Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in...Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in thickness. The Pt-Pd octahedral nanoframes were obtained through site-selected deposition of Pt atoms onto the edge sites of Pd octahedral seeds, followed by selective removal of the Pd octahedral cores via chemical etching. Due to that a combination of three-dimensional opens geometrical structure and Pt-skin surface compositional structure, the Pt-Pd octahedral nanoframes/C catalyst shows a mass activity of 1.15 A/mgPt towards oxygen reduction reaction, 5.8 times enhancement in mass activity relative to commercial Pt/C catalyst (0.20 A/mgPt). Moreover, even after 8000 cycles of accelerated durability test, the Pt-Pd octahedral nanoframes/C catalyst still exhibits a mass activity which is more than three times higher than that of pristine Pt/C catalyst.展开更多
The solid state photochemical reaction of nitrobenzaldehyde with indole was investigated. Seven hey products were identified by IR, MS,^(1)H HMR and elemental analysis.
Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has develop...Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has developed a fin-less control technology called Stagnation Pressure Reaction Control(SPRC)that takes stagnation pressure air and directs it sideways to control non-spinning projectiles.In a previous study,this technology was demonstrated at Mach 2 wind-tunnel conditions to achieve up to 1.5°controllable angle of incidence for a non-spinning,aerodynamically unstable projectile-like test object.In an operational scenario,the decelerating projectile will experience a decline in control force while the simultaneous forward shift of the center of pressure increases the need for control force.Furthermore,angles of incidence exceeding 1.5°will be experienced under realistic flight conditions,especially against maneuvering targets.This work addresses these challenges and presents an operational feasibility study for a practical application of SPRC in a non-spinning mid-caliber gun-launched projectile,using experiment data on control latency and force of the earlier study.It illustrates the combined effect of the control-and stability dynamics and underlines the potential of an SPRC projectile as a precisionoperation ammunition.This research revealed that SPRC technology can stabilize and control the hypothesized projectile in a direct fire scenario against stationary and maneuvering targets.展开更多
A novel hyperbranched poly(phenylene oxide) (HPPO) with phenolic terminal groups was prepared from 4-bromo-4',4"-dihydroxytriphenylmethane as AB2 monomer in dimethylsulfoxide (DMSO) via a modified Ullmann reac...A novel hyperbranched poly(phenylene oxide) (HPPO) with phenolic terminal groups was prepared from 4-bromo-4',4"-dihydroxytriphenylmethane as AB2 monomer in dimethylsulfoxide (DMSO) via a modified Ullmann reaction. The molecular weight and polydispersity (PD) of the resulting polymers increased with increasing reaction time. In the presence of core molecules (bisphenol A and 1,3,5-trihydroxybenzene), which have the similar molecular backbones to the reactive monomer, the molecular weight could be controlled by varying the core-to-monomer ratio. Incorporation of a very small amount of core molecules could lead to a higher molecular weight as compared with that without the addition of core molecules. However, when the core content reached certain extent, the molecular weight would decrease with the further increase in the core content. A new similar behavior of control over the PD was also obtained. The resulting polymers were characterized by ^1H-NMR, ^13C-NMR, FT-IR, and GPC.展开更多
This paper studies the reentry attitude tracking control problem for hypersonic vehicles(HSV)equipped with reaction control systems(RCS)and aerodynamic surfaces.The attitude dynamical model of the hypersonic vehicles ...This paper studies the reentry attitude tracking control problem for hypersonic vehicles(HSV)equipped with reaction control systems(RCS)and aerodynamic surfaces.The attitude dynamical model of the hypersonic vehicles is established,and the simplified longitudinal and lateral dynamic models are obtained,respectively.Then,the compound control allocation strategy is provided and the model predictive controller is designed for the pitch channel.Furthermore,considering the complicated jet interaction effect of HSV during RCS is working,an improved model predictive control approach is presented by introducing the online parameter estimation of the jet interaction coefficient for dealing with the uncertainty and disturbance.Moreover,considering the strong coupling effect between the yaw channel and roll channel,a coupled model predictive controller is designed by introducing the feedback of sideslip angle into the roll control channel to eliminate the coupling effect.Finally,the comparison simulations using the classical control method,MPC and IMPC approach are given to demonstrate the effectiveness and efficiency of the presented IMPC scheme.展开更多
Photoelectrochemical(PEC)H_(2)O_(2)production through water oxidation reaction(WOR)is a promising strategy,however,designing highly efficient and selective photoanode materials remains challenging due to competitive r...Photoelectrochemical(PEC)H_(2)O_(2)production through water oxidation reaction(WOR)is a promising strategy,however,designing highly efficient and selective photoanode materials remains challenging due to competitive reaction pathways.Here,for highly enhanced PEC H_(2)O_(2)production,we present a conformal amorphous titanyl phosphate(a-TP)overlayer on nanoparticulate TiO_(2)surfaces,achieved via lysozyme-molded in-situ surface reforming.The a-TP overlayer modulates surface adsorption energies for reaction intermediates,favoring WOR for H_(2)O_(2)production over the competing O_(2)evolution reaction.Our density functional theory calculations reveal that a-TP/TiO_(2)exhibits a substantial energy uphill for the O·*formation pathway,which disfavors O_(2)evolution but promotes H_(2)O_(2)production.Additionally,the a-TP overlayer strengthens the built-in electric field,resulting in favorable kinetics.Consequently,a-TP/TiO_(2)exhibits 3.7-fold higher Faraday efficiency(FE)of 63%at 1.76 V vs.reversible hydrogen electrode(RHE)under 1 sun illumination,compared to bare TiO_(2)(17%),representing the highest FE among TiO_(2)-based WOR H_(2)O_(2)production systems.Employing the a-TP overlayer constitutes a promising strategy for controlling reaction pathways and achieving efficient solar-to-chemical energy conversion.展开更多
A robust controller for bank to turn(BTT) missiles with aerodynamic fins and reaction jet control system(RCS) is developed based on nonlinear control dynamic models comprising couplings and aerodynamic uncertainties. ...A robust controller for bank to turn(BTT) missiles with aerodynamic fins and reaction jet control system(RCS) is developed based on nonlinear control dynamic models comprising couplings and aerodynamic uncertainties. The fixed time convergence theory is incorporated with the sliding mode control technique to ensure that the system tracks the desired command within uniform bounded time under different initial conditions. Unlike previous terminal sliding mode approaches, the bound of settling time is independent of the initial state, which means performance metrics like convergence rate can be predicted beforehand. To reduce the burden of control design in terms of robustness, extended state observer(ESO) is introduced for uncertainty estimation with the output substituted into the controller as feedforward compensation. Cascade control structure is employed with the proposed control law and therein the compound control signal is obtained.Afterwards, control inputs for two kinds of actuators are allocated on the basis of their inherent characteristics. Finally, a number of simulations are carried out and demonstrate the effectiveness of the designed controller.展开更多
Reaction control system(RCS) is a powerful and efficient actuator for space vehicles attitude control, which is typically characterized as a pulsed unilateral effector only with two states(off/on). Along with inevitab...Reaction control system(RCS) is a powerful and efficient actuator for space vehicles attitude control, which is typically characterized as a pulsed unilateral effector only with two states(off/on). Along with inevitable internal uncertainties and external disturbances in practice, this inherent nonlinear character always hinders space vehicles autopilot from pursuing precise tracking performance. Compared to most of pre-existing methodologies that passively suppress the uncertainties and disturbances, a design based on predictive functional control(PFC) and generalized extended state observer(GESO) is firstly proposed for three-axis RCS control system to actively reject that with no requirement for additional fuel consumption. To obtain a high fidelity predictive model on which the performance of PFC greatly depends, the nonlinear coupling multiple-input multiple-output(MIMO) flight dynamics model is parameterized as a state-dependent coefficient form. And based on that, a MIMO PFC algorithm in state space domain for a plant of arbitrary orders is deduced in this paper.The internal uncertainties and external disturbances are lumped as a total disturbance, which is estimated and cancelled timely to further enhance the robustness. The continuous control command synthesised by above controller-rejector tandem is finally modulated by pulse width pulse frequency modulator(PWPF) to on-off signals to meet RCS requirement. The robustness and feasibility of the proposed design are validated by a series of performance comparison simulations with some prominent methods in the presence of significant perturbations and disturbances, as well as measurement noise.展开更多
The selective catalytic hydrogenation of carboxylic acids is an important process for alcohol production,while efficient heterogeneous catalyst systems are still being explored.Here,we report the selective hydrogenati...The selective catalytic hydrogenation of carboxylic acids is an important process for alcohol production,while efficient heterogeneous catalyst systems are still being explored.Here,we report the selective hydrogenation of carboxylic acids using earth‐abundant cobalt oxides through a reaction‐controlled catalysis process.The further reaction of the alcohols is completely hindered by the presence of carboxylic acids in the reaction system.The partial reduction of cobalt oxides by hydrogen at designated temperatures can dramatically enhance the catalytic activity of pristine samples.A wide range of carboxylic acids with a variety of functional groups can be converted to the corresponding alcohols at a yield level applicable to large‐scale production.Cobalt monoxide was established as the preferred active phase for the selective hydrogenation of carboxylic acids.展开更多
Water hammer pressure transient produces large dynamic forces which can damage the pipes and other assemblies in the feed line of a reaction control system(RCS).It has led to the failure of pressure transducers monito...Water hammer pressure transient produces large dynamic forces which can damage the pipes and other assemblies in the feed line of a reaction control system(RCS).It has led to the failure of pressure transducers monitoring the manifold pressure in the feed line of RCS.Therefore,water hammer studies have been carried out to understand its effect in feed line.Feedline system has been simplified to develop a mathematical model and experiments have been carried out at extensive levels.The mathematical model was developed considering pipe of uniform c/s and moving liquid-gas interface.The experimental studies have been done using water as working medium instead of actual propellant.The studies showed that rate of pressurization have a very critical role on the water hammer amplitude.Sensitivity studies have been also carried out to study the effect of density,friction and initial liquid column length on water hammer amplitude.展开更多
This paper presents the reaction torque based satellite base reactionless control or base disturbance minimization of a redundant free-floating space robot. This subject is of vital importance in the study of the free...This paper presents the reaction torque based satellite base reactionless control or base disturbance minimization of a redundant free-floating space robot. This subject is of vital importance in the study of the free-floating space robot because the base disturbance minimization will result in less energy consumption and prolonged control application. The analytical formulation of the reaction torque is derived in this article, and the reaction torque control can achieve reactionless control and satellite base disturbance minimization. Furthermore, we derive the reaction torque based control of the space robot for base disturbance minimization from both the non-strict task priority and strict task priority control strategy. The dynamics singularity in the proposed algorithm is avoided in this paper. Besides, a real time simulation system of the space robot under Linux/real time application interface(RTAI) is developed to verify and test the feasibility and reliability of the method. The experimental results demonstrate the feasibility of online reaction torque control of the redundant free-floating space robot.展开更多
The fluorescence quenching of naphthalene (2)and 1, 3-di(α-naphthyl)propane (1) by RNA and bases in methanol-water (v:v=1:1) binary solvents in the presence or absence of cyclodex- trin (CD) has been investigated. Th...The fluorescence quenching of naphthalene (2)and 1, 3-di(α-naphthyl)propane (1) by RNA and bases in methanol-water (v:v=1:1) binary solvents in the presence or absence of cyclodex- trin (CD) has been investigated. The results show that both the monomer and excimer fluorescence of 1 can be quenched by these quenchers. The quenching and rates depend on the quencher and tem- perature. It is shown that there is a critical temperature (Tc) for each quencher. Below Tc, the excimer fluorescence spectra show vibrational structures and the Stern-Volmer plots are straight lines (for ura- cil and cytosine); while above the Tc, the vibrational structures disappear and the Stern-Volmer plots deviate from linearity and curve upward. The former is a static process; while the latter is a mixture of both static and dynamic processes. The addition of α-CD has no effect on the fine structure, whereas β-CD prevents the appearance of this structure efficiently. The quenching rates both for the monomer and excimer of 1 by bases except cytosine in the presence of β-CD at ambient temperature are not changed; the quenching of fluorescence of 1 by RNA in the presence of β-CD, however, is hindered. Time-resolved fluorescence study shows that the excimer fine structures appear from the zero time. The intensity of fine structures depend on the fraction of water (φ) in binary solvents, and it is independent of the pH value of the solvents. It is suggested that bases and RNA induced aggregates (perhaps microcrystal) are formed, in which the motion of molecules 1 is limited.展开更多
The activity and hydrothermal stability of the Rh/Ce_(x)Zr_(1-x)O_(2)(x=0,0.05,0.3,0.5) model three-way catalysts for gasoline vehicle emissions control were investigated in this work.Among the Rh/Ce_(x)Zr_(1-x)O_(2) ...The activity and hydrothermal stability of the Rh/Ce_(x)Zr_(1-x)O_(2)(x=0,0.05,0.3,0.5) model three-way catalysts for gasoline vehicle emissions control were investigated in this work.Among the Rh/Ce_(x)Zr_(1-x)O_(2) samples with different Ce/Zr ratios,the Rh/ZrO_(2) sample exhibits a significantly better activity and hydrothermal stability than the rest of the samples.The impacts of having more Ce components in the Rh/Ce_(x)Zr_(1-x)O_(2) catalysts are associated with the strong Rh-O-Ce interaction that tends to over stabilize the rhodium species.A significant amount of such rhodium atoms can be found in the bulk of the support oxides after a hydrothermal aging at 1050℃ with 10% H_(2)O in air for 12 h.Differently,the sintering of rhodium on the surface of Rh/ZrO_(2) catalysts is the main reason for the catalyst deactivation during the hydrothermal aging.These findings provide an example where high dispersion of supported metal induced by strong metal-support interactions does not necessarily lead to high catalytic activity.展开更多
This paper proposes a fault-tolerant strategy for hypersonic reentry vehicles with mixed aerodynamic surfaces and reaction control systems(RCS) under external disturbances and subject to actuator faults.Aerodynamic ...This paper proposes a fault-tolerant strategy for hypersonic reentry vehicles with mixed aerodynamic surfaces and reaction control systems(RCS) under external disturbances and subject to actuator faults.Aerodynamic surfaces are treated as the primary actuator in normal situations,and they are driven by a continuous quadratic programming(QP) allocator to generate torque commanded by a nonlinear adaptive feedback control law.When aerodynamic surfaces encounter faults,they may not be able to provide sufficient torque as commanded,and RCS jets are activated to augment the aerodynamic surfaces to compensate for insufficient torque.Partial loss of effectiveness and stuck faults are considered in this paper,and observers are designed to detect and identify the faults.Based on the fault identification results,an RCS control allocator using integer linear programming(ILP) techniques is designed to determine the optimal combination of activated RCS jets.By treating the RCS control allocator as a quantization element,closed-loop stability with both continuous and quantized inputs is analyzed.Simulation results verify the effectiveness of the proposed method.展开更多
A2B2O7 pyrochlore is a kind of important functional materials for different purposes,which has been investigated extensively by crystallographers and material scientists.However,the catalytic chemistry of this type of...A2B2O7 pyrochlore is a kind of important functional materials for different purposes,which has been investigated extensively by crystallographers and material scientists.However,the catalytic chemistry of this type of special compounds has rarely been documented,though a few researchers have tried to synthesize some pyrochlore compounds with different chemical compositions for a variety of green energy production and air pollution control reactions in the history.With the expectation to help catalysis scientists to get better acquaintance with,and gain deeper understanding on this type of compounds as heterogeneous catalysts,the major publications over the past several decades have been screened and reviewed in this paper,based also on our own experience of studying on this type of catalytic materials.The crystalline phase transformations of the compounds with the change of the A and B site cations,the phase change’s influences on the surface and bulk properties,and their subsequent impact on the catalytic performance for different reactions have been summarized.Furthermore,the future work which needs to be performed to perceive in depth this kind of important materials as catalysts has been proposed and suggested.We trust that this short review contains valuable information,which will provide great help for people to get better cognition for A2 B2 O7 pyrochlore compounds,and assist them to develop better catalysts for various reactions.展开更多
In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu-Cu2O-CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane i...In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu-Cu2O-CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane industry were treated with acid followed by reduction with metallic iron powder. The obtained copper powder was then subjected to controlled oxidation in air at different temperatures, followed by ball milling. The orthogonal array approach was applied to optimize this process, and the stirring speed and pH were found to significantly affect the leaching ratio and copper yield, respectively. When used for the Rochow process, the optimized ternary Cu-Cu2O-CuO catalyst greatly enhanced the dimethyldichlorosilane selectivity and Si conversion compared with Cu-Cu2O-CuO catalysts prepared without ball milling, bare Cu catalysts, and Cu-Cu2O-CuO catalysts with different compositions. This could be attributed to their small particle size and the strong synergistic effect among the multiple components in the catalyst with the optimized composition.展开更多
基金This work is supported by Collaborative Innovation Center of Suzhou Nano Science and Technology, Ministry of Science and Technology of China (No.2014CB932700), the National Natural Science Foundation of China (No.21603208, No.21573206, and No.51371164), the China Postdoctoral Science Foundation (No.2015M580536, No.2016T90569), Key Research Program of Frontier Sciences, CAS (QYZDBSSW- SLH017), Strategic Priority Research Program B of the CAS (No.XDB01020000), Hefei Science Center, CAS (No.2015HSC-UP016), and Fundamental Research Funds for the Central Universities.
文摘Pt-based nanoframes represent a class of promising catalysts towards oxygen reduction reaction. Herein, we, for the first time, successfully prepared Pt-Pd octahedral nanoframes with ultrathin ridges less than 2 nm in thickness. The Pt-Pd octahedral nanoframes were obtained through site-selected deposition of Pt atoms onto the edge sites of Pd octahedral seeds, followed by selective removal of the Pd octahedral cores via chemical etching. Due to that a combination of three-dimensional opens geometrical structure and Pt-skin surface compositional structure, the Pt-Pd octahedral nanoframes/C catalyst shows a mass activity of 1.15 A/mgPt towards oxygen reduction reaction, 5.8 times enhancement in mass activity relative to commercial Pt/C catalyst (0.20 A/mgPt). Moreover, even after 8000 cycles of accelerated durability test, the Pt-Pd octahedral nanoframes/C catalyst still exhibits a mass activity which is more than three times higher than that of pristine Pt/C catalyst.
文摘The solid state photochemical reaction of nitrobenzaldehyde with indole was investigated. Seven hey products were identified by IR, MS,^(1)H HMR and elemental analysis.
文摘Controlled,guided munitions can reduce dispersion in the shot,while providing the capability of engaging both stationary and maneuvering targets.The Netherlands Organisation for Applied Scientific Research has developed a fin-less control technology called Stagnation Pressure Reaction Control(SPRC)that takes stagnation pressure air and directs it sideways to control non-spinning projectiles.In a previous study,this technology was demonstrated at Mach 2 wind-tunnel conditions to achieve up to 1.5°controllable angle of incidence for a non-spinning,aerodynamically unstable projectile-like test object.In an operational scenario,the decelerating projectile will experience a decline in control force while the simultaneous forward shift of the center of pressure increases the need for control force.Furthermore,angles of incidence exceeding 1.5°will be experienced under realistic flight conditions,especially against maneuvering targets.This work addresses these challenges and presents an operational feasibility study for a practical application of SPRC in a non-spinning mid-caliber gun-launched projectile,using experiment data on control latency and force of the earlier study.It illustrates the combined effect of the control-and stability dynamics and underlines the potential of an SPRC projectile as a precisionoperation ammunition.This research revealed that SPRC technology can stabilize and control the hypothesized projectile in a direct fire scenario against stationary and maneuvering targets.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50473042)the Beijing Natural Science Foundation (No. 2042017).
文摘A novel hyperbranched poly(phenylene oxide) (HPPO) with phenolic terminal groups was prepared from 4-bromo-4',4"-dihydroxytriphenylmethane as AB2 monomer in dimethylsulfoxide (DMSO) via a modified Ullmann reaction. The molecular weight and polydispersity (PD) of the resulting polymers increased with increasing reaction time. In the presence of core molecules (bisphenol A and 1,3,5-trihydroxybenzene), which have the similar molecular backbones to the reactive monomer, the molecular weight could be controlled by varying the core-to-monomer ratio. Incorporation of a very small amount of core molecules could lead to a higher molecular weight as compared with that without the addition of core molecules. However, when the core content reached certain extent, the molecular weight would decrease with the further increase in the core content. A new similar behavior of control over the PD was also obtained. The resulting polymers were characterized by ^1H-NMR, ^13C-NMR, FT-IR, and GPC.
基金National Natural Science Foundation of China under grants NSFC 61603363,61703383,61603056.
文摘This paper studies the reentry attitude tracking control problem for hypersonic vehicles(HSV)equipped with reaction control systems(RCS)and aerodynamic surfaces.The attitude dynamical model of the hypersonic vehicles is established,and the simplified longitudinal and lateral dynamic models are obtained,respectively.Then,the compound control allocation strategy is provided and the model predictive controller is designed for the pitch channel.Furthermore,considering the complicated jet interaction effect of HSV during RCS is working,an improved model predictive control approach is presented by introducing the online parameter estimation of the jet interaction coefficient for dealing with the uncertainty and disturbance.Moreover,considering the strong coupling effect between the yaw channel and roll channel,a coupled model predictive controller is designed by introducing the feedback of sideslip angle into the roll control channel to eliminate the coupling effect.Finally,the comparison simulations using the classical control method,MPC and IMPC approach are given to demonstrate the effectiveness and efficiency of the presented IMPC scheme.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korea government,Ministry of Science and ICT(MSIT)(NRF-2020M3D1A2102837)the Korea Institute of Energy Technology Evaluation and Planning(KETEP)grant funded by the Korea government(MOTIE)(20214000000500,training program of CCUS for the green growth)。
文摘Photoelectrochemical(PEC)H_(2)O_(2)production through water oxidation reaction(WOR)is a promising strategy,however,designing highly efficient and selective photoanode materials remains challenging due to competitive reaction pathways.Here,for highly enhanced PEC H_(2)O_(2)production,we present a conformal amorphous titanyl phosphate(a-TP)overlayer on nanoparticulate TiO_(2)surfaces,achieved via lysozyme-molded in-situ surface reforming.The a-TP overlayer modulates surface adsorption energies for reaction intermediates,favoring WOR for H_(2)O_(2)production over the competing O_(2)evolution reaction.Our density functional theory calculations reveal that a-TP/TiO_(2)exhibits a substantial energy uphill for the O·*formation pathway,which disfavors O_(2)evolution but promotes H_(2)O_(2)production.Additionally,the a-TP overlayer strengthens the built-in electric field,resulting in favorable kinetics.Consequently,a-TP/TiO_(2)exhibits 3.7-fold higher Faraday efficiency(FE)of 63%at 1.76 V vs.reversible hydrogen electrode(RHE)under 1 sun illumination,compared to bare TiO_(2)(17%),representing the highest FE among TiO_(2)-based WOR H_(2)O_(2)production systems.Employing the a-TP overlayer constitutes a promising strategy for controlling reaction pathways and achieving efficient solar-to-chemical energy conversion.
基金supported by the National Natural Science Foundation of China(11572036)
文摘A robust controller for bank to turn(BTT) missiles with aerodynamic fins and reaction jet control system(RCS) is developed based on nonlinear control dynamic models comprising couplings and aerodynamic uncertainties. The fixed time convergence theory is incorporated with the sliding mode control technique to ensure that the system tracks the desired command within uniform bounded time under different initial conditions. Unlike previous terminal sliding mode approaches, the bound of settling time is independent of the initial state, which means performance metrics like convergence rate can be predicted beforehand. To reduce the burden of control design in terms of robustness, extended state observer(ESO) is introduced for uncertainty estimation with the output substituted into the controller as feedforward compensation. Cascade control structure is employed with the proposed control law and therein the compound control signal is obtained.Afterwards, control inputs for two kinds of actuators are allocated on the basis of their inherent characteristics. Finally, a number of simulations are carried out and demonstrate the effectiveness of the designed controller.
文摘Reaction control system(RCS) is a powerful and efficient actuator for space vehicles attitude control, which is typically characterized as a pulsed unilateral effector only with two states(off/on). Along with inevitable internal uncertainties and external disturbances in practice, this inherent nonlinear character always hinders space vehicles autopilot from pursuing precise tracking performance. Compared to most of pre-existing methodologies that passively suppress the uncertainties and disturbances, a design based on predictive functional control(PFC) and generalized extended state observer(GESO) is firstly proposed for three-axis RCS control system to actively reject that with no requirement for additional fuel consumption. To obtain a high fidelity predictive model on which the performance of PFC greatly depends, the nonlinear coupling multiple-input multiple-output(MIMO) flight dynamics model is parameterized as a state-dependent coefficient form. And based on that, a MIMO PFC algorithm in state space domain for a plant of arbitrary orders is deduced in this paper.The internal uncertainties and external disturbances are lumped as a total disturbance, which is estimated and cancelled timely to further enhance the robustness. The continuous control command synthesised by above controller-rejector tandem is finally modulated by pulse width pulse frequency modulator(PWPF) to on-off signals to meet RCS requirement. The robustness and feasibility of the proposed design are validated by a series of performance comparison simulations with some prominent methods in the presence of significant perturbations and disturbances, as well as measurement noise.
文摘The selective catalytic hydrogenation of carboxylic acids is an important process for alcohol production,while efficient heterogeneous catalyst systems are still being explored.Here,we report the selective hydrogenation of carboxylic acids using earth‐abundant cobalt oxides through a reaction‐controlled catalysis process.The further reaction of the alcohols is completely hindered by the presence of carboxylic acids in the reaction system.The partial reduction of cobalt oxides by hydrogen at designated temperatures can dramatically enhance the catalytic activity of pristine samples.A wide range of carboxylic acids with a variety of functional groups can be converted to the corresponding alcohols at a yield level applicable to large‐scale production.Cobalt monoxide was established as the preferred active phase for the selective hydrogenation of carboxylic acids.
文摘Water hammer pressure transient produces large dynamic forces which can damage the pipes and other assemblies in the feed line of a reaction control system(RCS).It has led to the failure of pressure transducers monitoring the manifold pressure in the feed line of RCS.Therefore,water hammer studies have been carried out to understand its effect in feed line.Feedline system has been simplified to develop a mathematical model and experiments have been carried out at extensive levels.The mathematical model was developed considering pipe of uniform c/s and moving liquid-gas interface.The experimental studies have been done using water as working medium instead of actual propellant.The studies showed that rate of pressurization have a very critical role on the water hammer amplitude.Sensitivity studies have been also carried out to study the effect of density,friction and initial liquid column length on water hammer amplitude.
基金supported by National Basic Research Program of China(973 Program)(No.2013CB733103)Program for New Century Excellent Talents in University(No.NCET-10-0058)
文摘This paper presents the reaction torque based satellite base reactionless control or base disturbance minimization of a redundant free-floating space robot. This subject is of vital importance in the study of the free-floating space robot because the base disturbance minimization will result in less energy consumption and prolonged control application. The analytical formulation of the reaction torque is derived in this article, and the reaction torque control can achieve reactionless control and satellite base disturbance minimization. Furthermore, we derive the reaction torque based control of the space robot for base disturbance minimization from both the non-strict task priority and strict task priority control strategy. The dynamics singularity in the proposed algorithm is avoided in this paper. Besides, a real time simulation system of the space robot under Linux/real time application interface(RTAI) is developed to verify and test the feasibility and reliability of the method. The experimental results demonstrate the feasibility of online reaction torque control of the redundant free-floating space robot.
基金This project was supported by the NationaI Natural Science Foundation of Chinathe National Education Commission Foundation of China.
文摘The fluorescence quenching of naphthalene (2)and 1, 3-di(α-naphthyl)propane (1) by RNA and bases in methanol-water (v:v=1:1) binary solvents in the presence or absence of cyclodex- trin (CD) has been investigated. The results show that both the monomer and excimer fluorescence of 1 can be quenched by these quenchers. The quenching and rates depend on the quencher and tem- perature. It is shown that there is a critical temperature (Tc) for each quencher. Below Tc, the excimer fluorescence spectra show vibrational structures and the Stern-Volmer plots are straight lines (for ura- cil and cytosine); while above the Tc, the vibrational structures disappear and the Stern-Volmer plots deviate from linearity and curve upward. The former is a static process; while the latter is a mixture of both static and dynamic processes. The addition of α-CD has no effect on the fine structure, whereas β-CD prevents the appearance of this structure efficiently. The quenching rates both for the monomer and excimer of 1 by bases except cytosine in the presence of β-CD at ambient temperature are not changed; the quenching of fluorescence of 1 by RNA in the presence of β-CD, however, is hindered. Time-resolved fluorescence study shows that the excimer fine structures appear from the zero time. The intensity of fine structures depend on the fraction of water (φ) in binary solvents, and it is independent of the pH value of the solvents. It is suggested that bases and RNA induced aggregates (perhaps microcrystal) are formed, in which the motion of molecules 1 is limited.
基金Project supported by the National Key Research and Development Program(2017YFC0211003)GM Global Research and Development(GAC 2696)。
文摘The activity and hydrothermal stability of the Rh/Ce_(x)Zr_(1-x)O_(2)(x=0,0.05,0.3,0.5) model three-way catalysts for gasoline vehicle emissions control were investigated in this work.Among the Rh/Ce_(x)Zr_(1-x)O_(2) samples with different Ce/Zr ratios,the Rh/ZrO_(2) sample exhibits a significantly better activity and hydrothermal stability than the rest of the samples.The impacts of having more Ce components in the Rh/Ce_(x)Zr_(1-x)O_(2) catalysts are associated with the strong Rh-O-Ce interaction that tends to over stabilize the rhodium species.A significant amount of such rhodium atoms can be found in the bulk of the support oxides after a hydrothermal aging at 1050℃ with 10% H_(2)O in air for 12 h.Differently,the sintering of rhodium on the surface of Rh/ZrO_(2) catalysts is the main reason for the catalyst deactivation during the hydrothermal aging.These findings provide an example where high dispersion of supported metal induced by strong metal-support interactions does not necessarily lead to high catalytic activity.
基金supported by the National Natural Science Foundation of China(Nos.61374116 and 61533009)the Six Talent Peaks Project in Jiangsu Province(No.HKHT010)
文摘This paper proposes a fault-tolerant strategy for hypersonic reentry vehicles with mixed aerodynamic surfaces and reaction control systems(RCS) under external disturbances and subject to actuator faults.Aerodynamic surfaces are treated as the primary actuator in normal situations,and they are driven by a continuous quadratic programming(QP) allocator to generate torque commanded by a nonlinear adaptive feedback control law.When aerodynamic surfaces encounter faults,they may not be able to provide sufficient torque as commanded,and RCS jets are activated to augment the aerodynamic surfaces to compensate for insufficient torque.Partial loss of effectiveness and stuck faults are considered in this paper,and observers are designed to detect and identify the faults.Based on the fault identification results,an RCS control allocator using integer linear programming(ILP) techniques is designed to determine the optimal combination of activated RCS jets.By treating the RCS control allocator as a quantization element,closed-loop stability with both continuous and quantized inputs is analyzed.Simulation results verify the effectiveness of the proposed method.
基金Project supported by the National Natural Science Foundation of China(21962009,21567016,21666020)Natural Science Foundation of Jiangxi Province(20181ACB20005,20171BAB213013,20181BAB203017)Key Laboratory Foundation of Jiangxi Province for Environment and Energy Catalysis(20181BCD40004)。
文摘A2B2O7 pyrochlore is a kind of important functional materials for different purposes,which has been investigated extensively by crystallographers and material scientists.However,the catalytic chemistry of this type of special compounds has rarely been documented,though a few researchers have tried to synthesize some pyrochlore compounds with different chemical compositions for a variety of green energy production and air pollution control reactions in the history.With the expectation to help catalysis scientists to get better acquaintance with,and gain deeper understanding on this type of compounds as heterogeneous catalysts,the major publications over the past several decades have been screened and reviewed in this paper,based also on our own experience of studying on this type of catalytic materials.The crystalline phase transformations of the compounds with the change of the A and B site cations,the phase change’s influences on the surface and bulk properties,and their subsequent impact on the catalytic performance for different reactions have been summarized.Furthermore,the future work which needs to be performed to perceive in depth this kind of important materials as catalysts has been proposed and suggested.We trust that this short review contains valuable information,which will provide great help for people to get better cognition for A2 B2 O7 pyrochlore compounds,and assist them to develop better catalysts for various reactions.
基金The work was supported by the National Natural Science Foundation of China (grant number 21506224). Z.Z. is grateful for support from the Institute of Chemical and Engineering Sciences.
文摘In this work, we report a simple and inexpensive approach to synthesize effective multicomponent Cu-Cu2O-CuO catalysts for the Rochow process from industrial waste contact masses (WCMs). WCMs from the organosilane industry were treated with acid followed by reduction with metallic iron powder. The obtained copper powder was then subjected to controlled oxidation in air at different temperatures, followed by ball milling. The orthogonal array approach was applied to optimize this process, and the stirring speed and pH were found to significantly affect the leaching ratio and copper yield, respectively. When used for the Rochow process, the optimized ternary Cu-Cu2O-CuO catalyst greatly enhanced the dimethyldichlorosilane selectivity and Si conversion compared with Cu-Cu2O-CuO catalysts prepared without ball milling, bare Cu catalysts, and Cu-Cu2O-CuO catalysts with different compositions. This could be attributed to their small particle size and the strong synergistic effect among the multiple components in the catalyst with the optimized composition.