Objective: Aflatoxin B1 (AFB1), which can cause the formation of AFB1-DNA adducts, is a known human carcinogen. AFB1-exposure individuals with inherited susceptible carcinogen-metabolizing or repairing genotypes ma...Objective: Aflatoxin B1 (AFB1), which can cause the formation of AFB1-DNA adducts, is a known human carcinogen. AFB1-exposure individuals with inherited susceptible carcinogen-metabolizing or repairing genotypes may experience an increased risk of genotoxicity. This study was designed to investigate whether the polymorphisms of two genes, the metabolic gene Glutathione S-transferase M1 (GSTM1) and DNA repair gene x-ray repair cross-complementing group 3 (XRCC3), can affect the levels of AFB1-DNA adducts in Guangxi Population (n= 966) from an AFB1-exposure area. Methods: AFB1-DNA adducts were measured by ELISA, and GSTM1 and XRCC3 codon 241 genotypes were identified by PCR-RFLP. Results: The GSTM1-null genotype [adjusted odds ratio (OR) = 2.09; 95% confidence interval (CI) = 1.61-2.71] and XRCC3 genotypes with 241 Met alleles [i.e., XRCC3-TM and -MM, adjusted ORs (95% CI) were 1.43 (1.08-1.89) and 2.42 (1.13-5.22), respectively] were significantly associated with higher levels of AFB1-DNA adducts. Compared with those individuals who did not express any putative risk genotypes as reference (OR = 1), individuals featuring all of the putative risk genotypes did experience a significantly higher DNA-adduct levels (adjusted ORs were 2.87 for GSTM1-null and XRCC3-TM; 5.83 for GSTM1-null and XRCC3-MM). Additionally, there was a positive joint effect between XRCC3 genotypes and long-term AFB1 exposure in the formation of AFB1-DNA adducts. Conclusion: These results suggest that individuals with susceptible genotypes GSTM1-null, XRCC3-TM, or XRCC3-MM may experience an increased risk of DNA damage elicited by AFB1 exposure.展开更多
Aristolochic acid (AA) is a known nephrotoxin and potential carcinogen, which can form covalent DNA adducts after metabolic activation in vivo and in vitro. A simple method for preparation and characterization of ar...Aristolochic acid (AA) is a known nephrotoxin and potential carcinogen, which can form covalent DNA adducts after metabolic activation in vivo and in vitro. A simple method for preparation and characterization of aristolochic acid-DNA adducts was developed. Four AA-adducts were synthesized by a direct reaction of AAI/AAII with 2′-deoxynucleosides. The reaction mixture was first cleaned-up and pre-concentrated using solid phase extraction (SPE), and further purified by a reversed-phase high performance liquid chromatography (HPLC). By the application of developed SPE procedure, matrices and byproducts in reaction mixture could be greatly reduced and adducts of high purity (more than 94% as indicated by HPLC) were obtained. The purified AA-DNA adducts were identified and characterized with liquid-electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-Q-TOF-MS/MS) and LC-Diode array detector-fluorescence (LC-DAD-FL) analysis. This work provides a robust tool for possible large-scale preparation of AA-DNA adduct standards, which can promote the further studies on carcinogenic and mutagenic mechanism of aristolochic acids.展开更多
Objective: The elevated incidence of obesity has been paralleled with higher risks of breast cancer. High adiposity increases leptin secretion from adipose tissue, which in turn increases cancer cell proliferation. Th...Objective: The elevated incidence of obesity has been paralleled with higher risks of breast cancer. High adiposity increases leptin secretion from adipose tissue, which in turn increases cancer cell proliferation. The interplay between leptin and estrogen is one of the mechanisms through which leptin influences breast carcinogenesis. An unbalanced estrogen metabolism increases the formations of catechol estrogen quinones, DNA adducts, and cancer mutations. This study aims to investigate the effect of leptin on some estrogen metabolic enzymes and DNA adduction in breast cancer cells.Methods: High performance liquid chromatography(HPLC) was performed to analyze the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Reporter gene assay, real time reverse transcription polymerase chain reaction(real time RT-PCR), and Western blot were used to assess the expression of estrogen metabolizing genes and enzymes: Cytochrome P-4501B1(CYP1B1), Nicotinamide adenine dinucleotide phosphate-quinone oxidoreductase1(NQO1), and Catechol-O-methyl transferase(COMT).Results: Leptin significantly increased the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine.Furthermore, leptin significantly upregulated CYP1B1 promoter activity and protein expression. The luciferase promoter activities of NQO1 and m RNA levels were significantly reduced. Moreover, leptin greatly reduced the reporter activities of the COMT-P1 and COMT-P2 promoters and diminished the protein expression of COMT.Conclusions: Leptin increases DNA adduct levels in breast cancer cells partly by affecting key genes and enzymes involved in estrogen metabolism. Thus, increased focus should be directed toward leptin and its effects on the estrogen metabolic pathway as an effective approach against breast cancer.展开更多
AIM The food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induces colon and mammary gland tumors in rats and has been implicated in the etiology of human colorectal cancer. This study was co...AIM The food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induces colon and mammary gland tumors in rats and has been implicated in the etiology of human colorectal cancer. This study was conducted to examine the potentially preventive effect of Chinese cabbage (Brassica chinensis), a brassica vegetable most commonly consumed in China, against this carcinogen-induced DNA adduct formation in rats and its possible mechanisms.METHODS Sprague-Dawley rats were maintained for 10 days on basal diet or diet containing 20% (w/ w) freeze-dried cabbage powder prior to administration of a single dose of PhIP (10 mg/ kg) by oral gavage. Rats were sacrificed at 20 h after PhIP treatment and PhIP-DNA adducts in the colon, heart, lung and liver were analyzed using 32P-postlabeling technique. Levels of hepatic cytochrome P450 (CYP) 1A1 and 1A2, as indicated by 7-ethoxyresorufin O-deethylase and 7-methlxyresorufin O-demethylase activity, and cytosolic glutathione S-transferases (GSTs) towards 1-chloro-2, 4-dinitrobenzene (CDNB) in the liver, lung and colon were measured.RESULTS Rats pre-treated with Chinese cabbage and given a single dose of PhIP had reduced levels of PhIP-DNA adducts in the colon, heart, lung and liver, with inhibition rates of 82.3%, 60.6%, 48.4% and 48.9%, respectively (P<0.01). The enzyme assays revealed that Chinese cabbage induced both CYP1A1 and 1A2 activity, but the induction was preferential for CYP1A1 over 1A2 (81% vs 51%). GST activity towards CDNB in the liver and lung, but not colon, was also significantly increased by cabbage treatment.CONCLUSION The results indicate that Chinese cabbage has a preventive effect on PhIP-initiated carcinogenesis in rats and the mechanism is likely to involve the induction of detoxification enzymes.展开更多
Objective. DNA modification fixed as mutations in the cells may be an essential factor in the initiation step of chemical carcinogenesis. In order to explore the mechanism of gene mutation...Objective. DNA modification fixed as mutations in the cells may be an essential factor in the initiation step of chemical carcinogenesis. In order to explore the mechanism of gene mutation and cell transformation induced by glycidyl methacrylate (GMA), the current test studied the characteristics of GMA DNA adducts formation in vitro. Methods. In vitro test, dAMP, dCMP, dGMP, dTMP and calf thymus DNA were allowed to react with GMA (Glycidyl Methacrylate). After the reaction, the mixtures were detected by UV and subjected to reversed phase HPLC on ultrasphere ODS reversed phase column, the reaction products were eluted with a linear gradients of methanol (solvent A) and 10mmol/L ammonium formate, pH5 0 (solvent B). The synthesized adducts were then characterized by UV spectroscopy in acid (pH1 0), neutral (pH7 2), alkaline (pH11 0) and by mass spectroscopy. Results. The results showed that GMA could bind with dAMP, dCMP, dGMP and calf thymus DNA by covalent bond, and the binding sites were specific (N 6 of adenine, N 3 of cytosine). Meanwhile, a main GMA DNA adduct in the reaction of GMA with calf thymus DNA was confirmed as N 3 methacrylate 2 hydroxypropy1 dCMP. Conclusions. GMA can react with DNA and /or deoxynucleotide monophosphate and generate some adducts such as N 6 methacrylate 2 hydroxypropyl dAMP and N 3 methacrylate 2 hydroxypropyl dCMP, ets. Formation of GMA DNA adducts is an important molecular event in gene mutation and cell transformation induced by GMA.展开更多
Nicotine [3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the ...Nicotine [3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b5 (CYb5) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb5, whereas curcumin and resveratrol induced GST. We may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine.展开更多
Toxicity assessment is a major problem in pharmaceutical candidates and industry chemicals development.However,due to the lack of practical analytical methods for DNA adduct analysis,the safety evaluation of drug and ...Toxicity assessment is a major problem in pharmaceutical candidates and industry chemicals development.However,due to the lack of practical analytical methods for DNA adduct analysis,the safety evaluation of drug and industry chemicals was severely limited.Here,we develop a DNAzyme-based method to detect DNA adduct damage for toxicity assessment of drugs and chemicals.Among 18 structural variants of G4 DNAzyme,EA2 DNAzyme exhibits an obvious DNA damaging effect of styrene oxide(SO)due to its unstable structure.The covalent binding of SO to DNAzyme disrupts the Hoogsteen hydrogen bonding sites of G-plane guanines and affects the formation of the G4 quadruplex.DNA damage chemicals reduce the peroxidase activity of the G4 DNAzyme to monitor the DNA adduct damage by disrupting the structural integrity of the G4 DNAzyme.Our method for genotoxic assessment of pharmaceutical candidates and industrial chemicals can elucidate the complex chemical pathways leading to toxicity,predict toxic effects of chemicals,and evaluate possible risks to human health.展开更多
Aristolochic acid (AA), a mixture of structure-related nitrophenanthrene carboxylic acid derivatives derived from Aristolochia spp, is associated with nephrotoxin and carcinogen. AA-DNA adducts induced by reductive me...Aristolochic acid (AA), a mixture of structure-related nitrophenanthrene carboxylic acid derivatives derived from Aristolochia spp, is associated with nephrotoxin and carcinogen. AA-DNA adducts induced by reductive metabolic activation of AA were detected in tissues of animals and in patients exposed to AA. The DNA adducts were generally used as biomarkers in toxicological study of AA. In this short review, quantitative analysis of AA-DNA adducts in various in vitro and in vivo systems by using 32P-postlabelling assay, HPLC-UV, HPLC-radiation monitor, HPLC-FLD, HPLC-ESI/MS and UPLC-MS/MS methods is discussed. The distribution of AA-DNA adducts in various tissues is also summarized.展开更多
基金supported by the National Natural Science Foundation of China (No.39860032)the Youth Science Foundation of Guangxi (No.0833097)
文摘Objective: Aflatoxin B1 (AFB1), which can cause the formation of AFB1-DNA adducts, is a known human carcinogen. AFB1-exposure individuals with inherited susceptible carcinogen-metabolizing or repairing genotypes may experience an increased risk of genotoxicity. This study was designed to investigate whether the polymorphisms of two genes, the metabolic gene Glutathione S-transferase M1 (GSTM1) and DNA repair gene x-ray repair cross-complementing group 3 (XRCC3), can affect the levels of AFB1-DNA adducts in Guangxi Population (n= 966) from an AFB1-exposure area. Methods: AFB1-DNA adducts were measured by ELISA, and GSTM1 and XRCC3 codon 241 genotypes were identified by PCR-RFLP. Results: The GSTM1-null genotype [adjusted odds ratio (OR) = 2.09; 95% confidence interval (CI) = 1.61-2.71] and XRCC3 genotypes with 241 Met alleles [i.e., XRCC3-TM and -MM, adjusted ORs (95% CI) were 1.43 (1.08-1.89) and 2.42 (1.13-5.22), respectively] were significantly associated with higher levels of AFB1-DNA adducts. Compared with those individuals who did not express any putative risk genotypes as reference (OR = 1), individuals featuring all of the putative risk genotypes did experience a significantly higher DNA-adduct levels (adjusted ORs were 2.87 for GSTM1-null and XRCC3-TM; 5.83 for GSTM1-null and XRCC3-MM). Additionally, there was a positive joint effect between XRCC3 genotypes and long-term AFB1 exposure in the formation of AFB1-DNA adducts. Conclusion: These results suggest that individuals with susceptible genotypes GSTM1-null, XRCC3-TM, or XRCC3-MM may experience an increased risk of DNA damage elicited by AFB1 exposure.
基金supported by the National Basic Research Program (973) of China (No. 2007CB407305,2008CB417201)the National High Technology Research and Development Program (863) of China (No.2007AA06A407)the National Natural Science Foundation of China (No. 20737003, 20621703, 20805057)
文摘Aristolochic acid (AA) is a known nephrotoxin and potential carcinogen, which can form covalent DNA adducts after metabolic activation in vivo and in vitro. A simple method for preparation and characterization of aristolochic acid-DNA adducts was developed. Four AA-adducts were synthesized by a direct reaction of AAI/AAII with 2′-deoxynucleosides. The reaction mixture was first cleaned-up and pre-concentrated using solid phase extraction (SPE), and further purified by a reversed-phase high performance liquid chromatography (HPLC). By the application of developed SPE procedure, matrices and byproducts in reaction mixture could be greatly reduced and adducts of high purity (more than 94% as indicated by HPLC) were obtained. The purified AA-DNA adducts were identified and characterized with liquid-electrospray ionization-quadrupole-time of flight-mass spectrometry (LC-ESI-Q-TOF-MS/MS) and LC-Diode array detector-fluorescence (LC-DAD-FL) analysis. This work provides a robust tool for possible large-scale preparation of AA-DNA adduct standards, which can promote the further studies on carcinogenic and mutagenic mechanism of aristolochic acids.
基金supported by a grant from University of Texas Medical Branch National Institute of Environmental Health Sciences Center Pilot Project E506676
文摘Objective: The elevated incidence of obesity has been paralleled with higher risks of breast cancer. High adiposity increases leptin secretion from adipose tissue, which in turn increases cancer cell proliferation. The interplay between leptin and estrogen is one of the mechanisms through which leptin influences breast carcinogenesis. An unbalanced estrogen metabolism increases the formations of catechol estrogen quinones, DNA adducts, and cancer mutations. This study aims to investigate the effect of leptin on some estrogen metabolic enzymes and DNA adduction in breast cancer cells.Methods: High performance liquid chromatography(HPLC) was performed to analyze the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine. Reporter gene assay, real time reverse transcription polymerase chain reaction(real time RT-PCR), and Western blot were used to assess the expression of estrogen metabolizing genes and enzymes: Cytochrome P-4501B1(CYP1B1), Nicotinamide adenine dinucleotide phosphate-quinone oxidoreductase1(NQO1), and Catechol-O-methyl transferase(COMT).Results: Leptin significantly increased the DNA adducts 4-OHE1[E2]-1-N3 adenine and 4-OHE1[E2]-1-N7 guanine.Furthermore, leptin significantly upregulated CYP1B1 promoter activity and protein expression. The luciferase promoter activities of NQO1 and m RNA levels were significantly reduced. Moreover, leptin greatly reduced the reporter activities of the COMT-P1 and COMT-P2 promoters and diminished the protein expression of COMT.Conclusions: Leptin increases DNA adduct levels in breast cancer cells partly by affecting key genes and enzymes involved in estrogen metabolism. Thus, increased focus should be directed toward leptin and its effects on the estrogen metabolic pathway as an effective approach against breast cancer.
基金Supported by the National Natural Science Foundation of China,No.39570627.
文摘AIM The food-borne carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) induces colon and mammary gland tumors in rats and has been implicated in the etiology of human colorectal cancer. This study was conducted to examine the potentially preventive effect of Chinese cabbage (Brassica chinensis), a brassica vegetable most commonly consumed in China, against this carcinogen-induced DNA adduct formation in rats and its possible mechanisms.METHODS Sprague-Dawley rats were maintained for 10 days on basal diet or diet containing 20% (w/ w) freeze-dried cabbage powder prior to administration of a single dose of PhIP (10 mg/ kg) by oral gavage. Rats were sacrificed at 20 h after PhIP treatment and PhIP-DNA adducts in the colon, heart, lung and liver were analyzed using 32P-postlabeling technique. Levels of hepatic cytochrome P450 (CYP) 1A1 and 1A2, as indicated by 7-ethoxyresorufin O-deethylase and 7-methlxyresorufin O-demethylase activity, and cytosolic glutathione S-transferases (GSTs) towards 1-chloro-2, 4-dinitrobenzene (CDNB) in the liver, lung and colon were measured.RESULTS Rats pre-treated with Chinese cabbage and given a single dose of PhIP had reduced levels of PhIP-DNA adducts in the colon, heart, lung and liver, with inhibition rates of 82.3%, 60.6%, 48.4% and 48.9%, respectively (P<0.01). The enzyme assays revealed that Chinese cabbage induced both CYP1A1 and 1A2 activity, but the induction was preferential for CYP1A1 over 1A2 (81% vs 51%). GST activity towards CDNB in the liver and lung, but not colon, was also significantly increased by cabbage treatment.CONCLUSION The results indicate that Chinese cabbage has a preventive effect on PhIP-initiated carcinogenesis in rats and the mechanism is likely to involve the induction of detoxification enzymes.
文摘Objective. DNA modification fixed as mutations in the cells may be an essential factor in the initiation step of chemical carcinogenesis. In order to explore the mechanism of gene mutation and cell transformation induced by glycidyl methacrylate (GMA), the current test studied the characteristics of GMA DNA adducts formation in vitro. Methods. In vitro test, dAMP, dCMP, dGMP, dTMP and calf thymus DNA were allowed to react with GMA (Glycidyl Methacrylate). After the reaction, the mixtures were detected by UV and subjected to reversed phase HPLC on ultrasphere ODS reversed phase column, the reaction products were eluted with a linear gradients of methanol (solvent A) and 10mmol/L ammonium formate, pH5 0 (solvent B). The synthesized adducts were then characterized by UV spectroscopy in acid (pH1 0), neutral (pH7 2), alkaline (pH11 0) and by mass spectroscopy. Results. The results showed that GMA could bind with dAMP, dCMP, dGMP and calf thymus DNA by covalent bond, and the binding sites were specific (N 6 of adenine, N 3 of cytosine). Meanwhile, a main GMA DNA adduct in the reaction of GMA with calf thymus DNA was confirmed as N 3 methacrylate 2 hydroxypropy1 dCMP. Conclusions. GMA can react with DNA and /or deoxynucleotide monophosphate and generate some adducts such as N 6 methacrylate 2 hydroxypropyl dAMP and N 3 methacrylate 2 hydroxypropyl dCMP, ets. Formation of GMA DNA adducts is an important molecular event in gene mutation and cell transformation induced by GMA.
基金Supported by the National Natural Science Foundation of China(Grant No.19935020)
文摘Nicotine [3-(1-methyl-2-pyrrolidinyl)-pyridine], a major alkaloid in tobacco products, has proven to be a potential genotoxic compound. Some polyphenolic compounds can suppress the DNA adduction, and hence act as the potential inhibitors of carcinogenesis. In this study, the inhibitory effects of three polyphenolic compounds, curcumin (diferuloylmethane), resveratrol (trans-3, 5, 4-trihydroxystilbene) and tea polyphenols, on the nicotine-DNA adduction have been investigated in vitro using radiolabelled nicotine and liquid scintillation counting (LSC) technique. Also, the inhibition mechanism of these chemopreventive agents in regard to the activity of the biotransformation enzymes, including cytochrome P450 (CYP450), cytochrome b5 (CYb5) and glutathione S-transferase (GST), has been studied. The results demonstrated that these three polyphenols induced marked dose-dependent decrease in nicotine-DNA adducts as compared with the controls. The elimination rate of adducts reached above 46% at the highest dose for all the three agents with 51.6% for resveratrol. Correspondingly, three polyphenols all suppressed CYP450 and CYb5, whereas curcumin and resveratrol induced GST. We may arrive at a point that the three polyphenols are beneficial to prevent the nicotine adduct formation, and thus may be used to block the potential carcinogenesis induced by nicotine.
基金This work was supported by National Natural Science Foundation of China(81803720)Natural Science Foundation of Hunan Province(2019JJ50383)+3 种基金Natural Science Foundation of Changsha(kq2202256)Huxiang High-Level Talent Innovation Team(2018RS3072)Scientific and Technological Projects for Collaborative Prevention and Control of Birth Defect in Hunan Province(2019SK1012)Key Grant of Research and Development in Hunan Province(2020DK2002).Dr.Zhang acknowledges the support from Harvard/MIT.
文摘Toxicity assessment is a major problem in pharmaceutical candidates and industry chemicals development.However,due to the lack of practical analytical methods for DNA adduct analysis,the safety evaluation of drug and industry chemicals was severely limited.Here,we develop a DNAzyme-based method to detect DNA adduct damage for toxicity assessment of drugs and chemicals.Among 18 structural variants of G4 DNAzyme,EA2 DNAzyme exhibits an obvious DNA damaging effect of styrene oxide(SO)due to its unstable structure.The covalent binding of SO to DNAzyme disrupts the Hoogsteen hydrogen bonding sites of G-plane guanines and affects the formation of the G4 quadruplex.DNA damage chemicals reduce the peroxidase activity of the G4 DNAzyme to monitor the DNA adduct damage by disrupting the structural integrity of the G4 DNAzyme.Our method for genotoxic assessment of pharmaceutical candidates and industrial chemicals can elucidate the complex chemical pathways leading to toxicity,predict toxic effects of chemicals,and evaluate possible risks to human health.
基金Supported by the Research Grant Council,University Grants Committee of Hong Kong (Grant No. HKBU2459/06M)the Health and Health Services Research Fund of Hong Kong (Grant No. 05060141)
文摘Aristolochic acid (AA), a mixture of structure-related nitrophenanthrene carboxylic acid derivatives derived from Aristolochia spp, is associated with nephrotoxin and carcinogen. AA-DNA adducts induced by reductive metabolic activation of AA were detected in tissues of animals and in patients exposed to AA. The DNA adducts were generally used as biomarkers in toxicological study of AA. In this short review, quantitative analysis of AA-DNA adducts in various in vitro and in vivo systems by using 32P-postlabelling assay, HPLC-UV, HPLC-radiation monitor, HPLC-FLD, HPLC-ESI/MS and UPLC-MS/MS methods is discussed. The distribution of AA-DNA adducts in various tissues is also summarized.