This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal latt...This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.展开更多
An innovative monochromator shielding is designed and implemented for the cold neutron spectrometers XINGZHI and BOYA operated by Renmin University of China at China Advanced Research Reactor.Via Monte Carlo simulatio...An innovative monochromator shielding is designed and implemented for the cold neutron spectrometers XINGZHI and BOYA operated by Renmin University of China at China Advanced Research Reactor.Via Monte Carlo simulations and careful mechanical designs,a shielding configuration has been successfully developed to satisfy safety requirements of below 3μSv/h dose rate at its exterior,meanwhile fulfilling space,floor load and nonmagnetic requirements.Composite materials are utilized to form the sandwich-type shielding walls:the inner layer of boron carbide rubber,the middle layer of steel-encased lead and the outer layer of borated polyethylene.Special-shaped liftable shielding blocks are incorporated to facilitate a continuous adjustment of the neutron energy while preventing radiation leakage.Our work has demonstrated that by utilizing composite shielding materials,along with the sandwich structure and liftable shielding blocks,a compact and lightweight shielding solution can be achieved.This enables the realization of advanced neutron scattering instruments that provide expanded space of measurement,larger energy and momentum coverage,and higher flux on the sample.This shielding represents the first of its kind in neutron scattering instruments in China.Following its successful operation,it has been subsequently employed by other neutron instruments across the country.展开更多
In SSRF, the design of 1st crystal cooling geometry of double crystal monochromator with sagittal focus is mainly reported by China. Our simulation indicates that the broadening of the full width at half maximum of th...In SSRF, the design of 1st crystal cooling geometry of double crystal monochromator with sagittal focus is mainly reported by China. Our simulation indicates that the broadening of the full width at half maximum of the rocking curve of the double crystal monochromator induced by the heat load is about 3.7 μrad, and is in agreement with the experimental value of 5 μrad. Our scheme showed that the photon flux is reliably linear with electron current of the storage ring, which is extracted from the monochromator.展开更多
The variable-included angle plane-grating monochromator is a homemade key equipment of the scanning transmission X-ray microscopy (STXM) beamline at Shanghai Synchrotron Radiation Facility (SSRF).Monochromatic light o...The variable-included angle plane-grating monochromator is a homemade key equipment of the scanning transmission X-ray microscopy (STXM) beamline at Shanghai Synchrotron Radiation Facility (SSRF).Monochromatic light of various wavelengths is achieved by an effective control system that handles the rotation of the plane mirror and plane grating mounted in a high vacuum chamber.M511.DDB made by PI Corp.is used as motion stage which has a DC servo motor controlled by a C862 controller based on RS232 protocol.The software platform of STXM is EPICS,so the local control functions are implemented by LabVIEW program to satisfy physics control.For the remote control functions,the program is integrated into EPICS with ShareMemoryIOC.Experimental tests show that the repeat precision of motion control is less than 0.2μm,which meets the control demand.展开更多
Space scientific exploration is rapidly becoming the primary battlefield for humankind to explore the universe.Countries worldwide have launched numerous space exploration satellites.Accurate calibration of the detect...Space scientific exploration is rapidly becoming the primary battlefield for humankind to explore the universe.Countries worldwide have launched numerous space exploration satellites.Accurate calibration of the detectors on the ground is a crucial element for space science satellites to obtain observational results.For the purpose of providing calibration for various satellite-borne detectors,multiple monochromatic X-rays facilities have been built at the National Institute of Metrology,P.R.China(NIM).These facilities mainly pertain to grating diffraction and Bragg diffraction,and the energy range of the produced monochromatic X-rays is 0.218–301 ke V.These facilities have a high performance in terms of energy stability,monochromaticity,and flux stability.The monochromaticity was greater than 3.0%.The energy stability of the facility is 0.02%at 25 ke V over 8 h,and the flux stability was within 1.0%at 25 ke V over 8 h.Calibration experiments on the properties of satellite-borne detectors,such as energy linearity,energy resolution,detection efficiency,and temperature response,can be conducted at the facilities.Thus far,the calibration of two satellites has been completed by the authors,and the work on three other satellites is in progress.This study will contribute to the advancement of X-ray astronomy the development of Chinese space science.展开更多
We accomplish a laboratory facility for producing a femtosecond XUV coherent monochromatic radiation with a broad tunable spectral range of 20 eV-75 eV. It is based on spectral selected single-order harmonics from int...We accomplish a laboratory facility for producing a femtosecond XUV coherent monochromatic radiation with a broad tunable spectral range of 20 eV-75 eV. It is based on spectral selected single-order harmonics from intense laser driven high harmonic generation in gas phase. The time preserving for the selected harmonic radiation is achieved by a Czerny-Turner type monochromator designed with a conical diffraction grating mount for minimizing the time broadening caused by grating diffraction and keeping a relatively high diffraction efficiency. Our measurement shows that the photon flux of the 23-order harmonic(H23) centered at 35.7 eV is 1×10~9 photons/s approximately with a resolving power E/?E ≈ 36.This source provides an ultrashort tunable monochromatic XUV beam for ultrafast studies of electronic and structural dynamics in a large variety of matters.展开更多
基金National Natural Science Foundation of China(No.12205360)Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(No.JCYJ-SHFY-2021-010).
文摘This study presents a new method for characterizing the thermal lattice deformation of a monochromator with high precision under service conditions and first reports the operando measurements of nanoscale thermal lattice deformation on a double-crystal monochromator at different incident powers.The nanoscale thermal lattice deformation of the monochromator first crystal was obtained by analyzing the intensity of the distorted DuMond diagrams.DuMond diagrams of the 333 diffraction index,sensitive to lattice deformation,were obtained directly using a 2D detector and an analyzer crystal orthogonal to the monochromator.With increasing incident power and power density,the maximum height of the lattice deformation increased from 3.2 to 18.5 nm,and the deformation coefficient of the maximum height increased from 1.1 to 3.2 nm/W.The maximum relative standard deviation was 4.2%,and the maximum standard deviation was 0.1 nm.Based on the measured thermal deformations,the flux saturation phenomenon and critical point for the linear operation of the monochromator were predicted with increasing incident power.This study provides a simple solution to the problem of the lower precision of synchrotron radiation monochromator characterizations compared to simulations.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12004426,U2030106,and 12304185)the National Key Scientific Instrument and Equipment Development Project of NSFC(Grant No.11227906)the National Key R&D Program of China(Grant No.2023YFA1406500)。
文摘An innovative monochromator shielding is designed and implemented for the cold neutron spectrometers XINGZHI and BOYA operated by Renmin University of China at China Advanced Research Reactor.Via Monte Carlo simulations and careful mechanical designs,a shielding configuration has been successfully developed to satisfy safety requirements of below 3μSv/h dose rate at its exterior,meanwhile fulfilling space,floor load and nonmagnetic requirements.Composite materials are utilized to form the sandwich-type shielding walls:the inner layer of boron carbide rubber,the middle layer of steel-encased lead and the outer layer of borated polyethylene.Special-shaped liftable shielding blocks are incorporated to facilitate a continuous adjustment of the neutron energy while preventing radiation leakage.Our work has demonstrated that by utilizing composite shielding materials,along with the sandwich structure and liftable shielding blocks,a compact and lightweight shielding solution can be achieved.This enables the realization of advanced neutron scattering instruments that provide expanded space of measurement,larger energy and momentum coverage,and higher flux on the sample.This shielding represents the first of its kind in neutron scattering instruments in China.Following its successful operation,it has been subsequently employed by other neutron instruments across the country.
基金Supported by cooling research of double crystal monochromator used by synchrotron radiation(10205024)
文摘In SSRF, the design of 1st crystal cooling geometry of double crystal monochromator with sagittal focus is mainly reported by China. Our simulation indicates that the broadening of the full width at half maximum of the rocking curve of the double crystal monochromator induced by the heat load is about 3.7 μrad, and is in agreement with the experimental value of 5 μrad. Our scheme showed that the photon flux is reliably linear with electron current of the storage ring, which is extracted from the monochromator.
基金Supported by Shanghai Synchrotron Radiation Facility project
文摘The variable-included angle plane-grating monochromator is a homemade key equipment of the scanning transmission X-ray microscopy (STXM) beamline at Shanghai Synchrotron Radiation Facility (SSRF).Monochromatic light of various wavelengths is achieved by an effective control system that handles the rotation of the plane mirror and plane grating mounted in a high vacuum chamber.M511.DDB made by PI Corp.is used as motion stage which has a DC servo motor controlled by a C862 controller based on RS232 protocol.The software platform of STXM is EPICS,so the local control functions are implemented by LabVIEW program to satisfy physics control.For the remote control functions,the program is integrated into EPICS with ShareMemoryIOC.Experimental tests show that the repeat precision of motion control is less than 0.2μm,which meets the control demand.
基金upported by the National Key R&D Plan of China(2016YFF0200802)Establishment of a standard device for air kerma in mammography X-rays(ANL1902)。
文摘Space scientific exploration is rapidly becoming the primary battlefield for humankind to explore the universe.Countries worldwide have launched numerous space exploration satellites.Accurate calibration of the detectors on the ground is a crucial element for space science satellites to obtain observational results.For the purpose of providing calibration for various satellite-borne detectors,multiple monochromatic X-rays facilities have been built at the National Institute of Metrology,P.R.China(NIM).These facilities mainly pertain to grating diffraction and Bragg diffraction,and the energy range of the produced monochromatic X-rays is 0.218–301 ke V.These facilities have a high performance in terms of energy stability,monochromaticity,and flux stability.The monochromaticity was greater than 3.0%.The energy stability of the facility is 0.02%at 25 ke V over 8 h,and the flux stability was within 1.0%at 25 ke V over 8 h.Calibration experiments on the properties of satellite-borne detectors,such as energy linearity,energy resolution,detection efficiency,and temperature response,can be conducted at the facilities.Thus far,the calibration of two satellites has been completed by the authors,and the work on three other satellites is in progress.This study will contribute to the advancement of X-ray astronomy the development of Chinese space science.
基金Project supported by the National Natural Science Foundation of China(Grants Nos.11627807,11127403,and 11474130)the National Basic Research Program of China(Grant No.2013CB922200)the Natural Science Foundation of Jilin Province of China(Grant No.20160101332JC)
文摘We accomplish a laboratory facility for producing a femtosecond XUV coherent monochromatic radiation with a broad tunable spectral range of 20 eV-75 eV. It is based on spectral selected single-order harmonics from intense laser driven high harmonic generation in gas phase. The time preserving for the selected harmonic radiation is achieved by a Czerny-Turner type monochromator designed with a conical diffraction grating mount for minimizing the time broadening caused by grating diffraction and keeping a relatively high diffraction efficiency. Our measurement shows that the photon flux of the 23-order harmonic(H23) centered at 35.7 eV is 1×10~9 photons/s approximately with a resolving power E/?E ≈ 36.This source provides an ultrashort tunable monochromatic XUV beam for ultrafast studies of electronic and structural dynamics in a large variety of matters.