during the precipitation step. The prepared nanosheets were subsequently used as supports for the deposition of Au nanoparticles(NPs). The obtained Au/Nix Al catalysts were studied in the context of CO oxidation to determine the effect of Ni doping on the supports. Enhanced catalytic performances were obtained for the Au/Nix Al catalysts compared with those of the Au supported on bare Al2 O3. The Ni content and pretreatment atmosphere were both shown to influence the catalytic activity. Pretreatment under a reducing atmosphere was beneficial for improving catalytic activity. The highest activity was observed for the catalysts with a Ni/Al molar ratio of 0.05, achieving complete CO conversion at 20 °C with a gold loading of 1 wt%. The in-situ FTIR results showed that the introduction of Ni strengthened CO adsorption on the Au NPs. The H2-TPR and O2-TPD results indicated that the introduction of Ni produced new oxygen vacancies and allowed the oxygen molecules to be adsorbed and activated more easily. The improved catalytic performance after doping Ni was attributed to the smaller size of the Au NPs and more active oxygen species. 展开更多
关键词 ALUMINA Gold catalyst Nickel doping co oxidation Oxygen activation
下载PDF
Influence of hematite morphology on the CO oxidation performance of Au/α-Fe_(2)O_(3) 被引量:5
11
作者 Yanan Gao Fu-Kuo Chiang +3 位作者 Shaojie Li Long Zhang Peng Wang Emiel J.M.Hensen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第4期658-665,共8页
Controlling the interaction between metal nanoparticles and the support is a means to tune catalytic activity and stability.Herein we investigated the influence of the morphology of hematite on the performance of gold... Controlling the interaction between metal nanoparticles and the support is a means to tune catalytic activity and stability.Herein we investigated the influence of the morphology of hematite on the performance of gold for CO oxidation.Nanosphere and nanorod forms of hematite,α-Fe_(2)O_(3)(S)andα-Fe_(2)O_(3)(R)respectively,were used to support gold nanoparticles.The surface ofα-Fe_(2)O_(3)(R)was more corrugated than that ofα-Fe_(2)O_(3)(S).These defects provide anchoring sites for gold nanoparticle deposition and stabilization.Due to the stronger gold-support interactions,Au/α-Fe_(2)O_(3)(R)contained smaller and more hemispherical gold particles than Au/α-Fe_(2)O_(3)(S).Au/α-Fe_(2)O_(3)(R)was not only more active in CO oxidation but also much more stable as evident from the small change in gold particle size during reaction.The higher reducibility of Au/α-Fe_(2)O_(3)(R)also contributed to the higher CO oxidation activity. 展开更多
关键词 GOLD co oxidation HEMATITE MORPHOLOGY Stability
下载PDF
Facet-dependent anchoring of gold nanoparticles on TiO2 for CO oxidation 被引量:5
12
作者 Bin Shao Wenning Zhao +4 位作者 Shu Miao Jiahui Huang Lili Wang Gao Li Wenjie Shen 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第10期1534-1539,共6页
The interfacial perimeter of gold nanocatalysts is popularly viewed as the active sites for a number of chemical reactions,while the geometrical structure of the interface at atomic scale is less known.Here,TiO2-nanos... The interfacial perimeter of gold nanocatalysts is popularly viewed as the active sites for a number of chemical reactions,while the geometrical structure of the interface at atomic scale is less known.Here,TiO2-nanosheets and nanospindles were adapted to accommodate Au particles(~2.2 nm),forming Au-TiO2{001}and Au-TiO2{101}interfaces.Upon calcination at 623 K in air,HAADF-STEM images evidenced that the Au particles on TiO2{101}enlarged to 3.1 nm and these on TiO2{001}remained unchanged,suggesting the stronger metal-support interaction on TiO2{001}.Au/TiO2{001}was more active for CO oxidation than Au/TiO2{101}system. 展开更多
关键词 Au nanoparticles Titanium dioxide Stability Interfacial perimeter co oxidation
下载PDF
Highly dispersed boron-nitride/CuO_(x)-supported Au nanoparticles for catalytic CO oxidation at low temperatures 被引量:6
13
作者 Fan Wu Lei He +3 位作者 Wen-Cui Li Rao Lu Yang Wang An-Hui Lu 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2021年第3期388-395,共8页
Supported-Au catalysts show excellent activity in CO oxidation,where the nature of the support has a significant impact on catalytic activity.In this work,a hexagonal boron nitride(BN)support with a high surface area ... Supported-Au catalysts show excellent activity in CO oxidation,where the nature of the support has a significant impact on catalytic activity.In this work,a hexagonal boron nitride(BN)support with a high surface area and adequately exposed edges was obtained by the ball-milling technique.Thereafter,impregnation of the BN support with Cu(NO3)2 followed by calcination under air at 400℃ yielded a CuO-modified support.After Au loading,the obtained Au-CuO_(x)/BN catalyst exhibited high CO oxidation activity at low temperatures with a 50%CO conversion temperature(T50%)of 25℃ and a complete CO conversion temperature(T100%)of 80℃,well within the operational temperature range of proton exchange membrane fuel cells.However,the CO oxidation activity of Au/BN,prepared without CuO_(x) for comparison,was found to be relatively low.Our study reveals that BN alone disperses both Cu and Au nanoparticles well.However,Au nanoparticles on the surface of BN in the absence of CuO species tend to aggregate upon CO oxidation reactions.Conversely,Au nanoparticles supported on the surface of CuO-modified BN remain small with an average size of~2.0 nm before and after CO oxidation.Moreover,electron transfer between Au and Cu species possibly favors the stabilization of highly dispersed Au nanoparticles on the BN surface and also enhances CO adsorption.Thus,our results demonstrate that thermally stable and conductive CuO-modified BN is an excellent support for the preparation of highly dispersed and stable Au catalysts. 展开更多
关键词 Boron nitride Au catalyst co oxidation CUO Electron transfer
下载PDF
Stability of Pd-Cu-Cl_x/Al_2O_3 catalyst for CO oxidation 被引量:4
14
作者 LiWang XiaoqingLu +3 位作者 WeiWang WangchengZhan YanglongGuo YunGuo 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第9期1560-1567,共8页
By taking advantage of silylanization, Al2O3 support was modified by organosilane and supported Pd-Cu-Clx/Al2O3 catalysts were prepared. The effects of hydrophobicity on catalyst stability during CO oxidation were inv... By taking advantage of silylanization, Al2O3 support was modified by organosilane and supported Pd-Cu-Clx/Al2O3 catalysts were prepared. The effects of hydrophobicity on catalyst stability during CO oxidation were investigated. The physicochemical properties and redox potential of the catalyst were characterized by N2 adsorption-desorption, XRD, H2-TPR, and XPS. In order to understand the relationship between the oxidation stability of CO and the presence of water, the CO oxidation mechanism was studied by in situ DRIFT. Support pretreatment markedly promoted catalyst stability during CO oxidation; CO conversion was 78% after 150 h at saturated humidity and freezing point. Modification led to an obvious decrease in chloride ion concentration and enhancement in hydrophobicity. The role of water in CO oxidation was complicated. The presence of water favored CO oxidation over active Pd~+ species and Pd0 reoxidation by Cu^(2+) species. Meanwhile, water also inhibited the formation of the active Pd~+ species and helped to produce carbonate species. Compared with the form of the carbonate species, the inhibition of water to produce active Pd~+ species played the main detrimental role in catalyst stability. 展开更多
关键词 co oxidation STABILITY MOISTURE HYDROPHOBICITY SUPPORTED Wackercatalyst
下载PDF
A comparative study of CuO/TiO_2-SnO_2,CuO/TiO_2 and CuO/SnO_2 catalysts for low-temperature CO oxidation 被引量:8
15
作者 Kairong Li Yaojie Wang Shurong Wang Baolin Zhu Shoumin Zhang Weiping Huang Shihua Wu 《Journal of Natural Gas Chemistry》 EI CAS CSCD 2009年第4期449-452,共4页
Nanometer SnO2 particles were synthesized by sol-gel dialytic processes and used as a support to prepare CuO supported catalysts via a deposition-precipitation method. The samples were characterized by means of TG-DTA... Nanometer SnO2 particles were synthesized by sol-gel dialytic processes and used as a support to prepare CuO supported catalysts via a deposition-precipitation method. The samples were characterized by means of TG-DTA, XRD, H2-TPR and XPS. The catalytic activity of the CuO/TiO2-SnO2 catalysts was markedly depended on the loading of CuO, and the optimum CuO loading was 8 wt.% (Tloo = 80 ℃). The CuO/TiO2-SnO2 catalysts exhibited much higher catalytic activity than the CuO/TiO2 and CuO/SnO2 catalysts. H2-TPR result indicated that a large amount of CuO formed the active site for CO oxidation in 8 wt.% CuO/TiO2-SnO2 catalyst. 展开更多
关键词 sol-gel dialytic processes CuO/TiO2-SnO2 catalyst low-temperature co oxidation
下载PDF
Insights into support effects on Ce-Zr-O mixed oxide-supported gold catalysts in CO oxidation 被引量:4
16
作者 Hongpeng Zhang Haichao Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2013年第1期98-106,共9页
Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentar... Au]Cel_xZrxO2 catalysts (x = 0-0.8) were prepared by a deposition-precipitation method using Cel_xZrxO2 nanoparticles as supports with variable Ce and Zr contents. Their structures were characterized by complimentary means such as X-ray diffraction, Raman, scanning trans- mission electron microscopy and X-ray photoelectron spectroscopy (XPS). These Au catalysts possessed similar sizes and crystalline phases of Cel_xZrzO2 supports as well as similar sizes and oxidation states of Au nanoparticles. The oxidation state of Au nanoparticles was dominated by Au~ especially in CO oxidation. Their activities were examined in CO oxidation at different temperatures in the range of 303-333 K. The CO oxidation rates normalized per Au atoms increased with the increasing Ce contents, and reached the maximum value over Au/CeO2. Such change was in parallel with the change in the oxygen storage capacity values, i.e. the amounts of active oxygen species on Au/Cel_zZrzO2 catalysts. The excellent correlation between the two properties of the catalysts suggests that the intrinsic support effects on the CO oxidation rates is related to the effects on the adsorption and activation of O2 on Au/Cel_xZrxO2 catalysts. Such understanding on the support effects may be useful for designing more active Au catalysts, for example, by tuning the redox properties of oxide supports. 展开更多
关键词 gold catalyst ceria-zirconia support co oxidation oxygen storage capacity support effect
下载PDF
Tailoring the surface structures of iron oxide nanorods to support Au nanoparticles for CO oxidation 被引量:4
17
作者 Wen Shi Tongtong Gao +3 位作者 Liyun Zhang Yanshuang Ma Zhongwen Liu Bingsen Zhang 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第12期1884-1894,共11页
Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also... Iron oxide supported Au nanomaterials are one of the most studied catalysts for low-temperature CO oxidation.Catalytic performance not only critically depends on the size of the supported Au nanoparticles(NPs)but also strongly on the chemical nature of the iron oxide.In this study,Au NPs supported on iron oxide nanorods with different surface properties throughβ-FeOOH annealing,at varying temperatures,were synthesized,and applied in the CO oxidation.Detailed characterizations of the interactions between Au NPs and iron oxides were obtained by X-ray diffraction,transmission electron microscopy(TEM),and X-ray photoelectron spectroscopy.The results indicate that the surface hydroxyl group on the Au/FeOOH catalyst,before calcination(Au/FeOOH-fresh),could facilitate the oxygen adsorption and dissociation on positively charged Au,thereby contributing to the low-temperature CO oxidation reactivity.After calcination at 200℃,under air exposure,the chemical state of the supported Au NP on varied iron oxides partly changed from metal cation to Au0,along with the disappearance of the surface OH species.Au/FeOOH with the highest Au0 content exhibits the highest activity in CO oxidation,among the as-synthesized catalysts.Furthermore,good durability in CO oxidation was achieved over the Au/FeOOH catalyst for 12 h without observable deactivation.In addition,the advanced identical-location TEM method was applied to the gas phase reaction to probe the structure evolution of the Au/iron oxide series of the catalysts and support structure.A Au NP size-dependent Ostwald ripening process mediated by the transport of Au(CO)x mobile species under certain reaction conditions is proposed,which offers a new insight into the validity of the structure-performance relationship. 展开更多
关键词 Iron oxide nanorods Surface property Au nanoparticle co oxidation Structure evolution
下载PDF
Preparation and catalytic behavior of reduced graphene oxide supported cobalt oxide hybrid nanocatalysts for CO oxidation 被引量:4
18
作者 Yan WANG Ze-hua CHEN +6 位作者 Jing HUANG Gao-jie LI Jian-liang CAO Bo ZHANG Xing-ying CHEN Huo-li ZHANG Lei JIA 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2018年第11期2266-2274,共9页
The reduced graphene oxide (rGO) supported cobalt oxide nanocatalysts were prepared by the conventional precipitationand hydrothermal method. The as-prepared rGO-Co3O4 was characterized by the XRD, Raman spectrum, S... The reduced graphene oxide (rGO) supported cobalt oxide nanocatalysts were prepared by the conventional precipitationand hydrothermal method. The as-prepared rGO-Co3O4 was characterized by the XRD, Raman spectrum, SEM, TEM, N2-sorption,UV-Vis, XPS and H2-TPR measurements. The results show that the spinel cobalt oxide nanoparticles are highly fragmented on therGO support and possess uniform particle size, and the as-prepared catalysts possess high specific surface area and narrow pore sizedistribution. The catalytic properties of the as-prepared rGO-Co3O4 catalysts for CO oxidation were evaluated through acontinuous-flow fixed-bed microreactor-gas chromatograph system. The catalyst with 30% (mass fraction) reduced graphene oxideexhibits the highest activity for CO complete oxidation at 100 ℃. 展开更多
关键词 reduced graphene oxide cobalt oxide CATALYST co oxidation catalytic activity
下载PDF
Single-atom catalysts for CO oxidation,CO_(2) reduction,and O_(2) electrochemistry 被引量:4
19
作者 Wenyu Yuan Yiyuan Ma +1 位作者 Heng Wu Laifei Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第2期254-279,共26页
CO_(x)(x=1,2)and O_(2) chemistry play key roles in tackling global severe environmental challenges and energy issues.To date,the efficient selective electrocatalytic transformations of COx-carbon chemicals,and O_(2)-h... CO_(x)(x=1,2)and O_(2) chemistry play key roles in tackling global severe environmental challenges and energy issues.To date,the efficient selective electrocatalytic transformations of COx-carbon chemicals,and O_(2)-hydrogenated products are still huge challenges.Single-atom catalysts(SACs)as atomic-scale novel catalysts in which only isolated metal atoms are dispersed on supports shed new insights in overcome these obstacles in CO_(x) and O_(2) chemistry,including CO oxidation,CO_(2) reduction reaction(CO_(2)RR),oxygen reduction reaction(ORR),and oxygen evolution reaction(OER).In this review,the unique features and advanced synthesis strategies of SACs from a viewpoint of fundamental synthesis design are first highlighted to guide future strategy design for controllable SAC synthesis.Then,the to-date reported CO_(2)RR,CO oxidation,OER,and ORR mechanism are included and summarized.More importantly,the design principles and design strategies of improving the intrinsic activity,selectivity,and stability are extensively discussed and the engineering strategy is classified as neighbor coordination engineering,metal-atom engineering,and substrate engineering.Via the comprehensive review and summary of state-of-the-art SACs,the synthesis–structure–property–mechanism–design principle relation can be revealed to shed lights into the structural construction of SACs.Finally,we present an outlook on current challenges and future directions for SACs in CO_(x) and O_(2) chemistry. 展开更多
关键词 Single-atom catalysts co_(2)reduction reaction co oxidation Oxygen reduction reaction Oxygen evolution reaction
下载PDF
Catalytic ativities of single-atom catalysts for CO oxidation: Pt_1/FeO_x vs. Fe_1/FeO_x 被引量:7
20
作者 Jinxia Liang Xiaofeng Yang +2 位作者 Congqiao Xu Tao Zhang Jun Li 《Chinese Journal of Catalysis》 CSCD 北大核心 2017年第9期1566-1573,共8页
An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other ... An FeOx‐based Pt single‐atom catalyst(SAC),Pt1/FeOx,has stimulated significant recent interest owing to its extraordinary activity toward CO oxidation.The concept of SAC has also been successfully extended to other FeOx supported transition metal systems both experimentally and theoretically.However,the FeOx substrate itself(denoted by Fe1/FeOx following the same nomenclature of Pt1/FeOx)as a typical transition metal oxide possesses a very low catalytic activity toward CO oxidation,although it can be viewed as Fe1/FeOx SAC.Here,to understand the catalytic mechanism of FeOx‐based SACs for CO oxidation,we have performed density functional theory calculations on Pt1/FeOx and Fe1/FeOx for CO oxidation to address the differences between these two SACs in terms of the catalytic mechanism of CO oxidation and the chemical behavior of the catalysts.Our calculation results indicated that the catalytic cycle of Fe1/FeOx is much more difficult to accomplish than that of SAC Pt1/FeOx because of a high activation barrier(1.09eV)for regeneration of the oxygen vacancy formed when the second CO2molecule desorbs from the surface.Moreover,density of states and Bader charge analysis revealed differences in the catalytic performance for CO oxidation by the SACs Fe1/FeOx and Pt1/FeOx.This work provides insights into the fundamental interactions between the single‐atom Pt1and FeOx substrate,and the exceptional catalytic performance of this system for CO oxidation. 展开更多
关键词 Single‐atom catalyst FeOx substrate Density functional theory Heterogeneous catalysis co oxidation
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部