期刊文献+
共找到3,431篇文章
< 1 2 172 >
每页显示 20 50 100
Insight into the capacity degradation and structural evolution of single-crystal Ni-rich cathodes
1
作者 Xiaodong Zhang Jiao Lin +5 位作者 Ersha Fan Qingrong Huang Su Ma Renjie Chen Feng Wu Li Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第8期68-76,I0003,共10页
Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capac... Single-crystal Ni-rich cathodes are a promising candidate for high-energy lithium-ion batteries due to their higher structural and cycling stability than polycrystalline materials.However,the phase evolution and capacity degradation of these single-crystal cathodes during continuous lithation/delithation cycling remains unclear.Understanding the mapping relationship between the macroscopic electrochemical properties and the material physicochemical properties is crucial.Here,we investigate the correlation between the physical-chemical characteristics,phase transition,and capacity decay using capacity differential curve feature identification and in-situ X-ray spectroscopic imaging.We systematically clarify the dominant mechanism of phase evolution in aging cycling.Appropriately high cut-off voltages can mitigate the slow kinetic and electrochemical properties of single-crystal cathodes.We also find that second-order differential capacity discharge characteristic curves can be used to identify the crystal structure disorder of Ni-rich cathodes.These findings constitute a step forward in elucidating the correlation between the electrochemical extrinsic properties and the physicochemical intrinsic properties and provide new perspectives for failure analysis of layered electrode materials. 展开更多
关键词 Single-crystal cathodes capacity decay Phase transition Differential capacity analysis
下载PDF
PV Capacity Evaluation Using ASTM E2848: Techniques for Accuracy and Reliability in Bifacial Systems
2
作者 Gautam Swami Kajal Sheth Dhvanil Patel 《Smart Grid and Renewable Energy》 2024年第9期201-216,共16页
A variety of test methodologies are commonly used to assess if a photovoltaic system can perform in line with expectations generated by a computer simulation. One of the commonly used methodologies across the PV indus... A variety of test methodologies are commonly used to assess if a photovoltaic system can perform in line with expectations generated by a computer simulation. One of the commonly used methodologies across the PV industry is an ASTM E2848. ASTM E2848-13, 2023 test method provides measurement and analysis procedures for determining the capacity of a specific photovoltaic system built in a particular place and in operation under natural sunlight. This test method is mainly used for acceptance testing of newly installed photovoltaic systems, reporting of DC or AC system performance, and monitoring of photovoltaic system performance. The purpose of the PV Capacity Test and modeled energy test is to verify that the integrated system formed from all components of the PV Project has a production capacity that achieves the Guaranteed Capacity and the Guaranteed modeled AEP under measured weather conditions that occur when each PV Capacity Test is conducted. In this paper, we will be discussing ASTM E2848 PV Capacity test plan purpose and scope, methodology, Selection of reporting conditions (RC), data requirements, calculation of results, reporting, challenges, acceptance criteria on pass/fail test results, Cure period, and Sole remedy for EPC contractors for bifacial irradiance. 展开更多
关键词 Photovoltaic System capacity ASTM E2848 Bifacial PV Modules PV capacity Testing PVSyst Simulation Solar Energy Performance Regression Modeling
下载PDF
A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:antioxidant and bile acid-binding capacity 被引量:5
3
作者 Qiaoyun Li Zuman Dou +5 位作者 Qingfei Duan Chun Chen Ruihai Liu Yueming Jiang Bao Yang Xiong Fu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期494-505,共12页
In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic... In this study,the structural characters,antioxidant activities and bile acid-binding ability of sea buckthorn polysaccharides(HRPs)obtained by the commonly used hot water(HRP-W),pressurized hot water(HRP-H),ultrasonic(HRP-U),acid(HRP-C)and alkali(HRP-A)assisted extraction methods were investigated.The results demonstrated that extraction methods had significant effects on extraction yield,monosaccharide composition,molecular weight,particle size,triple-helical structure,and surface morphology of HRPs except for the major linkage bands.Thermogravimetric analysis showed that HRP-U with filamentous reticular microstructure exhibited better thermal stability.The HRP-A with the lowest molecular weight and highest arabinose content possessed the best antioxidant activities.Moreover,the rheological analysis indicated that HRPs with higher galacturonic acid content and molecular weight showed higher viscosity and stronger crosslinking network(HRP-C,HRP-W and HRP-U),which exhibited stronger bile acid binding capacity.The present findings provide scientific evidence in the preparation technology of sea buckthorn polysaccharides with good antioxidant and bile acid binding capacity which are related to the structure affected by the extraction methods. 展开更多
关键词 Sea buckthorn Extraction method STRUCTURE Rheological properties Antioxidant activity Bile acid binding capacity
下载PDF
Durable K-ion batteries with 100% capacity retention up to 40,000 cycles 被引量:1
4
作者 Xianlu Lu Zhao Liang +6 位作者 Zhi Fang Dongdong Zhang Yapeng Zheng Qiao Liu Dingfa Fu Jie Teng Weiyou Yang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第5期201-212,共12页
Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induce... Currently,the major challenge in terms of research on K-ion batteries is to ensure that they possess satisfactory cycle stability and specific capacity,especially in terms of the intrinsically sluggish kinetics induced by the large radius of K+ions.Here,we explore high-performance K-ion half/full batteries with high rate capability,high specific capacity,and extremely durable cycle stability based on carbon nanosheets with tailored N dopants,which can alleviate the change of volume,increase electronic conductivity,and enhance the K+ion adsorption.The as-assembled K-ion half-batteries show an excellent rate capability of 468 mA h g^(−1) at 100 mA g^(−1),which is superior to those of most carbon materials reported to date.Moreover,the as-assembled half-cells have an outstanding life span,running 40,000 cycles over 8 months with a specific capacity retention of 100%at a high current density of 2000 mA g^(−1),and the target full cells deliver a high reversible specific capacity of 146 mA h g^(−1) after 2000 cycles over 2 months,with a specific capacity retention of 113%at a high current density of 500 mA g^(−1),both of which are state of the art in the field of K-ion batteries.This study might provide some insights into and potential avenues for exploration of advanced K-ion batteries with durable stability for practical applications. 展开更多
关键词 carbon nanosheet cycle stability K-ion batteries rate performance specific capacity
下载PDF
A comparative study of data-driven battery capacity estimation based on partial charging curves 被引量:1
5
作者 Chuanping Lin Jun Xu +5 位作者 Delong Jiang Jiayang Hou Ying Liang Xianggong Zhang Enhu Li Xuesong Mei 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期409-420,I0010,共13页
With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair compar... With its generality and practicality, the combination of partial charging curves and machine learning(ML) for battery capacity estimation has attracted widespread attention. However, a clear classification,fair comparison, and performance rationalization of these methods are lacking, due to the scattered existing studies. To address these issues, we develop 20 capacity estimation methods from three perspectives:charging sequence construction, input forms, and ML models. 22,582 charging curves are generated from 44 cells with different battery chemistry and operating conditions to validate the performance. Through comprehensive and unbiased comparison, the long short-term memory(LSTM) based neural network exhibits the best accuracy and robustness. Across all 6503 tested samples, the mean absolute percentage error(MAPE) for capacity estimation using LSTM is 0.61%, with a maximum error of only 3.94%. Even with the addition of 3 m V voltage noise or the extension of sampling intervals to 60 s, the average MAPE remains below 2%. Furthermore, the charging sequences are provided with physical explanations related to battery degradation to enhance confidence in their application. Recommendations for using other competitive methods are also presented. This work provides valuable insights and guidance for estimating battery capacity based on partial charging curves. 展开更多
关键词 Lithium-ion battery Partial charging curves capacity estimation DATA-DRIVEN Sampling frequency
下载PDF
Sealing capacity evaluation of underground gas storage under intricate geological conditions 被引量:1
6
作者 Guangquan Zhang Sinan Zhu +4 位作者 Daqian Zeng Yuewei Jia Lidong Mi Xiaosong Yang Junfa Zhang 《Energy Geoscience》 EI 2024年第3期234-243,共10页
Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulat... Evaluating underground gas storage(UGS)sealing capacity is essential for its safe construction and operational efficiency.This involves evaluating both the static sealing capacity of traps during hydrocarbon accumulation and the dynamic sealing capacity of UGS under intensive gas injection and withdrawal,and alternating loads.This study detailed the methodology developed by Sinopec.The approach merges disciplines like geology,geomechanics,and hydrodynamics,employing both dynamic-static and qualitative-quantitative analyses.Sinopec's evaluation methods,grounded in the in situ stress analysis,include mechanistic studies,laboratory tests,geological surveys,stress analysis,and fluid-solid interactions.Through tests on the static and dynamic sealing capacity of UGS,alongside investigations into sealing mechanisms and the geological and geomechanical properties of cap rocks and faults,A geomechanics-rock damage-seepage mechanics dynamic coupling analysis method has been developed to predict in situ stress variations relative to pore pressure changes during UGS operations and evaluate fault sealing capacity and cap rock integrity,thereby setting the maximum operational pressures.Utilizing this evaluation technique,Sinopec has defined performance metrics and criteria for evaluating the sealing capacity of depleted gas reservoirs,enabling preliminary sealing capacity evaluations at UGS sites.These evaluations have significantly informed the design of UGS construction schemes and the evaluation of fault sealing capacity and cap rock integrity during UGS operations. 展开更多
关键词 Underground gas storage Sealing capacity GEOMECHANICS Maximum operational pressure
下载PDF
Battery pack capacity estimation for electric vehicles based on enhanced machine learning and field data
7
作者 Qingguang Qi Wenxue Liu +3 位作者 Zhongwei Deng Jinwen Li Ziyou Song Xiaosong Hu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期605-618,共14页
Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using... Accurate capacity estimation is of great importance for the reliable state monitoring,timely maintenance,and second-life utilization of lithium-ion batteries.Despite numerous works on battery capacity estimation using laboratory datasets,most of them are applied to battery cells and lack satisfactory fidelity when extended to real-world electric vehicle(EV)battery packs.The challenges intensify for large-sized EV battery packs,where unpredictable operating profiles and low-quality data acquisition hinder precise capacity estimation.To fill the gap,this study introduces a novel data-driven battery pack capacity estimation method grounded in field data.The proposed approach begins by determining labeled capacity through an innovative combination of the inverse ampere-hour integral,open circuit voltage-based,and resistance-based correction methods.Then,multiple health features are extracted from incremental capacity curves,voltage curves,equivalent circuit model parameters,and operating temperature to thoroughly characterize battery aging behavior.A feature selection procedure is performed to determine the optimal feature set based on the Pearson correlation coefficient.Moreover,a convolutional neural network and bidirectional gated recurrent unit,enhanced by an attention mechanism,are employed to estimate the battery pack capacity in real-world EV applications.Finally,the proposed method is validated with a field dataset from two EVs,covering approximately 35,000 kilometers.The results demonstrate that the proposed method exhibits better estimation performance with an error of less than 1.1%compared to existing methods.This work shows great potential for accurate large-sized EV battery pack capacity estimation based on field data,which provides significant insights into reliable labeled capacity calculation,effective features extraction,and machine learning-enabled health diagnosis. 展开更多
关键词 Electricvehicle Lithium-ion battery pack capacity estimation Machine learning Field data
下载PDF
Machine learning models for the density and heat capacity of ionic liquid-water binary mixtures
8
作者 Yingxue Fu Xinyan Liu +3 位作者 Jingzi Gao Yang Lei Yuqiu Chen Xiangping Zhang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第9期244-255,共12页
Ionic liquids(ILs),because of the advantages of low volatility,good thermal stability,high gas solubility and easy recovery,can be regarded as the green substitute for traditional solvent.However,the high viscosity an... Ionic liquids(ILs),because of the advantages of low volatility,good thermal stability,high gas solubility and easy recovery,can be regarded as the green substitute for traditional solvent.However,the high viscosity and synthesis cost limits their application,the hybrid solvent which combining ILs together with others especially water can solve this problem.Compared with the pure IL systems,the study of the ILs-H_(2)O binary system is rare,and the experimental data of corresponding thermodynamic properties(such as density,heat capacity,etc.)are less.Moreover,it is also difficult to obtain all the data through experiments.Therefore,this work establishes a predicted model on ILs-water binary systems based on the group contribution(GC)method.Three different machine learning algorithms(ANN,XGBoost,LightBGM)are applied to fit the density and heat capacity of ILs-water binary systems.And then the three models are compared by two index of MAE and R^(2).The results show that the ANN-GC model has the best prediction effect on the density and heat capacity of ionic liquid-water mixed system.Furthermore,the Shapley additive explanations(SHAP)method is harnessed to scrutinize the significance of each structure and parameter within the ANN-GC model in relation to prediction outcomes.The results reveal that system components(XIL)within the ILs-H_(2)O binary system exert the most substantial influence on density,while for the heat capacity,the substituents on the cation exhibit the greatest impact.This study not only introduces a robust prediction model for the density and heat capacity properties of IL-H_(2)O binary mixtures but also provides insight into the influence of mixture features on its density and heat capacity. 展开更多
关键词 Ionic liquids DENSITY Heat capacity Group contribution method Machine learning
下载PDF
Effects of thinning and understory removal on water use efficiency of Pinus massoniana:evidence from photosynthetic capacity and stable carbon isotope analyses
9
作者 Ting Wang Qing Xu +4 位作者 Beibei Zhang Deqiang Gao Ying Zhang Jing Jiang Haijun Zuo 《Journal of Forestry Research》 SCIE EI CAS CSCD 2024年第2期42-53,共12页
Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and... Understanding the relationship between forest management and water use efficiency(WUE)is important for evaluating forest adaptability to climate change.However,the effects of thinning and understory removal on WUE and its key controlling processes are not well understood,which limits our comprehension of the physiological mechanisms of various management practices.In this study,four forest management measures(no thinning:NT;understory removal:UR;light thinning:LT;and heavy thinning:HT)were carried out in Pinus massoniana plantations in a subtropical region of China.Photosynthetic capacity and needle stable carbon isotope composition(δ^(13)C)were measured to assess instantaneous water use efficiency(WUE_(inst))and long-term water use efficiency(WUE_(i)).Multiple regression models and structural equation modelling(SEM)identified the effects of soil properties and physiological performances on WUE_(inst)and WUE_(i).The results show that WUE_(inst)values among the four treatments were insignificant.However,compared with the NT stand(35.8μmol·mol^(-1)),WUE_(i)values significantly increased to 41.7μmol·mol^(-1)in the UR,50.1μmol·mol^(-1)in the LT and 46.6μmol·mol^(-1)in HT treatments,largely explained by photosynthetic capacity and soil water content.Understory removal did not change physiological performance(needle water potential and photosynthetic capacity).Thinning increased the net photosynthetic rate(A_n)but not stomatal conductance(g_s)or predawn needle water potential(ψ_(pd)),implying that the improvement in water use efficiency for thinned stands was largely driven by radiation interception than by soil water availability.In general,thinning may be an appropriate management measure to promote P.massoniana WUE to cope with seasonal droughts under future extreme climates. 展开更多
关键词 Stable carbon isotope Water use efficiency THINNING Understory removal Photosynthetic capacity Needle water potential
下载PDF
Bending Failure Mode and Prediction Method of the Compressive Strain Capacity of A Submarine Pipeline with Dent Defects
10
作者 HOU Fu-heng JIA Lu-sheng +3 位作者 CHEN Yan-fei ZHANG Qi ZHONG Rong-feng WANG Chun-sha 《China Ocean Engineering》 SCIE EI CSCD 2024年第4期636-647,共12页
A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression... A dent is a common type of defects for submarine pipeline.For submarine pipelines,high hydrostatic pressure and internal pressure are the main loads.Once pipelines bend due to complex subsea conditions,the compression strain capacity may be exceeded.Research into the local buckling failure and accurate prediction of the compressive strain capacity are important.A finite element model of a pipeline with a dent is established.Local buckling failure under a bending moment is investigated,and the compressive strain capacity is calculated.The effects of different parameters on pipeline local buckling are analyzed.The results show that the dent depth,external pressure and internal pressure lead to different local buckling failure modes of the pipeline.A higher internal pressure indicates a larger compressive strain capacity,and the opposite is true for external pressure.When the ratio of external pressure to collapse pressure of intact pipeline is greater than 0.1,the deeper the dent,the greater the compressive strain capacity of the pipeline.And as the ratio is less than 0.1,the opposite is true.On the basis of these results,a regression equation for predicting the compressive strain capacity of a dented submarine pipeline is proposed,which can be referred to during the integrity assessment of a submarine pipeline. 展开更多
关键词 submarine pipeline dent defect bending load local buckling compressive strain capacity
下载PDF
Activation Distance and Capacity Analysis for Ambient Backscatter Communications with Sensitivity Constraint and Beamforming
11
作者 Mu Yunping Fan Dian +2 位作者 Wang Gongpu Xu Yongjun Kuang Lei 《China Communications》 SCIE CSCD 2024年第11期257-266,共10页
Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluat... Circuit sensitivity of sensors or tags without battery is one practical constraint for ambient backscatter communication systems.This letter considers using beamforming to reduce the sensitivity constraint and evaluates the corresponding performance in terms of the tag activation distance and the system capacity.Specifically,we derive the activation probabilities of the tag in the case of single-antenna and multi-antenna transmitters.Besides,we obtain the capacity expressions for the ambient backscatter communication system with beamforming and illustrate the power allocation that maximizes the system capacity when the tag is activated.Finally,simulation results are provided to corroborate our proposed studies. 展开更多
关键词 activation distance ambient backscatter communications beamforming channel capacity power allocation sensitivity
下载PDF
MOF-derived porous graphitic carbon with optimized plateau capacity and rate capability for high performance lithium-ion capacitors
12
作者 Ge Chu Chaohui Wang +2 位作者 Zhewei Yang Lin Qin Xin Fan 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第2期395-404,共10页
The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived fro... The development of anode materials with high rate capability and long charge-discharge plateau is the key to improve per-formance of lithium-ion capacitors(LICs).Herein,the porous graphitic carbon(PGC-1300)derived from a new triply interpenetrated co-balt metal-organic framework(Co-MOF)was prepared through the facile and robust carbonization at 1300°C and washing by HCl solu-tion.The as-prepared PGC-1300 featured an optimized graphitization degree and porous framework,which not only contributes to high plateau capacity(105.0 mAh·g^(−1)below 0.2 V at 0.05 A·g^(−1)),but also supplies more convenient pathways for ions and increases the rate capability(128.5 mAh·g^(−1)at 3.2 A·g^(−1)).According to the kinetics analyses,it can be found that diffusion regulated surface induced capa-citive process and Li-ions intercalation process are coexisted for lithium-ion storage.Additionally,LIC PGC-1300//AC constructed with pre-lithiated PGC-1300 anode and activated carbon(AC)cathode exhibited an increased energy density of 102.8 Wh·kg^(−1),a power dens-ity of 6017.1 W·kg^(−1),together with the excellent cyclic stability(91.6%retention after 10000 cycles at 1.0 A·g^(−1)). 展开更多
关键词 metal-organic framework porous graphitic carbon optimized plateau capacity kinetic analysis lithium-ion capacitor
下载PDF
A hierarchical enhanced data-driven battery pack capacity estimation framework for real-world operating conditions with fewer labeled data
13
作者 Sijia Yang Caiping Zhang +4 位作者 Haoze Chen Jinyu Wang Dinghong Chen Linjing Zhang Weige Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期417-432,共16页
Battery pack capacity estimation under real-world operating conditions is important for battery performance optimization and health management,contributing to the reliability and longevity of batterypowered systems.Ho... Battery pack capacity estimation under real-world operating conditions is important for battery performance optimization and health management,contributing to the reliability and longevity of batterypowered systems.However,complex operating conditions,coupling cell-to-cell inconsistency,and limited labeled data pose great challenges to accurate and robust battery pack capacity estimation.To address these issues,this paper proposes a hierarchical data-driven framework aimed at enhancing the training of machine learning models with fewer labeled data.Unlike traditional data-driven methods that lack interpretability,the hierarchical data-driven framework unveils the“mechanism”of the black box inside the data-driven framework by splitting the final estimation target into cell-level and pack-level intermediate targets.A generalized feature matrix is devised without requiring all cell voltages,significantly reducing the computational cost and memory resources.The generated intermediate target labels and the corresponding features are hierarchically employed to enhance the training of two machine learning models,effectively alleviating the difficulty of learning the relationship from all features due to fewer labeled data and addressing the dilemma of requiring extensive labeled data for accurate estimation.Using only 10%of degradation data,the proposed framework outperforms the state-of-the-art battery pack capacity estimation methods,achieving mean absolute percentage errors of 0.608%,0.601%,and 1.128%for three battery packs whose degradation load profiles represent real-world operating conditions.Its high accuracy,adaptability,and robustness indicate the potential in different application scenarios,which is promising for reducing laborious and expensive aging experiments at the pack level and facilitating the development of battery technology. 展开更多
关键词 Lithium-ion battery pack capacity estimation Label generation Multi-machine learning model Real-world operating
下载PDF
Effect of speed humps on instantaneous traffic emissions in a microscopic model with limited deceleration capacity
14
作者 胡宇晨 李启朗 +2 位作者 刘军 王君霞 汪秉宏 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第6期413-420,共8页
As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the clas... As a common transportation facility, speed humps can control the speed of vehicles on special road sections to reduce traffic risks. At the same time, they also cause instantaneous traffic emissions. Based on the classic instantaneous traffic emission model and the limited deceleration capacity microscopic traffic flow model with slow-to-start rules, this paper has investigated the impact of speed humps on traffic flow and the instantaneous emissions of vehicle pollutants in a single lane situation. The numerical simulation results have shown that speed humps have significant effects on traffic flow and traffic emissions. In a free-flow region, the increase of speed humps leads to the continuous rise of CO_(2), NO_(X) and PM emissions. Within some density ranges, one finds that these pollutant emissions can evolve into some higher values under some random seeds. Under other random seeds, they can evolve into some lower values. In a wide moving jam region, the emission values of these pollutants sometimes appear as continuous or intermittent phenomenon. Compared to the refined Na Sch model, the present model has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher volatile organic components(VOC) emissions. Compared to the limited deceleration capacity model without slow-to-start rules, the present model also has lower instantaneous emissions such as CO_(2), NO_(X) and PM and higher VOC emissions in a wide moving jam region. These results can also be confirmed or explained by the statistical values of vehicle velocity and acceleration. 展开更多
关键词 traffic emissions speed humps slow-to-start rules deceleration capacity
下载PDF
Bearing capacity of circular footings on multi-layered sand-waste tire shreds reinforced with geogrids
15
作者 Mahmoud Ghazavi Ehsan Khosroshahi 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第3期1085-1094,共10页
The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires ar... The presence of waste tires poses an environmental challenge as they occupy a significant amount of land and are expensive to dispose in landfills.However,reusing waste tires can address this issue when waste tires are used in geotechnical applications.To determine the viability of this approach,laboratoryscale tests were conducted to investigate load-bearing capacity of circular footings on sand-tire shred(STS)mixtures with shredded waste tire contents of 5%e15%by weight and three different widths of shreds.The investigation focused on analyzing the thickness of layers composed of STS mixtures,the soil cap,and the impact of geogrids on bearing capacity.The results indicate that a specific mixture of sand and tire shreds provides the highest footing-bearing capacity.In addition,the optimal shred content and size were found to be 10%by weight and 2 cm×10 cm,respectively.Furthermore,for a given tire shred width,a particular length provides the largest bearing capacity.The results agree well with that of previous research conducted by the first author and his colleagues in direct shear and California bearing ratio(CBR)tests.The primary finding of this research is that the use of two-layered STS mixtures reinforced by geogrids significantly enhances the bearing capacity. 展开更多
关键词 GEOGRID SAND Waste tire shred Bearing capacity Waste tire shred optimization Tire shred aspect ratio
下载PDF
Effective Capacity of URLLC over Parallel Fading Channels with Imperfect Channel State Information
16
作者 Peng Hongsen Tao Meixia 《China Communications》 SCIE CSCD 2024年第5期45-63,共19页
This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state... This paper investigates the effective capacity of a point-to-point ultra-reliable low latency communication(URLLC)transmission over multiple parallel sub-channels at finite blocklength(FBL)with imperfect channel state information(CSI).Based on reasonable assumptions and approximations,we derive the effective capacity as a function of the pilot length,decoding error probability,transmit power and the sub-channel number.Then we reveal significant impact of the above parameters on the effective capacity.A closed-form lower bound of the effective capacity is derived and an alternating optimization based algorithm is proposed to find the optimal pilot length and decoding error probability.Simulation results validate our theoretical analysis and show that the closedform lower bound is very tight.In addition,through the simulations of the optimized effective capacity,insights for pilot length and decoding error probability optimization are provided to evaluate the optimal parameters in realistic systems. 展开更多
关键词 effective capacity finite blocklength regime imperfect CSI parallel fading channels URLLC
下载PDF
Investigations of methane adsorption characteristics on marine-continental transitional shales and gas storage capacity models considering pore evolution
17
作者 Chen-Gang Lu Xian-Ming Xiao +4 位作者 Zhen-Qian Xue Zhang-Xin Chen Yin-Tao Dong Yue Feng Gang Li 《Petroleum Science》 SCIE EI CAS CSCD 2024年第4期2273-2286,共14页
Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marin... Methane adsorption is a critical assessment of the gas storage capacity(GSC)of shales with geological conditions.Although the related research of marine shales has been well-illustrated,the methane adsorption of marine-continental transitional(MCT)shales is still ambiguous.In this study,a method of combining experimental data with analytical models was used to investigate the methane adsorption characteristics and GSC of MCT shales collected from the Qinshui Basin,China.The Ono-Kondo model was used to fit the adsorption data to obtain the adsorption parameters.Subsequently,the geological model of GSC based on pore evolution was constructed using a representative shale sample with a total organic carbon(TOC)content of 1.71%,and the effects of reservoir pressure coefficient and water saturation on GSC were explored.In experimental results,compared to the composition of the MCT shale,the pore structure dominates the methane adsorption,and meanwhile,the maturity mainly governs the pore structure.Besides,maturity in the middle-eastern region of the Qinshui Basin shows a strong positive correlation with burial depth.The two parameters,micropore pore volume and non-micropore surface area,induce a good fit for the adsorption capacity data of the shale.In simulation results,the depth,pressure coefficient,and water saturation of the shale all affect the GSC.It demonstrates a promising shale gas potential of the MCT shale in a deeper block,especially with low water saturation.Specifically,the economic feasibility of shale gas could be a major consideration for the shale with a depth of<800 m and/or water saturation>60%in the Yushe-Wuxiang area.This study provides a valuable reference for the reservoir evaluation and favorable block search of MCT shale gas. 展开更多
关键词 High-pressure methane adsorption Marine-continental transitional shale gas Ono-Kondo model Adsorption thermodynamics Gas storage capacity model
下载PDF
Carrying Capacity and Coupling Coordination of Water and Land Resources Systems in Arid and Semi-arid Areas: A Case Study of Yulin City, China
18
作者 ZHANG Qianxi CAO Zhi +1 位作者 WANG Yongsheng HUANG Yijia 《Chinese Geographical Science》 SCIE CSCD 2024年第5期931-950,共20页
Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as... Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources. 展开更多
关键词 water and land resources systems carrying capacity coupling coordination human-earth system sustainable development Yulin City China
下载PDF
Atomic Ni directional-substitution on ZnIn_(2)S_(4) nanosheet to achieve the equilibrium of elevated redox capacity and efficient carrier-kinetics performance in photocatalysis
19
作者 Haibin Huang Guiyang Yu +5 位作者 Xingze Zhao Boce Cui Jinshi Yu Chenyang Zhao Heyuan Liu Xiyou Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第1期272-281,I0007,共11页
It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced ... It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion. 展开更多
关键词 ZnIn_(2)S_(4) SUBSTITUTION Carrier kinetics Redox capacity PHOTOCATALYSIS
下载PDF
Three-dimensional limit variation analysis on the ultimate pullout capacity of the anchor cables based on the Hoek-Brown failure criterion
20
作者 ZUO Shi ZHAO Lianheng HU Shihong 《Journal of Mountain Science》 SCIE CSCD 2024年第3期1036-1047,共12页
Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combinat... Only simplified two-dimensional model and a single failure mode are adopted to calculate the ultimate pullout capacity(UPC)of anchor cables in most previous research.This study focuses on a more comprehensive combination failure mode that consists of bond failure of an anchorage body and failure of an anchored rock mass.The three-dimensional ultimate pullout capacity of the anchor cables is calculated based on the Hoek-Brown failure criterion and variation analysis method.The numerical solution for the curvilinear function in fracture plane is obtained based on the finite difference theory,which more accurately reflects the failure state of the anchor cable,as opposed to that being assumed in advance.The results reveal that relying solely on a single failure mode for UPC calculations has limitations,as changes in parameter values not only directly impact the UPC value but also can alter the failure model and thus the calculation method. 展开更多
关键词 Anchor cable Ultimate pullout capacity(UPC) Failure model Variation analysis Hoek-Brown failure criterion
下载PDF
上一页 1 2 172 下一页 到第
使用帮助 返回顶部