Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and A...Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and AA2024 mixed powders in the presence of liquid phase were investigated.The relationships between relative densities and rolling forces were analyzed as well.The results show that liquid fraction plays an important role in the densification process which can be divided into three stages.Rolling deformation is the main densification mechanism in deformation area when the liquid fraction is lower than 20%.When the liquid fraction is equal to or higher than 20%,the flowing and filling of liquid phase are the densification mechanisms in deformation area.The relative densities increase with increasing rolling forces.The relative density–rolling force curves are similar at 550 °C and 585 °C.The characteristics of the curve shapes are apparently different at 605 °C and 625 °C.展开更多
A new mechanical model for powder metallurgy compaction is presented. In this model, various amount of voids can be introduced into a continuous solid, therefore porosity can be conveniently controlled. The elastic-pl...A new mechanical model for powder metallurgy compaction is presented. In this model, various amount of voids can be introduced into a continuous solid, therefore porosity can be conveniently controlled. The elastic-plastic finite element method was used to analyze the sintered powder material. The model was used to simulate compressing of a sintered cylinder. MSC.Marc of MSC. Software Corporation was applied here, and the sintered powder model was built in MSC.Mentat. The sintered cylindrical powder metallurgy part is treated as a piece of normal metal with pores in the model. The metal block is considered as cylinder with a radius of 6.0 mm and a total height of 10.0 mm. Young’s module was assumed to be 4 000 MPa. Poisson’s ratio was 0.269. The initial yield stress is 210 MPa. Friction coefficient used for the upper and lower contact surfaces is 0.3. Coulomb principle is adopted. Considering axisymmetricity, just half a section is analyzed. Totally there are 1 240 elements. Experiment was carried out by a computer controlled a universal tensile testing machine. During the experiment, the sample was prepared from highly compressible water atomized iron powder with 0.6wt% polymeric lubricant. Particle size is about 100~150 μm. The comparison was performed using a sintered cylindrical sample. The green compact was sintered at 1 140 ℃ for 2 hours. Initially, H0 is 10.20 mm, Φ0 is 12.01 mm and the initial relative density is 0.789. After pressing, H is 7.30 mm, Φ1 is 13.10 mm, Φ2 is 14.64 mm and relative density is 0.88. The load-displacement curves agree with the experimental results very well. Plastic deformation of metallic material is mostly caused by the slipping of crystal lattice. Although very small, a metal powder particle is composed of metallic crystal. Mechanical properties of a powder particle should be very close to their as solid metal counterpart.展开更多
FeAl/TiC composites were fabricated by reactive hot pressing blended elemental powders. The TiC content was varied from 50% to 80%(volume fraction) and the aluminum content in the binder phase was changed from 40% to ...FeAl/TiC composites were fabricated by reactive hot pressing blended elemental powders. The TiC content was varied from 50% to 80%(volume fraction) and the aluminum content in the binder phase was changed from 40% to 50%(mole fraction). The effects of these compositional changes on the densification process and mechanical properties were studied. The results show that with the increase of TiC content, densities of the composites decrease due to insufficient particle rearrangement aided by (dissolutionreprecipitation) reaction during hot pressing. Closely related with their porosities and defect amount, the hardness and bend strength of the composites show peak values, attaining the highest values with TiC content being 70% and 60%, respectively. Increasing the aluminum content is beneficial to the densification process. But the hardness and bend strength of the composites are reduced to some extent due to the formation of excessive oxides and thermal vacancies.展开更多
基金Project(2013KJCX0014)supported by the Key Project of Department of Education of Guangdong Province,China
文摘Semi-solid powder rolling(SSPR) is a novel strip manufacturing process,which includes the features of semi-solid rolling and powder rolling.In this work,densification process and deformation mechanisms of B4 C and AA2024 mixed powders in the presence of liquid phase were investigated.The relationships between relative densities and rolling forces were analyzed as well.The results show that liquid fraction plays an important role in the densification process which can be divided into three stages.Rolling deformation is the main densification mechanism in deformation area when the liquid fraction is lower than 20%.When the liquid fraction is equal to or higher than 20%,the flowing and filling of liquid phase are the densification mechanisms in deformation area.The relative densities increase with increasing rolling forces.The relative density–rolling force curves are similar at 550 °C and 585 °C.The characteristics of the curve shapes are apparently different at 605 °C and 625 °C.
文摘A new mechanical model for powder metallurgy compaction is presented. In this model, various amount of voids can be introduced into a continuous solid, therefore porosity can be conveniently controlled. The elastic-plastic finite element method was used to analyze the sintered powder material. The model was used to simulate compressing of a sintered cylinder. MSC.Marc of MSC. Software Corporation was applied here, and the sintered powder model was built in MSC.Mentat. The sintered cylindrical powder metallurgy part is treated as a piece of normal metal with pores in the model. The metal block is considered as cylinder with a radius of 6.0 mm and a total height of 10.0 mm. Young’s module was assumed to be 4 000 MPa. Poisson’s ratio was 0.269. The initial yield stress is 210 MPa. Friction coefficient used for the upper and lower contact surfaces is 0.3. Coulomb principle is adopted. Considering axisymmetricity, just half a section is analyzed. Totally there are 1 240 elements. Experiment was carried out by a computer controlled a universal tensile testing machine. During the experiment, the sample was prepared from highly compressible water atomized iron powder with 0.6wt% polymeric lubricant. Particle size is about 100~150 μm. The comparison was performed using a sintered cylindrical sample. The green compact was sintered at 1 140 ℃ for 2 hours. Initially, H0 is 10.20 mm, Φ0 is 12.01 mm and the initial relative density is 0.789. After pressing, H is 7.30 mm, Φ1 is 13.10 mm, Φ2 is 14.64 mm and relative density is 0.88. The load-displacement curves agree with the experimental results very well. Plastic deformation of metallic material is mostly caused by the slipping of crystal lattice. Although very small, a metal powder particle is composed of metallic crystal. Mechanical properties of a powder particle should be very close to their as solid metal counterpart.
文摘FeAl/TiC composites were fabricated by reactive hot pressing blended elemental powders. The TiC content was varied from 50% to 80%(volume fraction) and the aluminum content in the binder phase was changed from 40% to 50%(mole fraction). The effects of these compositional changes on the densification process and mechanical properties were studied. The results show that with the increase of TiC content, densities of the composites decrease due to insufficient particle rearrangement aided by (dissolutionreprecipitation) reaction during hot pressing. Closely related with their porosities and defect amount, the hardness and bend strength of the composites show peak values, attaining the highest values with TiC content being 70% and 60%, respectively. Increasing the aluminum content is beneficial to the densification process. But the hardness and bend strength of the composites are reduced to some extent due to the formation of excessive oxides and thermal vacancies.