BACKGROUND Diabetic cardiomyopathy(DCM),which is a complication of diabetes,poses a great threat to public health.Recent studies have confirmed the role of NLRP3(NOD-like receptor protein 3)activation in DCM developme...BACKGROUND Diabetic cardiomyopathy(DCM),which is a complication of diabetes,poses a great threat to public health.Recent studies have confirmed the role of NLRP3(NOD-like receptor protein 3)activation in DCM development through the inflammatory response.Teneligliptin is an oral hypoglycemic dipeptidyl peptidase-IV inhibitor used to treat diabetes.Teneligliptin has recently been reported to have anti-inflammatory and protective effects on myocardial cells.AIM To examine the therapeutic effects of teneligliptin on DCM in diabetic mice.METHODS Streptozotocin was administered to induce diabetes in mice,followed by treatment with 30 mg/kg teneligliptin.RESULTS Marked increases in cardiomyocyte area and cardiac hypertrophy indicator heart weight/tibia length reductions in fractional shortening,ejection fraction,and heart rate;increases in creatine kinase-MB(CK-MB),aspartate transaminase(AST),and lactate dehydrogenase(LDH)levels;and upregulated NADPH oxidase 4 were observed in diabetic mice,all of which were significantly reversed by teneligliptin.Moreover,NLRP3 inflammasome activation and increased release of interleukin-1βin diabetic mice were inhibited by teneligliptin.Primary mouse cardiomyocytes were treated with high glucose(30 mmol/L)with or without teneligliptin(2.5 or 5μM)for 24 h.NLRP3 inflammasome activation.Increases in CKMB,AST,and LDH levels in glucose-stimulated cardiomyocytes were markedly inhibited by teneligliptin,and AMP(p-adenosine 5‘-monophosphate)-p-AMPK(activated protein kinase)levels were increased.Furthermore,the beneficial effects of teneligliptin on hyperglycaemia-induced cardiomyocytes were abolished by the AMPK signaling inhibitor compound C.CONCLUSION Overall,teneligliptin mitigated DCM by mitigating activation of the NLRP3 inflammasome.展开更多
This editorial introduces the potential of targeting macrophage function for diabetic cardiomyopathy(DCM)treatment by dipeptidyl peptidase-4(DPP-4)inhibitors.Zhang et al studied teneligliptin,a DPP-4 inhibitor used fo...This editorial introduces the potential of targeting macrophage function for diabetic cardiomyopathy(DCM)treatment by dipeptidyl peptidase-4(DPP-4)inhibitors.Zhang et al studied teneligliptin,a DPP-4 inhibitor used for diabetes management,and its potential cardioprotective effects in a diabetic mouse model.They suggested teneligliptin administration may reverse established markers of DCM,including cardiac hypertrophy and compromised function.It also inhibited the NLRP3 inflammasome and reduced inflammatory cytokine production in diabetic mice.Macrophages play crucial roles in DCM pathogenesis.Chronic hyperglycemia disturbs the balance between pro-inflammatory(M1)and antiinflammatory(M2)macrophages,favoring a pro-inflammatory state contributing to heart damage.Here,we highlight the potential of DPP-4 inhibitors to modulate macrophage function and promote an anti-inflammatory environment.These compounds may achieve this by elevating glucagon-like peptide-1 levels and potentially inhibiting the NLRP3 inflammasome.Further studies on teneligliptin in combination with other therapies targeting different aspects of DCM could be suggested for developing more effective treatment strategies to improve cardiovascular health in diabetic patients.展开更多
BACKGROUND Diabetic cardiomyopathy(DCM)is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role.The immunological molecular mechanisms underlying DCM are poorly understood.AIM To ex...BACKGROUND Diabetic cardiomyopathy(DCM)is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role.The immunological molecular mechanisms underlying DCM are poorly understood.AIM To examine the immunological molecular mechanisms of DCM and construct diagnostic and prognostic models of DCM based on immune feature genes(IFGs).METHODS Weighted gene co-expression network analysis along with machine learning methods were employed to pinpoint IFGs within bulk RNA sequencing(RNA-seq)datasets.Single-sample gene set enrichment analysis(ssGSEA)facilitated the analysis of immune cell infiltration.Diagnostic and prognostic models for these IFGs were developed and assessed in a validation cohort.Gene expression in the DCM cell model was confirmed through real time-quantitative polymerase chain reaction and western blotting techniques.Additionally,single-cell RNA-seq data provided deeper insights into cellular profiles and interactions.RESULTS The overlap between 69 differentially expressed genes in the DCM-associated module and 2483 immune genes yielded 7 differentially expressed immune-related genes.Four IFGs showed good diagnostic and prognostic values in the validation cohort:Proenkephalin(Penk)and retinol binding protein 7(Rbp7),which were highly expressed,and glucagon receptor and inhibin subunit alpha,which were expressed at low levels in DCM patients(all area under the curves>0.9).SsGSEA revealed that IFG-related immune cell infiltration primarily involved type 2 T helper cells.High expression of Penk(P<0.0001)and Rbp7(P=0.001)was detected in cardiomyocytes and interstitial cells and further confirmed in a DCM cell model in vitro.Intercellular events and communication analysis revealed abnormal cellular phenotype transformation and signaling communication in DCM,especially between mesenchymal cells and macrophages.CONCLUSION The present study identified Penk and Rbp7 as potential DCM biomarkers,and aberrant mesenchymal-immune cell phenotype communication may be an important aspect of DCM pathogenesis.展开更多
Diabetic cardiomyopathy(DCM),a complication of diabetes,poses a significant threat to public health,both its diagnosis and treatment presents challenges.Teneligliptin has promising applications and research implicatio...Diabetic cardiomyopathy(DCM),a complication of diabetes,poses a significant threat to public health,both its diagnosis and treatment presents challenges.Teneligliptin has promising applications and research implications in the treat-ment of diabetes mellitus.Zhang et al observed the therapeutic effect of tenelig-liptin on cardiac function in mice with DCM.They validated that teneligliptin’s mechanism of action in treating DCM involves cardiomyocyte protection and inhibition of NLRP3 inflammasome activity.Given that the NLRP3 inflammasome plays a crucial role in the onset and progression of DCM,it presents a promising therapeutic target.Nevertheless,further clinical validation is required to ascertain the preventive and therapeutic efficacy of teneligliptin in DCM.展开更多
Diabetic cardiomyopathy(DbCM)is a common but underrecognized complication of patients with diabetes mellitus(DM).Although the pathobiology of other cardiac complications of diabetes such as ischemic heart disease and ...Diabetic cardiomyopathy(DbCM)is a common but underrecognized complication of patients with diabetes mellitus(DM).Although the pathobiology of other cardiac complications of diabetes such as ischemic heart disease and cardiac autonomic neuropathy are mostly known with reasonable therapeutic options,the mechanisms and management options for DbCM are still not fully understood.In its early stages,DbCM presents with diastolic dysfunction followed by heart failure(HF)with preserved ejection fraction that can progress to systolic dysfunction and HF with reduced ejection fraction in its advanced stages unless appropriately managed.Apart from prompt control of DM with lifestyle changes and antidiabetic medications,disease-modifying therapy for DbCM includes prompt control of hypertension and dyslipidemia inherent to patients with DM as in other forms of heart diseases and the use of treatments with proven efficacy in HF.A basic study by Zhang et al,in a recent issue of the World Journal of Diabetes elaborates the potential pathophysiological alterations and the therapeutic role of teneligliptin in diabetic mouse models with DbCM.Although this preliminary basic study might help to improve our understanding of DbCM and offer a potential new management option for patients with the disease,the positive results from such animal models might not always translate to clinical practice as the pathobiology of DbCM in humans could be different.However,such experimental studies can encourage more scientific efforts to find a better solution to treat patients with this enigmatic disease.展开更多
Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,mo...Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers.展开更多
In this editorial,we commented on the article published in the recent issue of the World Journal of Diabetes.Diabetic cardiomyopathy(DCM)is characterized by myocardial fibrosis,ventricular hypertrophy and diastolic dy...In this editorial,we commented on the article published in the recent issue of the World Journal of Diabetes.Diabetic cardiomyopathy(DCM)is characterized by myocardial fibrosis,ventricular hypertrophy and diastolic dysfunction in diabetic patients,which can cause heart failure and threaten the life of patients.The pathogenesis of DCM has not been fully clarified,and it may involve oxidative stress,inflammatory stimulation,apoptosis,and autophagy.There is lack of effective therapies for DCM in the clinical practice.Statins have been widely used in the clinical practice for years mainly to reduce cholesterol and stabilize arterial plaques,and exhibit definite cardiovascular protective effects.Studies have shown that statins also have anti-inflammatory and antioxidant effects.We were particularly concerned about the recent findings that atorvastatin alleviated myocardial fibrosis in db/db mice by regulating the antioxidant stress and antiinflammatory effects of macrophage polarization on diabetic myocardium,and thereby improving DCM.展开更多
Diabetes mellitus(DM) is characterised by hyperglycemia, insulin resistance and metabolic dysregulation leading to diastolic and systolic dysfunction in diabetes. In this review, the pathogenetic and pathomorphologica...Diabetes mellitus(DM) is characterised by hyperglycemia, insulin resistance and metabolic dysregulation leading to diastolic and systolic dysfunction in diabetes. In this review, the pathogenetic and pathomorphological changes leading to diastolic and systolic dysfunction in diabetes are discussed. Changes in metabolic signalling pathways, mediators and effectors contribute to the pathogenesis of cardiac dysfunction in DM called diabetic cardiomyopathy(DC). Echocardiographic studies report on the association between DM and the presence of cardiac hypertrophy and myocardial stiffness that lead to diastolic dysfunction. More recently reported echocardiographic studies with more sensitive techniques, such as strain analysis, also observed systolic dysfunction as an early marker of DC. Depression of systolic and diastolic function is continuum and the line of separation is artificial. To conclude, according to current knowledge, DC is expected to be a common single phenotype that is caused by different pathogenetic and pathomorphological changes leading to diastolic and systolic dysfunction in diabetes.展开更多
Diabetic cardiomyopathy(DCM)is commonly defined as cardiomyopathy in patients with diabetes mellitus in the absence of coronary artery disease and hypertension.As DCM is now recognized as a cause of substantial morbid...Diabetic cardiomyopathy(DCM)is commonly defined as cardiomyopathy in patients with diabetes mellitus in the absence of coronary artery disease and hypertension.As DCM is now recognized as a cause of substantial morbidity and mortality among patients with diabetes mellitus and clinical diagnosis is still inappropriate,various expert groups struggled to identify a suitable biomarker that will help in the recognition and management of DCM,with little success so far.Hence,we thought it important to address the role of biomarkers that have shown potential in either human or animal studies and which could eventually result in mitigating the poor outcomes of DCM.Among the array of biomarkers we thoroughly analyzed,long noncoding ribonucleic acids,soluble form of suppression of tumorigenicity 2 and galectin-3 seem to be most beneficial for DCM detection,as their plasma/serum levels accurately correlate with the early stages of DCM.The combination of relatively inexpensive and accurate speckle tracking echocardiography with some of the highlighted biomarkers may be a promising screening method for newly diagnosed diabetes mellitus type 2 patients.The purpose of the screening test would be to direct affected patients to more specific confirmation tests.This perspective is in concordance with current guidelines that accentuate the importance of an interdisciplinary team-based approach.展开更多
BACKGROUND Diabetic cardiomyopathy(DCM)increases the risk of hospitalization for heart failure(HF)and mortality in patients with diabetes mellitus.However,no specific therapy to delay the progression of DCM has been i...BACKGROUND Diabetic cardiomyopathy(DCM)increases the risk of hospitalization for heart failure(HF)and mortality in patients with diabetes mellitus.However,no specific therapy to delay the progression of DCM has been identified.Mitochondrial dysfunction,oxidative stress,inflammation,and calcium handling imbalance play a crucial role in the pathological processes of DCM,ultimately leading to cardiomyocyte apoptosis and cardiac dysfunctions.Empagliflozin,a novel glucoselowering agent,has been confirmed to reduce the risk of hospitalization for HF in diabetic patients.Nevertheless,the molecular mechanisms by which this agent provides cardioprotection remain unclear.AIM To investigate the effects of empagliflozin on high glucose(HG)-induced oxidative stress and cardiomyocyte apoptosis and the underlying molecular mechanism.METHODS Twelve-week-old db/db mice and primary cardiomyocytes from neonatal rats stimulated with HG(30 mmol/L)were separately employed as in vivo and in vitro models.Echocardiography was used to evaluate cardiac function.Flow cytometry and TdT-mediated dUTP-biotin nick end labeling staining were used to assess apoptosis in myocardial cells.Mitochondrial function was assessed by cellular ATP levels and changes in mitochondrial membrane potential.Furthermore,intracellular reactive oxygen species production and superoxide dismutase activity were analyzed.Real-time quantitative PCR was used to analyze Bax and Bcl-2 mRNA expression.Western blot analysis was used to measure the phosphorylation of AMP-activated protein kinase(AMPK)and myosin phosphatase target subunit 1(MYPT1),as well as the peroxisome proliferator-activated receptor-γcoactivator-1α(PGC-1α)and active caspase-3 protein levels.RESULTSIn the in vivo experiment, db/db mice developed DCM. However, the treatment of db/db mice with empagliflozin(10 mg/kg/d) for 8 wk substantially enhanced cardiac function and significantly reduced myocardial apoptosis,accompanied by an increase in the phosphorylation of AMPK and PGC-1α protein levels, as well as a decrease inthe phosphorylation of MYPT1 in the heart. In the in vitro experiment, the findings indicate that treatment ofcardiomyocytes with empagliflozin (10 μM) or fasudil (FA) (a ROCK inhibitor, 100 μM) or overexpression of PGC-1α significantly attenuated HG-induced mitochondrial injury, oxidative stress, and cardiomyocyte apoptosis.However, the above effects were partly reversed by the addition of compound C (CC). In cells exposed to HG,empagliflozin treatment increased the protein levels of p-AMPK and PGC-1α protein while decreasing phosphorylatedMYPT1 levels, and these changes were mitigated by the addition of CC. Adding FA and overexpressingPGC-1α in cells exposed to HG substantially increased PGC-1α protein levels. In addition, no sodium-glucosecotransporter (SGLT)2 protein expression was detected in cardiomyocytes.CONCLUSION Empagliflozin partially achieves anti-oxidative stress and anti-apoptotic effects on cardiomyocytes under HGconditions by activating AMPK/PGC-1α and suppressing of the RhoA/ROCK pathway independent of SGLT2.展开更多
Diabetic complications,chiefly seen in long-term situations,are persistently deleterious to a large extent,requiring multi-factorial risk reduction strategies beyond glycemic control.Diabetic cardiomyopathy is one of ...Diabetic complications,chiefly seen in long-term situations,are persistently deleterious to a large extent,requiring multi-factorial risk reduction strategies beyond glycemic control.Diabetic cardiomyopathy is one of the most common deleterious diabetic complications,being the leading cause of mortality among diabetic patients.The mechanisms of diabetic cardiomyopathy are multi-factorial,involving increased oxidative stress,accumulation of advanced glycation end products(AGEs),activation of various pro-inflammatory and cell death signaling pathways,and changes in the composition of extracellular matrix with enhanced cardiac fibrosis.The novel lipid signaling system,the endocannabinoid system,has been implicated in the pathogenesis of diabetes and its complications through its two main receptors:Cannabinoid receptor type 1 and cannabinoid receptor type 2,alongside other components.However,the role of the endocannabinoid system in diabetic cardiomyopathy has not been fully investigated.This review aims to elucidate the possible mechanisms through which cannabinoids and the endocannabinoid system could interact with the pathogenesis and the development of diabetic cardiomyopathy.These mechanisms include oxidative/nitrative stress,inflammation,accumulation of AGEs,cardiac remodeling,and autophagy.A better understanding of the role of cannabinoids and the endocannabinoid system in diabetic cardiomyopathy may provide novel strategies to manipulate such a serious diabetic complication.展开更多
Diabetic cardiomyopathy is one of the life threatening complications of diabetes. A number of animal models are being used for studying diabetic cardiomyopathy. In laboratory animal models, induction of cardiomyopathy...Diabetic cardiomyopathy is one of the life threatening complications of diabetes. A number of animal models are being used for studying diabetic cardiomyopathy. In laboratory animal models, induction of cardiomyopathy happens in two stages: first being the induction of diabetic condition and the second being the induction of cardiomyopathy by prolonging diabetic condition. It takes a longer time to develop diabetes with the limited success rate for development of cardiomyopathy. Adriamycin is an effective anticancer drug limited by its major side-effect cardiomyopathy. A number of features of Adriamycin treatment mimics diabetes. We postulate that Adriamycin-induced cardiomyopathy might be used as a model system to study diabetic cardiomyopathy in rodents since a number of features of both the cardiomyopathies overlap. Left ventricular hypertrophy, systolic and diastolic dysfunction, myofibrillar loss, and fibrosis are hallmarks of both of the cardiomyopathies. At the molecular level, calcium signaling, endoplasmic reticulum stress, advance glycation endproduct activation, mitochondrial dysfunction,inflammation, lipotoxicity and oxidative stress are similar in both the cardiomyopathies.The signature profile of both the cardiomyopathies shares commonalities. In conclusion,we suggest that Adriamycin induced cardiomyopathic animal model can be used for studying diabetic cardiomyopathy and would save time for researchers working on cardiomyopathy developed in rodent using the traditional method.展开更多
Diabetic cardiomyopathy(DCM)is a metabolic disease and a leading cause of heart failure among people with diabetes.Mass spectrometry imaging(MSI)is a versatile technique capable of combining the molecular specificity ...Diabetic cardiomyopathy(DCM)is a metabolic disease and a leading cause of heart failure among people with diabetes.Mass spectrometry imaging(MSI)is a versatile technique capable of combining the molecular specificity of mass spectrometry(MS)with the spatial information of imaging.In this study,we used MSI to visualize metabolites in the rat heart with high spatial resolution and sensitivity.We optimized the air flow-assisted desorption electrospray ionization(AFADESI)-MSI platform to detect a wide range of metabolites,and then used matrix-assisted laser desorption ionization(MALDI)-MSI for increasing metabolic coverage and improving localization resolution.AFADESI-MSI detected 214 and 149 metabolites in positive and negative analyses of rat heart sections,respectively,while MALDI-MSI detected 61 metabolites in negative analysis.Our study revealed the heterogenous metabolic profile of the heart in a DCM model,with over 105 region-specific changes in the levels of a wide range of metabolite classes,including carbohydrates,amino acids,nucleotides,and their derivatives,fatty acids,glycerol phospholipids,carnitines,and metal ions.The repeated oral administration of ferulic acid during 20 weeks significantly improved most of the metabolic disorders in the DCM model.Our findings provide novel insights into the molecular mechanisms underlying DCM and the potential of ferulic acid as a therapeutic agent for treating this condition.展开更多
BACKGROUND Jiawei Jiaotai Pill is commonly used in clinical practice to reduce apoptosis,increase insulin secretion,and improve blood glucose tolerance.However,its mechanism of action in the treatment of diabetic card...BACKGROUND Jiawei Jiaotai Pill is commonly used in clinical practice to reduce apoptosis,increase insulin secretion,and improve blood glucose tolerance.However,its mechanism of action in the treatment of diabetic cardiomyopathy(DCM)remains unclear,hindering research efforts aimed at developing drugs specifically for the treatment of DCM.AIM To explore the pharmacodynamic basis and molecular mechanism of Jiawei Jiaotai Pill in DCM treatment.METHODS We explored various databases and software,including the Traditional Chinese Medicine Systems Pharmacology Database,Uniport,PubChem,GenCards,String,and Cytoscape,to identify the active components and targets of Jiawei Jiaotai Pill,and the disease targets in DCM.Protein-protein interaction network,gene ontology,and Kyoto Encyclopedia of Genes and Genomes analyses were used to determine the mechanism of action of Jiawei Jiaotai Pill in treating DCM.Molecular docking of key active components and core targets was verified using AutoDock software.RESULTS Total 42 active ingredients and 142 potential targets of Jiawei Jiaotai Pill were identified.There were 100 common targets between the DCM and Jiawei Jiaotai Pills.Through this screening process,TNF,IL6,TP53,EGFR,INS,and other important targets were identified.These targets are mainly involved in the positive regulation of the mitogen-activated protein kinase(MAPK)MAPK cascade,response to xenobiotic stimuli,response to hypoxia,positive regulation of gene expression,positive regulation of cell proliferation,negative regulation of the apoptotic process,and other biological processes.It was mainly enriched in the AGE-RAGE signaling pathway in diabetic complications,DCM,PI3K-Akt,interleukin-17,and MAPK signaling pathways.Molecular docking results showed that Jiawei Jiaotai Pill's active ingredients had good docking activity with DCM's core target.CONCLUSION The active components of Jiawei Jiaotai Pill may play a role in the treatment of DCM by reducing oxidative stress,cardiomyocyte apoptosis and fibrosis,and maintaining metabolic homeostasis.展开更多
Objective:To investigate the changes of serum concentration of Metrnl in diabetic cardiomyopathy mice,and the relationship between Metrnl and Diabetic cardiomyopathy(DCM)and its molecular mechanism.Methods:Fifteen mal...Objective:To investigate the changes of serum concentration of Metrnl in diabetic cardiomyopathy mice,and the relationship between Metrnl and Diabetic cardiomyopathy(DCM)and its molecular mechanism.Methods:Fifteen male mice were randomly divided into experimental group(DCM+Metrnl),model group(DCM)and control group.Metrnl concentration was measured with an enzyme-linked immunosorbent assay.The experimental group was treated with Metrnl,and the control group and model group were treated with equal volume solvent.Then the myocardial pathological changes,reactive oxygen species and the expression of PPARs and GLUT4 protein and the expression of CD36 and SOD gene were observed after 7 days of administration of recombinant Metrnl.Results:Serum Metrnl concentrations were elevated in DCM(P>0.05).Metrnl reduced the serum concentrations of total cholesterol(TG,P<0.05),triglyceride(TC,P<0.05)and low density lipoprotein cholesterol(LDL-C,P<0.05),while increased high density lipoprotein cholesterol(HDL-C,P<0.05)in DCM.In addition,Metrnl improved the energy metabolism of DCM,decreased the production of reactive oxygen species(ROS)and up-regulated the protein expressions of PPAR-a,PPAR-β/δ,GLUT4 and the expression of SOD in cardiomyocytes,while CD36 gene expression was down-regulated.Conclusion:Serum Metrnl concentrations were elevated in DCM mouse modles.Metrnl improved lipid metabolism and cardiac function in DCM.Besides,it can reduced myocardial oxidative stress injury through PPAR-β/δ,GLUT4 pathway.展开更多
Diabetic cardiomyopathy is one of the main causes of death of diabetic patients and seriously endangers human health.MiRNA is a type of endogenous non-coding RNA with a length of 18-25 nucleotides.It can regulate gene...Diabetic cardiomyopathy is one of the main causes of death of diabetic patients and seriously endangers human health.MiRNA is a type of endogenous non-coding RNA with a length of 18-25 nucleotides.It can regulate gene expression and plays an important role in the development of diabetic cardiomyopathy.This article will review the pathogenesis of diabetic cardiomyopathy and the important role of miRNA in its pathogenesis in order to provide a reference for future research.展开更多
Objective:To study the main chemical components and mechanism of Astragalus and Prunella vulgaris in the treatment of diabetes cardiomyopathy(DCM)based on network pharmacology and in vitro experiments.Methods:The main...Objective:To study the main chemical components and mechanism of Astragalus and Prunella vulgaris in the treatment of diabetes cardiomyopathy(DCM)based on network pharmacology and in vitro experiments.Methods:The main active components and prediction targets of Astragalus membranaceus and Prunella vulgaris herbal pairs were obtained by TCM Pharmacology database and analysis platform(TCMSP),and the disease genes were retrieved by genecards,OMIM,PharmGKB and drugbank databases.The disease and drug prediction targets were intersected to screen out common potential therapeutic targets.Cytoscape3.7.2 software was used to construct"drug component disease target"interaction network diagram;The PPI network of protein-protein interaction was constructed by using string database.R software was used to analyze the function enrichment of GO and KEGG for drug disease common targets,and autodock Vina 1.1.2 for molecular docking.Finally,the specific mechanism of Astragalus and Prunella vulgaris medicated serum on high glucose stimulated cardiomyocytes was verified in vitro.H9c2 cardiomyocytes were divided into five groups:normal group:low glucose(5.5 mmol/L)culture group,model group:high glucose(33 mmol/L)culture group,5%serum group:high glucose+5%Astragalus membranaceus Prunella vulgaris herb serum culture group,10%serum group:high glucose+10%Astragalus membranaceus Prunella vulgaris herb serum culture group,15%serum group:Hg high glucose+15%Astragalus membranaceus Prunella vulgaris herb serum culture group.MTT assay was used to detect the cell survival rate,and Western blot was used to detect the effect of Astragalus and Prunella vulgaris medicated serum on the expression of AKT1,p-AKT1,MAPK14 and p-MAPK14 proteins.Results:In this study,31 active components of Astragalus and Prunella vulgaris were screened,involving 157 targets of diabetes cardiomyopathy and 178 related signal pathways.The results of network analysis showed that Astragalus and Prunella vulgaris herbs may play a role in the treatment of DCM by acting on key targets such as AKT1,FOS,MAPK1,MAPK8,MAPK14,Jun and key pathways such as PI3K-AKT.Molecular docking showed that Astragalus membranaceus and Prunella vulgaris medicine had good binding between the active components luteolin,quercetin,pistil isoflavone,kaempferol and key targets such as AKT1,MAPK14,MAPK1,FOS,mapk8 and Jun,and the Vina score of luteolin and AKT1 was the lowest.The results in vitro showed that Astragalus and Prunella vulgaris medicated serum significantly improved the inhibition of H9c2 cardiomyocyte proliferation induced by high glucose,and increased the phosphorylation levels of AKT1 and MAPK14 proteins to play a role in the treatment of DCM.Conclusion:Astragalus and Prunella vulgaris have the characteristics of multi-target and multi-channel in the treatment of DCM.Its mechanism may be related to the regulation of the protein expression of p-AKT1 and p-MAPK14.These findings provide a new idea and basis for further experimental study on the mechanism of Astragalus and Prunella vulgaris in the treatment of diabetes cardiomyopathy.展开更多
Objective:To explore the potential active ingredients and targets of Astragalus,and also to predict the targets and mechanisms of Astragalus in the treatment of diabetic cardiomyopathy.Based on the predicted results,t...Objective:To explore the potential active ingredients and targets of Astragalus,and also to predict the targets and mechanisms of Astragalus in the treatment of diabetic cardiomyopathy.Based on the predicted results,the key signaling pathways were validated in a diabetic cardiomyopathy model mouse.Methods:Compounds and targets in Astragalus were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform.The protein names to corresponding"Gene Symbol ID"was convert by STRING database.We obtained targets of diabetic cardiomyopathy data from DisGeNET datasets.The protein-protein interaction network(PPI network)was established using STRING database.Cytoscape 3.6.0 was used to construct a disease-drug-target gene network map and to screen the 10 closest target genes by Cytohuba plug-in.The overlapping genes were then subjected to gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)-based enrichment analysis.Finally,the key molecules of the MAPK signaling pathway were validated by in vitro experiments.Animal experiments were performed using 21 Kunming mice randomly divided into normal group,model group,and Chinese herbal medicine Astragalus group,with seven mice in each group.The myocardium of mice in each group was stained with HE to compare the pathological morphological changes,and Western Blot was also used to compare the key molecules of MAPK signaling pathway,ERK1 and p-p38.Results:Astragalus contained 20 active ingredients with 188 corresponding targets,220 targets related to diabetic cardiomyopathy and 37 targets acting in conjunction with Astragalus.The common targets were imported into the STRING database to obtain a PPI network graph of overlapping genes,with 37 nodes and 391 edges.The PPI network map was imported into Cytoscape 3.6.0 software,and the most significant top 10 hub genes were obtained using the MCC algorithm in the cytoHubba plugin,namely AKT1,TP53,CASP3,MMP9,EGF,IL-10,CXCL8,IL-1β,VEGFA,PPARG.GO functional enrichment analysis yielded 40 entries for biological process(BP),23 entries for cellular component(CC),22 entries for molecular function(MF)and 94 entries for KEGG pathway enrichment screening,mainly involving PI3K-AKT,MAPK,HIF-1,FOXO,TNP pathway and other inflammation or apoptosis regulatory pathways.Animal experiments showed that Astragalus can improve the inflammatory state of myocardial tissue in mice with diabetic cardiomyopathy,and the expression of ERK1 and p-p38 protein in myocardial tissue of mice in the model group was higher than that in the normal group(P<0.05,P<0.01),and after the intervention with Astragalus,the expression of ERK1 and p-p38 protein was significantly lower than that in the model group,and the difference was statistically significant(P<0.05,P<0.01).Conclusion:Astragalus has multi-target,multi-component and multi-pathway action characteristics in the treatment of diabetic cardiomyopathy,which can exert anti-inflammatory and anti-oxidative stress effects by regulating protein expression of MAPK signaling pathway ERK1,p-p38.展开更多
Objective:To explore the protective effects of rhein on cardiomyocyte injury in DCM and its possible mecha-nism.Methods:The diabetic model was induced by intraperitoneal injection with streptozotocin and high-fat diet...Objective:To explore the protective effects of rhein on cardiomyocyte injury in DCM and its possible mecha-nism.Methods:The diabetic model was induced by intraperitoneal injection with streptozotocin and high-fat diet.The mice were randomly divided into control group,DM group,and DM+RH group.After 12 weeks treatment with rhein,the change of fast blood glucose,body weight,and heart weight/body weigh(t HW/BW)were observed.HE and Masson staining were used to evalu-ate myocardial structural damage.Transmission electron microscope was used to observe the myocardial mitochondrial structure.The mRNA levels of Sirt1,PGC-1α,TFAM,ANP,BNP andβ-MHC were quantified by RT-PCR.Sirt1,PGC-1α and TFAM protein levels were estimated by Western blot and IHC.Results:Compared with control group,the blood glucose,HW/BW,ANP,BNP andβ-MHC mRNA of DM group were significantly increased(P<0.05).The structures of myocardium and mitochondria were obviously destroyed in DM group.Sirt1,PGC-1α and TFAM expression were significantly decreased(P<0.05).Compared with DM group,the blood glucose,HW/BW,ANP,BNP and β-MHC mRNA of DM+RH group were decreased(P<0.05).The myocardial and mitochondrial injury were improved.Sirt1,PGC-1α and TFAM expression were significantly increased(P<0.05).Conclusion:Rhein exhibits protective effects on diabetic cardiomyopathy which may be achieved by activating Sirt1/PGC-1α pathway.展开更多
Objectives It is not fully clarified how diabetes mellitus induced cardiac dysfunction and myocardial ultrastructural changes in the early state.In the present study,we provided an integrated approach to investigate e...Objectives It is not fully clarified how diabetes mellitus induced cardiac dysfunction and myocardial ultrastructural changes in the early state.In the present study,we provided an integrated approach to investigate early changes in myocardial function of diabetic rabbits and assessed the structural alteration.Methods and Results Diabetes was induced by alloxan injection.After 30 days,echocardio- graphy and left ventricular cannulation were performed in dia- betic(D,n=8) and control rabbits(C,n= 10).After catheterization, animals were killed for histological studies.Hema-toxylin -eosin and Masson’s Trichrome staining of the heart were analyzed.The ultrastructure of left ventricle was also examined with electron microscopy.Echocardiography revealed that early diabetic cardiomyopathy had impaired LV diastolic function expressed by diminished E-waves,increased Awaves, E/A ratio reversion and increased E-wave deceleration time(EDT).Concurrently,LV end-diastolic pressure(LVEDP) and diastolic time constant(T) were increased,minimum dP/ dt(LV-dp/dt)was reduced,obtained through cardiac catheterization.There were no significant differences in LV ejection fraction(EF),LV peak systolic pressure(LVSP), or maximum dP/dt(LV + dp/dt).Qualitative light microscopy revealed no histologic changes in myocardium from diabetic rabbits.The most evident ultrastructural change was spotted myofibrillar damage,while interstitial fibrosis was slight.Conclusions These results suggest that early diabetic cardiomyopathy in animal model is characterized by left ventricular diastolic dysfunction,both impaired active relaxation and increased passive chamber stiffness.Whereas,left ventricular systolic function can remain normal.It might partly contribute to myofibrillar damage,but not myocardial fibrosis.展开更多
基金Supported by National Natural Science Foundation of China,No.82000276the Science and Technology Project of Jiangxi Provincial Health Commission,No.202310005.
文摘BACKGROUND Diabetic cardiomyopathy(DCM),which is a complication of diabetes,poses a great threat to public health.Recent studies have confirmed the role of NLRP3(NOD-like receptor protein 3)activation in DCM development through the inflammatory response.Teneligliptin is an oral hypoglycemic dipeptidyl peptidase-IV inhibitor used to treat diabetes.Teneligliptin has recently been reported to have anti-inflammatory and protective effects on myocardial cells.AIM To examine the therapeutic effects of teneligliptin on DCM in diabetic mice.METHODS Streptozotocin was administered to induce diabetes in mice,followed by treatment with 30 mg/kg teneligliptin.RESULTS Marked increases in cardiomyocyte area and cardiac hypertrophy indicator heart weight/tibia length reductions in fractional shortening,ejection fraction,and heart rate;increases in creatine kinase-MB(CK-MB),aspartate transaminase(AST),and lactate dehydrogenase(LDH)levels;and upregulated NADPH oxidase 4 were observed in diabetic mice,all of which were significantly reversed by teneligliptin.Moreover,NLRP3 inflammasome activation and increased release of interleukin-1βin diabetic mice were inhibited by teneligliptin.Primary mouse cardiomyocytes were treated with high glucose(30 mmol/L)with or without teneligliptin(2.5 or 5μM)for 24 h.NLRP3 inflammasome activation.Increases in CKMB,AST,and LDH levels in glucose-stimulated cardiomyocytes were markedly inhibited by teneligliptin,and AMP(p-adenosine 5‘-monophosphate)-p-AMPK(activated protein kinase)levels were increased.Furthermore,the beneficial effects of teneligliptin on hyperglycaemia-induced cardiomyocytes were abolished by the AMPK signaling inhibitor compound C.CONCLUSION Overall,teneligliptin mitigated DCM by mitigating activation of the NLRP3 inflammasome.
文摘This editorial introduces the potential of targeting macrophage function for diabetic cardiomyopathy(DCM)treatment by dipeptidyl peptidase-4(DPP-4)inhibitors.Zhang et al studied teneligliptin,a DPP-4 inhibitor used for diabetes management,and its potential cardioprotective effects in a diabetic mouse model.They suggested teneligliptin administration may reverse established markers of DCM,including cardiac hypertrophy and compromised function.It also inhibited the NLRP3 inflammasome and reduced inflammatory cytokine production in diabetic mice.Macrophages play crucial roles in DCM pathogenesis.Chronic hyperglycemia disturbs the balance between pro-inflammatory(M1)and antiinflammatory(M2)macrophages,favoring a pro-inflammatory state contributing to heart damage.Here,we highlight the potential of DPP-4 inhibitors to modulate macrophage function and promote an anti-inflammatory environment.These compounds may achieve this by elevating glucagon-like peptide-1 levels and potentially inhibiting the NLRP3 inflammasome.Further studies on teneligliptin in combination with other therapies targeting different aspects of DCM could be suggested for developing more effective treatment strategies to improve cardiovascular health in diabetic patients.
基金Supported by National Natural Science Foundation of China,No.82300347Natural Science Foundation of Ningbo,No.2021J296Science Foundation of Lihuili Hospital,No.2022ZD004.
文摘BACKGROUND Diabetic cardiomyopathy(DCM)is a multifaceted cardiovascular disorder in which immune dysregulation plays a pivotal role.The immunological molecular mechanisms underlying DCM are poorly understood.AIM To examine the immunological molecular mechanisms of DCM and construct diagnostic and prognostic models of DCM based on immune feature genes(IFGs).METHODS Weighted gene co-expression network analysis along with machine learning methods were employed to pinpoint IFGs within bulk RNA sequencing(RNA-seq)datasets.Single-sample gene set enrichment analysis(ssGSEA)facilitated the analysis of immune cell infiltration.Diagnostic and prognostic models for these IFGs were developed and assessed in a validation cohort.Gene expression in the DCM cell model was confirmed through real time-quantitative polymerase chain reaction and western blotting techniques.Additionally,single-cell RNA-seq data provided deeper insights into cellular profiles and interactions.RESULTS The overlap between 69 differentially expressed genes in the DCM-associated module and 2483 immune genes yielded 7 differentially expressed immune-related genes.Four IFGs showed good diagnostic and prognostic values in the validation cohort:Proenkephalin(Penk)and retinol binding protein 7(Rbp7),which were highly expressed,and glucagon receptor and inhibin subunit alpha,which were expressed at low levels in DCM patients(all area under the curves>0.9).SsGSEA revealed that IFG-related immune cell infiltration primarily involved type 2 T helper cells.High expression of Penk(P<0.0001)and Rbp7(P=0.001)was detected in cardiomyocytes and interstitial cells and further confirmed in a DCM cell model in vitro.Intercellular events and communication analysis revealed abnormal cellular phenotype transformation and signaling communication in DCM,especially between mesenchymal cells and macrophages.CONCLUSION The present study identified Penk and Rbp7 as potential DCM biomarkers,and aberrant mesenchymal-immune cell phenotype communication may be an important aspect of DCM pathogenesis.
文摘Diabetic cardiomyopathy(DCM),a complication of diabetes,poses a significant threat to public health,both its diagnosis and treatment presents challenges.Teneligliptin has promising applications and research implications in the treat-ment of diabetes mellitus.Zhang et al observed the therapeutic effect of tenelig-liptin on cardiac function in mice with DCM.They validated that teneligliptin’s mechanism of action in treating DCM involves cardiomyocyte protection and inhibition of NLRP3 inflammasome activity.Given that the NLRP3 inflammasome plays a crucial role in the onset and progression of DCM,it presents a promising therapeutic target.Nevertheless,further clinical validation is required to ascertain the preventive and therapeutic efficacy of teneligliptin in DCM.
文摘Diabetic cardiomyopathy(DbCM)is a common but underrecognized complication of patients with diabetes mellitus(DM).Although the pathobiology of other cardiac complications of diabetes such as ischemic heart disease and cardiac autonomic neuropathy are mostly known with reasonable therapeutic options,the mechanisms and management options for DbCM are still not fully understood.In its early stages,DbCM presents with diastolic dysfunction followed by heart failure(HF)with preserved ejection fraction that can progress to systolic dysfunction and HF with reduced ejection fraction in its advanced stages unless appropriately managed.Apart from prompt control of DM with lifestyle changes and antidiabetic medications,disease-modifying therapy for DbCM includes prompt control of hypertension and dyslipidemia inherent to patients with DM as in other forms of heart diseases and the use of treatments with proven efficacy in HF.A basic study by Zhang et al,in a recent issue of the World Journal of Diabetes elaborates the potential pathophysiological alterations and the therapeutic role of teneligliptin in diabetic mouse models with DbCM.Although this preliminary basic study might help to improve our understanding of DbCM and offer a potential new management option for patients with the disease,the positive results from such animal models might not always translate to clinical practice as the pathobiology of DbCM in humans could be different.However,such experimental studies can encourage more scientific efforts to find a better solution to treat patients with this enigmatic disease.
文摘Recently,the roles of pyroptosis,a form of cell death induced by activated NODlike receptor protein 3(NLRP3)inflammasome,in the pathogenesis of diabetic cardiomyopathy(DCM)have been extensively investigated.However,most studies have focused mainly on whether diabetes increases the NLRP3 inflammasome and associated pyroptosis in the heart of type 1 or type 2 diabetic rodent models,and whether various medications and natural products prevent the development of DCM,associated with decreased levels of cardiac NLRP3 inflammasome and pyroptosis.The direct link of NLRP3 inflammasome and associated pyroptosis to the pathogenesis of DCM remains unclear based on the limited evidence derived from the available studies,with the approaches of NLRP3 gene silencing or pharmaceutical application of NLRP3 specific inhibitors.We thus emphasize the requirement for more systematic studies that are designed to provide direct evidence to support the link,given that several studies have provided both direct and indirect evidence under specific conditions.This editorial emphasizes that the current investigation should be circumspect in its conclusion,i.e.,not overemphasizing its role in the pathogenesis of DCM with the fact of only significantly increased expression or activation of NLRP3 inflammasome and pyroptosis in the heart of diabetic rodent models.Only clear-cut evidence-based causative roles of NLRP3 inflammasome and pyroptosis in the pathogenesis of DCM can help to develop effective and safe medications for the clinical management of DCM,targeting these biomarkers.
基金Supported by National Natural Science Foundation of China,No.82000792General project of Chongqing Natural Science Foundation,No.cstc2020jcyj-msxm0409.
文摘In this editorial,we commented on the article published in the recent issue of the World Journal of Diabetes.Diabetic cardiomyopathy(DCM)is characterized by myocardial fibrosis,ventricular hypertrophy and diastolic dysfunction in diabetic patients,which can cause heart failure and threaten the life of patients.The pathogenesis of DCM has not been fully clarified,and it may involve oxidative stress,inflammatory stimulation,apoptosis,and autophagy.There is lack of effective therapies for DCM in the clinical practice.Statins have been widely used in the clinical practice for years mainly to reduce cholesterol and stabilize arterial plaques,and exhibit definite cardiovascular protective effects.Studies have shown that statins also have anti-inflammatory and antioxidant effects.We were particularly concerned about the recent findings that atorvastatin alleviated myocardial fibrosis in db/db mice by regulating the antioxidant stress and antiinflammatory effects of macrophage polarization on diabetic myocardium,and thereby improving DCM.
文摘Diabetes mellitus(DM) is characterised by hyperglycemia, insulin resistance and metabolic dysregulation leading to diastolic and systolic dysfunction in diabetes. In this review, the pathogenetic and pathomorphological changes leading to diastolic and systolic dysfunction in diabetes are discussed. Changes in metabolic signalling pathways, mediators and effectors contribute to the pathogenesis of cardiac dysfunction in DM called diabetic cardiomyopathy(DC). Echocardiographic studies report on the association between DM and the presence of cardiac hypertrophy and myocardial stiffness that lead to diastolic dysfunction. More recently reported echocardiographic studies with more sensitive techniques, such as strain analysis, also observed systolic dysfunction as an early marker of DC. Depression of systolic and diastolic function is continuum and the line of separation is artificial. To conclude, according to current knowledge, DC is expected to be a common single phenotype that is caused by different pathogenetic and pathomorphological changes leading to diastolic and systolic dysfunction in diabetes.
文摘Diabetic cardiomyopathy(DCM)is commonly defined as cardiomyopathy in patients with diabetes mellitus in the absence of coronary artery disease and hypertension.As DCM is now recognized as a cause of substantial morbidity and mortality among patients with diabetes mellitus and clinical diagnosis is still inappropriate,various expert groups struggled to identify a suitable biomarker that will help in the recognition and management of DCM,with little success so far.Hence,we thought it important to address the role of biomarkers that have shown potential in either human or animal studies and which could eventually result in mitigating the poor outcomes of DCM.Among the array of biomarkers we thoroughly analyzed,long noncoding ribonucleic acids,soluble form of suppression of tumorigenicity 2 and galectin-3 seem to be most beneficial for DCM detection,as their plasma/serum levels accurately correlate with the early stages of DCM.The combination of relatively inexpensive and accurate speckle tracking echocardiography with some of the highlighted biomarkers may be a promising screening method for newly diagnosed diabetes mellitus type 2 patients.The purpose of the screening test would be to direct affected patients to more specific confirmation tests.This perspective is in concordance with current guidelines that accentuate the importance of an interdisciplinary team-based approach.
基金Health Commission of Hebei Province,No.20210196S&T Program of Hebei,No.22377726D。
文摘BACKGROUND Diabetic cardiomyopathy(DCM)increases the risk of hospitalization for heart failure(HF)and mortality in patients with diabetes mellitus.However,no specific therapy to delay the progression of DCM has been identified.Mitochondrial dysfunction,oxidative stress,inflammation,and calcium handling imbalance play a crucial role in the pathological processes of DCM,ultimately leading to cardiomyocyte apoptosis and cardiac dysfunctions.Empagliflozin,a novel glucoselowering agent,has been confirmed to reduce the risk of hospitalization for HF in diabetic patients.Nevertheless,the molecular mechanisms by which this agent provides cardioprotection remain unclear.AIM To investigate the effects of empagliflozin on high glucose(HG)-induced oxidative stress and cardiomyocyte apoptosis and the underlying molecular mechanism.METHODS Twelve-week-old db/db mice and primary cardiomyocytes from neonatal rats stimulated with HG(30 mmol/L)were separately employed as in vivo and in vitro models.Echocardiography was used to evaluate cardiac function.Flow cytometry and TdT-mediated dUTP-biotin nick end labeling staining were used to assess apoptosis in myocardial cells.Mitochondrial function was assessed by cellular ATP levels and changes in mitochondrial membrane potential.Furthermore,intracellular reactive oxygen species production and superoxide dismutase activity were analyzed.Real-time quantitative PCR was used to analyze Bax and Bcl-2 mRNA expression.Western blot analysis was used to measure the phosphorylation of AMP-activated protein kinase(AMPK)and myosin phosphatase target subunit 1(MYPT1),as well as the peroxisome proliferator-activated receptor-γcoactivator-1α(PGC-1α)and active caspase-3 protein levels.RESULTSIn the in vivo experiment, db/db mice developed DCM. However, the treatment of db/db mice with empagliflozin(10 mg/kg/d) for 8 wk substantially enhanced cardiac function and significantly reduced myocardial apoptosis,accompanied by an increase in the phosphorylation of AMPK and PGC-1α protein levels, as well as a decrease inthe phosphorylation of MYPT1 in the heart. In the in vitro experiment, the findings indicate that treatment ofcardiomyocytes with empagliflozin (10 μM) or fasudil (FA) (a ROCK inhibitor, 100 μM) or overexpression of PGC-1α significantly attenuated HG-induced mitochondrial injury, oxidative stress, and cardiomyocyte apoptosis.However, the above effects were partly reversed by the addition of compound C (CC). In cells exposed to HG,empagliflozin treatment increased the protein levels of p-AMPK and PGC-1α protein while decreasing phosphorylatedMYPT1 levels, and these changes were mitigated by the addition of CC. Adding FA and overexpressingPGC-1α in cells exposed to HG substantially increased PGC-1α protein levels. In addition, no sodium-glucosecotransporter (SGLT)2 protein expression was detected in cardiomyocytes.CONCLUSION Empagliflozin partially achieves anti-oxidative stress and anti-apoptotic effects on cardiomyocytes under HGconditions by activating AMPK/PGC-1α and suppressing of the RhoA/ROCK pathway independent of SGLT2.
文摘Diabetic complications,chiefly seen in long-term situations,are persistently deleterious to a large extent,requiring multi-factorial risk reduction strategies beyond glycemic control.Diabetic cardiomyopathy is one of the most common deleterious diabetic complications,being the leading cause of mortality among diabetic patients.The mechanisms of diabetic cardiomyopathy are multi-factorial,involving increased oxidative stress,accumulation of advanced glycation end products(AGEs),activation of various pro-inflammatory and cell death signaling pathways,and changes in the composition of extracellular matrix with enhanced cardiac fibrosis.The novel lipid signaling system,the endocannabinoid system,has been implicated in the pathogenesis of diabetes and its complications through its two main receptors:Cannabinoid receptor type 1 and cannabinoid receptor type 2,alongside other components.However,the role of the endocannabinoid system in diabetic cardiomyopathy has not been fully investigated.This review aims to elucidate the possible mechanisms through which cannabinoids and the endocannabinoid system could interact with the pathogenesis and the development of diabetic cardiomyopathy.These mechanisms include oxidative/nitrative stress,inflammation,accumulation of AGEs,cardiac remodeling,and autophagy.A better understanding of the role of cannabinoids and the endocannabinoid system in diabetic cardiomyopathy may provide novel strategies to manipulate such a serious diabetic complication.
基金financially supported by the Department of Science and Technology and Science and Engineering Research Board,New Delhi through the provided grant-in aid(Grant number:SB/YS/LS-99/2013)
文摘Diabetic cardiomyopathy is one of the life threatening complications of diabetes. A number of animal models are being used for studying diabetic cardiomyopathy. In laboratory animal models, induction of cardiomyopathy happens in two stages: first being the induction of diabetic condition and the second being the induction of cardiomyopathy by prolonging diabetic condition. It takes a longer time to develop diabetes with the limited success rate for development of cardiomyopathy. Adriamycin is an effective anticancer drug limited by its major side-effect cardiomyopathy. A number of features of Adriamycin treatment mimics diabetes. We postulate that Adriamycin-induced cardiomyopathy might be used as a model system to study diabetic cardiomyopathy in rodents since a number of features of both the cardiomyopathies overlap. Left ventricular hypertrophy, systolic and diastolic dysfunction, myofibrillar loss, and fibrosis are hallmarks of both of the cardiomyopathies. At the molecular level, calcium signaling, endoplasmic reticulum stress, advance glycation endproduct activation, mitochondrial dysfunction,inflammation, lipotoxicity and oxidative stress are similar in both the cardiomyopathies.The signature profile of both the cardiomyopathies shares commonalities. In conclusion,we suggest that Adriamycin induced cardiomyopathic animal model can be used for studying diabetic cardiomyopathy and would save time for researchers working on cardiomyopathy developed in rodent using the traditional method.
基金supported by the National Natural Science Foundation of China(Grant Nos.:21927808 and 81803483).
文摘Diabetic cardiomyopathy(DCM)is a metabolic disease and a leading cause of heart failure among people with diabetes.Mass spectrometry imaging(MSI)is a versatile technique capable of combining the molecular specificity of mass spectrometry(MS)with the spatial information of imaging.In this study,we used MSI to visualize metabolites in the rat heart with high spatial resolution and sensitivity.We optimized the air flow-assisted desorption electrospray ionization(AFADESI)-MSI platform to detect a wide range of metabolites,and then used matrix-assisted laser desorption ionization(MALDI)-MSI for increasing metabolic coverage and improving localization resolution.AFADESI-MSI detected 214 and 149 metabolites in positive and negative analyses of rat heart sections,respectively,while MALDI-MSI detected 61 metabolites in negative analysis.Our study revealed the heterogenous metabolic profile of the heart in a DCM model,with over 105 region-specific changes in the levels of a wide range of metabolite classes,including carbohydrates,amino acids,nucleotides,and their derivatives,fatty acids,glycerol phospholipids,carnitines,and metal ions.The repeated oral administration of ferulic acid during 20 weeks significantly improved most of the metabolic disorders in the DCM model.Our findings provide novel insights into the molecular mechanisms underlying DCM and the potential of ferulic acid as a therapeutic agent for treating this condition.
基金Supported by Natural Science Basic Research Plan in the Shaanxi Province of China,No.2021JM-549,The Plan Project of Shaanxi Provincial Administration of Traditional Chinese Medicine,No.2021-ZZ-JC011The Second Youth Science and Technology Talents Project of Shaanxi Provincial Administration of Traditional Chinese Medicine,No.2023-ZQNY-017.
文摘BACKGROUND Jiawei Jiaotai Pill is commonly used in clinical practice to reduce apoptosis,increase insulin secretion,and improve blood glucose tolerance.However,its mechanism of action in the treatment of diabetic cardiomyopathy(DCM)remains unclear,hindering research efforts aimed at developing drugs specifically for the treatment of DCM.AIM To explore the pharmacodynamic basis and molecular mechanism of Jiawei Jiaotai Pill in DCM treatment.METHODS We explored various databases and software,including the Traditional Chinese Medicine Systems Pharmacology Database,Uniport,PubChem,GenCards,String,and Cytoscape,to identify the active components and targets of Jiawei Jiaotai Pill,and the disease targets in DCM.Protein-protein interaction network,gene ontology,and Kyoto Encyclopedia of Genes and Genomes analyses were used to determine the mechanism of action of Jiawei Jiaotai Pill in treating DCM.Molecular docking of key active components and core targets was verified using AutoDock software.RESULTS Total 42 active ingredients and 142 potential targets of Jiawei Jiaotai Pill were identified.There were 100 common targets between the DCM and Jiawei Jiaotai Pills.Through this screening process,TNF,IL6,TP53,EGFR,INS,and other important targets were identified.These targets are mainly involved in the positive regulation of the mitogen-activated protein kinase(MAPK)MAPK cascade,response to xenobiotic stimuli,response to hypoxia,positive regulation of gene expression,positive regulation of cell proliferation,negative regulation of the apoptotic process,and other biological processes.It was mainly enriched in the AGE-RAGE signaling pathway in diabetic complications,DCM,PI3K-Akt,interleukin-17,and MAPK signaling pathways.Molecular docking results showed that Jiawei Jiaotai Pill's active ingredients had good docking activity with DCM's core target.CONCLUSION The active components of Jiawei Jiaotai Pill may play a role in the treatment of DCM by reducing oxidative stress,cardiomyocyte apoptosis and fibrosis,and maintaining metabolic homeostasis.
基金Fund Project:Scientific Research Fund Project of Science and Technology Department of Sichuan Province(grant number(No.[2012]62012JY0068))Science Foundation of the Sichuan Medical Association Shihuida Project(No.2016SHD012)the Doctoral Research Foundation of the Affiliated Hospital of Southwest Medical University(No.2018099)。
文摘Objective:To investigate the changes of serum concentration of Metrnl in diabetic cardiomyopathy mice,and the relationship between Metrnl and Diabetic cardiomyopathy(DCM)and its molecular mechanism.Methods:Fifteen male mice were randomly divided into experimental group(DCM+Metrnl),model group(DCM)and control group.Metrnl concentration was measured with an enzyme-linked immunosorbent assay.The experimental group was treated with Metrnl,and the control group and model group were treated with equal volume solvent.Then the myocardial pathological changes,reactive oxygen species and the expression of PPARs and GLUT4 protein and the expression of CD36 and SOD gene were observed after 7 days of administration of recombinant Metrnl.Results:Serum Metrnl concentrations were elevated in DCM(P>0.05).Metrnl reduced the serum concentrations of total cholesterol(TG,P<0.05),triglyceride(TC,P<0.05)and low density lipoprotein cholesterol(LDL-C,P<0.05),while increased high density lipoprotein cholesterol(HDL-C,P<0.05)in DCM.In addition,Metrnl improved the energy metabolism of DCM,decreased the production of reactive oxygen species(ROS)and up-regulated the protein expressions of PPAR-a,PPAR-β/δ,GLUT4 and the expression of SOD in cardiomyocytes,while CD36 gene expression was down-regulated.Conclusion:Serum Metrnl concentrations were elevated in DCM mouse modles.Metrnl improved lipid metabolism and cardiac function in DCM.Besides,it can reduced myocardial oxidative stress injury through PPAR-β/δ,GLUT4 pathway.
基金National natural science foundation of China(No.81774254)
文摘Diabetic cardiomyopathy is one of the main causes of death of diabetic patients and seriously endangers human health.MiRNA is a type of endogenous non-coding RNA with a length of 18-25 nucleotides.It can regulate gene expression and plays an important role in the development of diabetic cardiomyopathy.This article will review the pathogenesis of diabetic cardiomyopathy and the important role of miRNA in its pathogenesis in order to provide a reference for future research.
基金National Natural Science Foundation of China(No.81974541)。
文摘Objective:To study the main chemical components and mechanism of Astragalus and Prunella vulgaris in the treatment of diabetes cardiomyopathy(DCM)based on network pharmacology and in vitro experiments.Methods:The main active components and prediction targets of Astragalus membranaceus and Prunella vulgaris herbal pairs were obtained by TCM Pharmacology database and analysis platform(TCMSP),and the disease genes were retrieved by genecards,OMIM,PharmGKB and drugbank databases.The disease and drug prediction targets were intersected to screen out common potential therapeutic targets.Cytoscape3.7.2 software was used to construct"drug component disease target"interaction network diagram;The PPI network of protein-protein interaction was constructed by using string database.R software was used to analyze the function enrichment of GO and KEGG for drug disease common targets,and autodock Vina 1.1.2 for molecular docking.Finally,the specific mechanism of Astragalus and Prunella vulgaris medicated serum on high glucose stimulated cardiomyocytes was verified in vitro.H9c2 cardiomyocytes were divided into five groups:normal group:low glucose(5.5 mmol/L)culture group,model group:high glucose(33 mmol/L)culture group,5%serum group:high glucose+5%Astragalus membranaceus Prunella vulgaris herb serum culture group,10%serum group:high glucose+10%Astragalus membranaceus Prunella vulgaris herb serum culture group,15%serum group:Hg high glucose+15%Astragalus membranaceus Prunella vulgaris herb serum culture group.MTT assay was used to detect the cell survival rate,and Western blot was used to detect the effect of Astragalus and Prunella vulgaris medicated serum on the expression of AKT1,p-AKT1,MAPK14 and p-MAPK14 proteins.Results:In this study,31 active components of Astragalus and Prunella vulgaris were screened,involving 157 targets of diabetes cardiomyopathy and 178 related signal pathways.The results of network analysis showed that Astragalus and Prunella vulgaris herbs may play a role in the treatment of DCM by acting on key targets such as AKT1,FOS,MAPK1,MAPK8,MAPK14,Jun and key pathways such as PI3K-AKT.Molecular docking showed that Astragalus membranaceus and Prunella vulgaris medicine had good binding between the active components luteolin,quercetin,pistil isoflavone,kaempferol and key targets such as AKT1,MAPK14,MAPK1,FOS,mapk8 and Jun,and the Vina score of luteolin and AKT1 was the lowest.The results in vitro showed that Astragalus and Prunella vulgaris medicated serum significantly improved the inhibition of H9c2 cardiomyocyte proliferation induced by high glucose,and increased the phosphorylation levels of AKT1 and MAPK14 proteins to play a role in the treatment of DCM.Conclusion:Astragalus and Prunella vulgaris have the characteristics of multi-target and multi-channel in the treatment of DCM.Its mechanism may be related to the regulation of the protein expression of p-AKT1 and p-MAPK14.These findings provide a new idea and basis for further experimental study on the mechanism of Astragalus and Prunella vulgaris in the treatment of diabetes cardiomyopathy.
基金Hainan Provincial Natural Science Foundation Innovation Research Team Project(No.2019CXTD407)Hainan Medical College Youth Cultivation Fund Project(No.HYPY201912)The Youth Cultivation Fund of the First Affiliated Hospital of Hainan Medical College(No.HYYFYPY202006)。
文摘Objective:To explore the potential active ingredients and targets of Astragalus,and also to predict the targets and mechanisms of Astragalus in the treatment of diabetic cardiomyopathy.Based on the predicted results,the key signaling pathways were validated in a diabetic cardiomyopathy model mouse.Methods:Compounds and targets in Astragalus were retrieved from Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform.The protein names to corresponding"Gene Symbol ID"was convert by STRING database.We obtained targets of diabetic cardiomyopathy data from DisGeNET datasets.The protein-protein interaction network(PPI network)was established using STRING database.Cytoscape 3.6.0 was used to construct a disease-drug-target gene network map and to screen the 10 closest target genes by Cytohuba plug-in.The overlapping genes were then subjected to gene ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)-based enrichment analysis.Finally,the key molecules of the MAPK signaling pathway were validated by in vitro experiments.Animal experiments were performed using 21 Kunming mice randomly divided into normal group,model group,and Chinese herbal medicine Astragalus group,with seven mice in each group.The myocardium of mice in each group was stained with HE to compare the pathological morphological changes,and Western Blot was also used to compare the key molecules of MAPK signaling pathway,ERK1 and p-p38.Results:Astragalus contained 20 active ingredients with 188 corresponding targets,220 targets related to diabetic cardiomyopathy and 37 targets acting in conjunction with Astragalus.The common targets were imported into the STRING database to obtain a PPI network graph of overlapping genes,with 37 nodes and 391 edges.The PPI network map was imported into Cytoscape 3.6.0 software,and the most significant top 10 hub genes were obtained using the MCC algorithm in the cytoHubba plugin,namely AKT1,TP53,CASP3,MMP9,EGF,IL-10,CXCL8,IL-1β,VEGFA,PPARG.GO functional enrichment analysis yielded 40 entries for biological process(BP),23 entries for cellular component(CC),22 entries for molecular function(MF)and 94 entries for KEGG pathway enrichment screening,mainly involving PI3K-AKT,MAPK,HIF-1,FOXO,TNP pathway and other inflammation or apoptosis regulatory pathways.Animal experiments showed that Astragalus can improve the inflammatory state of myocardial tissue in mice with diabetic cardiomyopathy,and the expression of ERK1 and p-p38 protein in myocardial tissue of mice in the model group was higher than that in the normal group(P<0.05,P<0.01),and after the intervention with Astragalus,the expression of ERK1 and p-p38 protein was significantly lower than that in the model group,and the difference was statistically significant(P<0.05,P<0.01).Conclusion:Astragalus has multi-target,multi-component and multi-pathway action characteristics in the treatment of diabetic cardiomyopathy,which can exert anti-inflammatory and anti-oxidative stress effects by regulating protein expression of MAPK signaling pathway ERK1,p-p38.
基金National Natural Science Foundation Project (No.81873174)。
文摘Objective:To explore the protective effects of rhein on cardiomyocyte injury in DCM and its possible mecha-nism.Methods:The diabetic model was induced by intraperitoneal injection with streptozotocin and high-fat diet.The mice were randomly divided into control group,DM group,and DM+RH group.After 12 weeks treatment with rhein,the change of fast blood glucose,body weight,and heart weight/body weigh(t HW/BW)were observed.HE and Masson staining were used to evalu-ate myocardial structural damage.Transmission electron microscope was used to observe the myocardial mitochondrial structure.The mRNA levels of Sirt1,PGC-1α,TFAM,ANP,BNP andβ-MHC were quantified by RT-PCR.Sirt1,PGC-1α and TFAM protein levels were estimated by Western blot and IHC.Results:Compared with control group,the blood glucose,HW/BW,ANP,BNP andβ-MHC mRNA of DM group were significantly increased(P<0.05).The structures of myocardium and mitochondria were obviously destroyed in DM group.Sirt1,PGC-1α and TFAM expression were significantly decreased(P<0.05).Compared with DM group,the blood glucose,HW/BW,ANP,BNP and β-MHC mRNA of DM+RH group were decreased(P<0.05).The myocardial and mitochondrial injury were improved.Sirt1,PGC-1α and TFAM expression were significantly increased(P<0.05).Conclusion:Rhein exhibits protective effects on diabetic cardiomyopathy which may be achieved by activating Sirt1/PGC-1α pathway.
文摘Objectives It is not fully clarified how diabetes mellitus induced cardiac dysfunction and myocardial ultrastructural changes in the early state.In the present study,we provided an integrated approach to investigate early changes in myocardial function of diabetic rabbits and assessed the structural alteration.Methods and Results Diabetes was induced by alloxan injection.After 30 days,echocardio- graphy and left ventricular cannulation were performed in dia- betic(D,n=8) and control rabbits(C,n= 10).After catheterization, animals were killed for histological studies.Hema-toxylin -eosin and Masson’s Trichrome staining of the heart were analyzed.The ultrastructure of left ventricle was also examined with electron microscopy.Echocardiography revealed that early diabetic cardiomyopathy had impaired LV diastolic function expressed by diminished E-waves,increased Awaves, E/A ratio reversion and increased E-wave deceleration time(EDT).Concurrently,LV end-diastolic pressure(LVEDP) and diastolic time constant(T) were increased,minimum dP/ dt(LV-dp/dt)was reduced,obtained through cardiac catheterization.There were no significant differences in LV ejection fraction(EF),LV peak systolic pressure(LVSP), or maximum dP/dt(LV + dp/dt).Qualitative light microscopy revealed no histologic changes in myocardium from diabetic rabbits.The most evident ultrastructural change was spotted myofibrillar damage,while interstitial fibrosis was slight.Conclusions These results suggest that early diabetic cardiomyopathy in animal model is characterized by left ventricular diastolic dysfunction,both impaired active relaxation and increased passive chamber stiffness.Whereas,left ventricular systolic function can remain normal.It might partly contribute to myofibrillar damage,but not myocardial fibrosis.