期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
A Cauchy integral formula for(p,q)-monogenic functions withα-weight
1
作者 GAO Long DU Xiao-jing +1 位作者 LIU Yue XIE Yong-hong 《Applied Mathematics(A Journal of Chinese Universities)》 SCIE CSCD 2024年第3期545-553,共9页
Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-... Firstly,some properties for(p,q)-monogenic functions withα-weight in Clifford analysis are given.Then,the Cauchy-Pompeiu formula is proved.Finally,the Cauchy integral formula and the Cauchy integral theorem for(p,q)-monogenic functions withα-weight are given. 展开更多
关键词 (p q)-monogenic functions with-weight cauchy-Pompeiu formula cauchy integral formula cauchy integral theorem
下载PDF
ON THE ERROR OF QUADRATURE FORMULAE FOR CAUCHY PRINCIPAL VALUE INTEGRALS BASED ON PIECEWISE INTERPOLATION
2
作者 P. Khler 《Analysis in Theory and Applications》 1997年第3期58-69,共12页
We consider the computation of the. Cauchy principal value mtegral by quadrature formulaeof compound type, which are obtained by replacing f by a piecewise defined function F,[;]. The behaviour of the constants m the ... We consider the computation of the. Cauchy principal value mtegral by quadrature formulaeof compound type, which are obtained by replacing f by a piecewise defined function F,[;]. The behaviour of the constants m the estimates where quadrature error) is determined for fixed i and which means that not only the. order, but also the coefficient of the main term of is determined. The behaviour of these error constants is compared -with the corresponding ones obtained for the. method of subtraction of the singularity. As it turns out, these error constants have, in general, the same asymptotic behaviour. 展开更多
关键词 ON THE ERROR OF QUADRATURE formulaE FOR cauchy PRINCIPAL VALUE integralS BASED ON PIECEWISE INTERPOLATION
下载PDF
On the generalized Cauchy function and new Conjecture on its exterior singularities 被引量:1
3
作者 Theodore Yaotsu Wu 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2011年第2期135-151,共17页
This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡ ■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z =... This article studies on Cauchy’s function f (z) and its integral, (2πi)J[ f (z)] ≡ ■C f (t)dt/(t z) taken along a closed simple contour C, in regard to their comprehensive properties over the entire z = x + iy plane consisted of the simply connected open domain D + bounded by C and the open domain D outside C. (1) With f (z) assumed to be C n (n ∞-times continuously differentiable) z ∈ D + and in a neighborhood of C, f (z) and its derivatives f (n) (z) are proved uniformly continuous in the closed domain D + = [D + + C]. (2) Cauchy’s integral formulas and their derivatives z ∈ D + (or z ∈ D ) are proved to converge uniformly in D + (or in D = [D +C]), respectively, thereby rendering the integral formulas valid over the entire z-plane. (3) The same claims (as for f (z) and J[ f (z)]) are shown extended to hold for the complement function F(z), defined to be C n z ∈ D and about C. (4) The uniform convergence theorems for f (z) and F(z) shown for arbitrary contour C are adapted to find special domains in the upper or lower half z-planes and those inside and outside the unit circle |z| = 1 such that the four general- ized Hilbert-type integral transforms are proved. (5) Further, the singularity distribution of f (z) in D is elucidated by considering the direct problem exemplified with several typ- ical singularities prescribed in D . (6) A comparative study is made between generalized integral formulas and Plemelj’s formulas on their differing basic properties. (7) Physical sig- nificances of these formulas are illustrated with applicationsto nonlinear airfoil theory. (8) Finally, an unsolved inverse problem to determine all the singularities of Cauchy function f (z) in domain D , based on the continuous numerical value of f (z) z ∈ D + = [D + + C], is presented for resolution as a conjecture. 展开更多
关键词 Uniform continuity of cauchy’s function · Uni- form convergence of cauchy’s integral formula · Generalized Hilbert-type integral transforms · Functional properties and singularity distributions
下载PDF
An Integral Representation for the Weighted Geometric Mean and Its Applications
4
作者 Feng QI Xiao Jing ZHANG Wen Hui LI 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2014年第1期61-68,共8页
By virtue of Cauchy’s integral formula in the theory of complex functions,the authors establish an integral representation for the weighted geometric mean,apply this newly established integral representation to show ... By virtue of Cauchy’s integral formula in the theory of complex functions,the authors establish an integral representation for the weighted geometric mean,apply this newly established integral representation to show that the weighted geometric mean is a complete Bernstein function,and find a new proof of the well-known weighted arithmetic-geometric mean inequality. 展开更多
关键词 integral representation cauchy's integral formula arithmetic mean geometric mean weighted arithmetic-geometric mean inequality complete Bernstein function new proof application
原文传递
Bicomplex Hermitian Clifford analysis 被引量:2
5
作者 Bin CHEN Guangbin REN Haiyan WANG 《Frontiers of Mathematics in China》 SCIE CSCD 2015年第3期523-546,共24页
Complex Hermitian Clifford analysis emerged recently as a refinement of the theory of several complex variables, while at the same time, the theory of bicomplex numbers motivated by the bicomplex version of quantum me... Complex Hermitian Clifford analysis emerged recently as a refinement of the theory of several complex variables, while at the same time, the theory of bicomplex numbers motivated by the bicomplex version of quantum mechanics is also under full development. This stimulates us to combine the Hermitian Clifford analysis with the theory of bicomplex number so as to set up the theory of bicomplex Hermitian Clifford analysis. In parallel with the Euclidean Clifford analysis, the bicomplex Hermitian Clifford analysis is centered around the bicomplex Hermitian Dirac operator D: C^∞(R^4n W4n) →4 C^∞(R^4n, W4n), where W4n is the tensor product of three algebras, i.e., the hyperbolic quaternion B, the bicomplex number B, and the Clifford algebra R0,4n. The operator D is a square root of the Laplacian in R^4n, introduced by the formula D = ∑j=0^3=0 Kjδzj with Kj being the basis of B, and δzj denoting the twisted Hermitian Dirac operators in the bicomplex Clifford algebra B×R0,4n whose definition involves a delicate construction of the bicomplex Witt basis. The introduction of the operator D can also overturn the prevailing opinion in the Hermitian Clifford analysis in the complex or quaternionic setting that the complex or quaternionic Hermitiean monogenic functions are described by a system of equations instead of by a single equation like classical monogenic functions which are null solutions of Dirac operator. In contrast to the Hermitian Clifford analysis in quaternionic setting, the Poisson brackets of the twisted real Clifford vectors do not vanish in general in the bicomplex setting. For the operator D, we establish the Cauchy integral formula, which generalizes the Martinelli-Bochner formula in the theory of several complex variables. 展开更多
关键词 Bicomplex numbers Hermitian Clifford analysis Witt basis cauchy integral formula
原文传递
An application of the Riemann-Roch theorem
6
作者 WANG ShiKun~1 ZHANG HuiPing~(2+) 1 KLMM and IAM AMSS +6 位作者 Chinese Academy of Sciences Beijing 100080 China 2 School of Information Renmin University of China Beijing 100872 China 《Science China Mathematics》 SCIE 2008年第4期765-772,共8页
Applying the Riemann-Roch theorem,we calculate the dimension of a kind of mero- morphicλ-differentials’ space on compact Riemann surfaces.And we also construct a basis of theλ-differentials’ space.As the main resu... Applying the Riemann-Roch theorem,we calculate the dimension of a kind of mero- morphicλ-differentials’ space on compact Riemann surfaces.And we also construct a basis of theλ-differentials’ space.As the main result,the Cauchy type of integral formula on compact Riemann surfaces is established. 展开更多
关键词 Riemann-Roch theorem λ-differential annulus domain cauchy integral formula 14C40
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部