This paper presents a method which uses multiple types of expert knowledge together in 3D medical image segmentation based on rough set theory. The focus of this paper is how to approximate a ROI(region of interest) w...This paper presents a method which uses multiple types of expert knowledge together in 3D medical image segmentation based on rough set theory. The focus of this paper is how to approximate a ROI(region of interest) when there are multiple types of expert knowledge. Based on rough set theory, the image can be split into three regions: positive regions; negative regions; boundary regions. With multiple knowledge we refine ROI as an intersection of all of the expected shapes with single knowledge. At last we show the results of implementing a rough 3D image segmentation and visualization system.展开更多
Nowadays,Web browsers have become an important carrier of 3D model visualization because of their convenience and portability.During the process of large-scale 3D model visualization based on Web scenes with the probl...Nowadays,Web browsers have become an important carrier of 3D model visualization because of their convenience and portability.During the process of large-scale 3D model visualization based on Web scenes with the problems of slow rendering speed and low FPS(Frames Per Second),occlusion culling,as an important method for rendering optimization,can remove most of the occluded objects and improve rendering efficiency.The traditional occlusion culling algorithm(TOCA)is calculated by traversing all objects in the scene,which involves a large amount of repeated calculation and time consumption.To advance the rendering process and enhance rendering efficiency,this paper proposes an occlusion culling with three different optimization methods based on the WebGPU Computing Pipeline.Firstly,for the problem of large amounts of repeated calculation processes in TOCA,these units are moved from the CPU to the GPU for parallel computing,thereby accelerating the calculation of the Potential Visible Sets(PVS);Then,for the huge overhead of creating pipeline caused by too many 3D models in a certain scene,the Breaking Occlusion Culling Algorithm(BOCA)is introduced,which removes some nodes according to building a Hierarchical Bounding Volume(BVH)scene tree to reduce the overhead of creating pipelines;After that,the structure of the scene tree is transmitted to the GPU in the order of depth-first traversal and finally,the PVS is obtained by parallel computing.In the experiments,3D geological models with five different scales from 1:5,000 to 1:500,000 are used for testing.The results show that the proposed methods can reduce the time overhead of repeated calculation caused by the computing pipeline creation and scene tree recursive traversal in the occlusion culling algorithm effectively,with 97%rendering efficiency improvement compared with BOCA,thereby accelerating the rendering process on Web browsers.展开更多
基金PHD Site from Chinese Educational Department,Grant number:20040699015
文摘This paper presents a method which uses multiple types of expert knowledge together in 3D medical image segmentation based on rough set theory. The focus of this paper is how to approximate a ROI(region of interest) when there are multiple types of expert knowledge. Based on rough set theory, the image can be split into three regions: positive regions; negative regions; boundary regions. With multiple knowledge we refine ROI as an intersection of all of the expected shapes with single knowledge. At last we show the results of implementing a rough 3D image segmentation and visualization system.
基金supported by the National Natural Science Foundation of China (42172333,41902304,U1711267)the fund of the State Key Laboratory of Biogeology and Environmental Geology (2021)+1 种基金Science and Technology Strategic Prospecting Project of Guizhou Province ( [2022]ZD003)the Knowledge Innovation Program of Wuhan-Shuguang Project (2022010801020206).
文摘Nowadays,Web browsers have become an important carrier of 3D model visualization because of their convenience and portability.During the process of large-scale 3D model visualization based on Web scenes with the problems of slow rendering speed and low FPS(Frames Per Second),occlusion culling,as an important method for rendering optimization,can remove most of the occluded objects and improve rendering efficiency.The traditional occlusion culling algorithm(TOCA)is calculated by traversing all objects in the scene,which involves a large amount of repeated calculation and time consumption.To advance the rendering process and enhance rendering efficiency,this paper proposes an occlusion culling with three different optimization methods based on the WebGPU Computing Pipeline.Firstly,for the problem of large amounts of repeated calculation processes in TOCA,these units are moved from the CPU to the GPU for parallel computing,thereby accelerating the calculation of the Potential Visible Sets(PVS);Then,for the huge overhead of creating pipeline caused by too many 3D models in a certain scene,the Breaking Occlusion Culling Algorithm(BOCA)is introduced,which removes some nodes according to building a Hierarchical Bounding Volume(BVH)scene tree to reduce the overhead of creating pipelines;After that,the structure of the scene tree is transmitted to the GPU in the order of depth-first traversal and finally,the PVS is obtained by parallel computing.In the experiments,3D geological models with five different scales from 1:5,000 to 1:500,000 are used for testing.The results show that the proposed methods can reduce the time overhead of repeated calculation caused by the computing pipeline creation and scene tree recursive traversal in the occlusion culling algorithm effectively,with 97%rendering efficiency improvement compared with BOCA,thereby accelerating the rendering process on Web browsers.