The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with ti...The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with time varying sampling period isconstructed based on the time delay system method. The reachinglaw based sliding mode controller is applied in the proposedsystem. The exponential stability condition in the form of linearmatrix inequality is figured out based on the multi-Lyaponov functionmethod. Then, the chattering characteristic is analyzed for theswitching system, and a chattering region related with time varyingsampling period and external disturbance is proposed. Finally, numericalexamples are given to illustrate the validity of the analysisresult.展开更多
This paper proposes a distributed control method based on the differential flatness(DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the co...This paper proposes a distributed control method based on the differential flatness(DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the control objective. The DF mapping refers to the fact that the system state and input of each robot can be derived algebraically from the flat outputs of the leaders and the cooperative errors and their finite order derivatives. Based on the proposed swarm DF mapping, a distributed controller is designed. The distributed implementation of swarm DF mapping is achieved through observer design. The effectiveness of the proposed method is validated through a numerical simulation of quadrotor swarm synchronization.展开更多
A distributed control system of Neutral Beam Injector (NBI) on the Experimental Advanced Superconducting Tokamak (EAST-NBI) is briefly presented in this paper. The control system is developed in accordance with th...A distributed control system of Neutral Beam Injector (NBI) on the Experimental Advanced Superconducting Tokamak (EAST-NBI) is briefly presented in this paper. The control system is developed in accordance with the experimental operational characteristics of the EAST- NBI. The NBI control system (NBICS), which is based on the computer network technologies and classified according to the control levels, consists of three levels: a remote monitoring layer, a server control layer, and a field control layer. The 3-layer architecture is capable of extending the system functions and upgrading devices. The timing system provides the reference clock of the synchronization and interlock for the EAST-NBI system. An interlock system ensures the safety of the experiment operators and field devices. Both of the ion sources of the beamline are designed to operate independently. This lays an important foundation for developing a control system for the second beamline on EAST. Experimental results demonstrate that the NBICS meets functional requirements of the EAST-NBI control, and makes experimental operations visual and automatic.展开更多
This paper considers how to use a group of robots to sense and control a diffusion process.The diffusion process is modeled by a partial differential equation (PDE),which is a both spatially and temporally variant sys...This paper considers how to use a group of robots to sense and control a diffusion process.The diffusion process is modeled by a partial differential equation (PDE),which is a both spatially and temporally variant system.The robots can serve as mobile sensors,actuators,or both.Centroidal Voronoi Tessellations based coverage control algorithm is proposed for the cooperative sensing task.For the diffusion control problem,this paper considers spraying control via a group of networked mobile robots equipped with chemical neutralizers,known as smart mobile sprayers or actuators,in a domain of interest having static mesh sensor network for concentration sensing.This paper also introduces the information sharing and consensus strategy when using centroidal Voronoi tessellations algorithm to control a diffusion process.The information is shared not only on where to spray but also on how much to spray among the mobile actuators.Benefits from using CVT and information consensus seeking for sensing and control of a diffusion process are demonstrated in simulation results.展开更多
A dynamic modelling and controller design were presented for a single-link smart materials beam, a flexible beam bonded with piezoelectric actuators and sensors for better control performance. Taking into account boun...A dynamic modelling and controller design were presented for a single-link smart materials beam, a flexible beam bonded with piezoelectric actuators and sensors for better control performance. Taking into account bounded disturbances, a robust distributed controller was constructed based on the system model, which was described by a set of partial differential equations (PDEs) and boundary conditions (BCs) . Subsequently, a finite dimensional controller was further developed, and it was proven that this controller can stabilize the finite dimensional model with arbitrary number of flexible modes. Keywords Dynamic modelling - Robust distributed controller - Flexible beam - Smart material展开更多
A distributed control system is designed for plasma spraying equipment and the configurations of system software and hardware is discussed. Through founding an expert database, the spraying process parameters are work...A distributed control system is designed for plasma spraying equipment and the configurations of system software and hardware is discussed. Through founding an expert database, the spraying process parameters are worked out and the initialization and control of spraying process are realized. The plasma spraying system with this control configuration can simplify the spraying operation, improve automation level of spray process, and approach the experience criterion as soon as possible.展开更多
Considering dual distributed controllers, a design of optimal state estimation strategy is studied for the wireless sensor and actuator network(WSAN). In particular, the optimal linear quadratic(LQ) control strategy w...Considering dual distributed controllers, a design of optimal state estimation strategy is studied for the wireless sensor and actuator network(WSAN). In particular, the optimal linear quadratic(LQ) control strategy with estimated plant state is formulated as a non-cooperative game with network-induced delays. Then, using the Kalman filter approach, an optimal estimation of the plant state is obtained based on the information fusion of the distributed controllers. Finally, an optimal state estimation strategy is derived as a linear function of the current estimated plant state and the last control strategy of multiple controllers. The effectiveness of the proposed closed-loop control strategy is verified by the simulation experiments.展开更多
In this study, a distributed optimal control problem for <em>n</em> × <em>n</em> cooperative hyperbolic systems with infinite order operators and Dirichlet conditions are considered. The e...In this study, a distributed optimal control problem for <em>n</em> × <em>n</em> cooperative hyperbolic systems with infinite order operators and Dirichlet conditions are considered. The existence and uniqueness of the state of these systems are proved. The necessary and sufficient conditions for optimality of distributed control with constraints are found, and the set of equations and inequalities that defining the optimal control of these systems is also obtained. Finally, some examples for the control problem without constraints are given.展开更多
The paper presents the distributed control system for rice mill using C#language.The real-time manufacturing system can be implemented by utilizing the signal from the real time control units that is more operative th...The paper presents the distributed control system for rice mill using C#language.The real-time manufacturing system can be implemented by utilizing the signal from the real time control units that is more operative than other old-fashioned control systems in the extent of modern industrial days.The software-based Distributed Control System(DCS)is novel fashionable than any other conventional control systems in the state-ofthe-art manufacturing developments.This research study emphasizes on the implementation of the DCS-based rice mill using visual C#.net.The Industrial Ethernet(IE)is realized between the top level controller for the operator and the controlled station for the remote devices.The model of client-server approach is more appropriate for the automation and manufacturing research purposes.In this study,the computer graphical simulation of the complete control development is depicted in real-time status quo by visual C#language under Visual Studio 2008 software.The parallel ports in the computers of remote terminal level and the master terminal level controllers have been interconnected with port interface coding by visual C#program.展开更多
This paper studies the fully distributed formation control problem of multi-robot systems without global position measurements subject to unknown longitudinal slippage constraints.It is difficult for robots to obtain ...This paper studies the fully distributed formation control problem of multi-robot systems without global position measurements subject to unknown longitudinal slippage constraints.It is difficult for robots to obtain accurate and stable global position information in many cases,such as when indoors,tunnels and any other environments where GPS(global positioning system)is denied,thus it is meaningful to overcome the dependence on global position information.Additionally,unknown slippage,which is hard to avoid for wheeled robots due to the existence of ice,sand,or muddy roads,can not only affect the control performance of wheeled robot,but also limits the application scene of wheeled mobile robots.To solve both problems,a fully distributed finite time state observer which does not require any global position information is proposed,such that each follower robot can estimate the leader’s states within finite time.The distributed adaptive controllers are further designed for each follower robot such that the desired formation can be achieved while overcoming the effect of unknown slippage.Finally,the effectiveness of the proposed observer and control laws are verified by simulation results.展开更多
Aiming at the shortcomings of a traditional centralized control in an active distribution network(AND),this paper proposes a leader-follower distributed group cooperative control strategy to realize multiple operation...Aiming at the shortcomings of a traditional centralized control in an active distribution network(AND),this paper proposes a leader-follower distributed group cooperative control strategy to realize multiple operation and control tasks for an ADN.The distributed information exchange protocols of the distributed generation(DG)group devoted to node voltage regulation or exchange power control are developed using a DG power utilization ratio as the consensus variable.On these bases,this study further investigates the leader optimal selection method for a DG group to improve the response speed of the distributed control system.Furthermore,a single or multiple leader selection model is established to minimize the constraints of the one-step convergence factor and the number of leaders to improve the response speed of the distributed control system.The simulation results of the IEEE 33 bus standard test system show the effectiveness of the proposed distributed control strategy.In addition,the response speed of a DG control group can be improved effectively when the single or multiple leaders are selected optimally.展开更多
The physical connections and logical relationships between microgrids and communication networks allow microgrids to develop into typical cyber-physical systems(CPSs).With the extensive use of open communication mecha...The physical connections and logical relationships between microgrids and communication networks allow microgrids to develop into typical cyber-physical systems(CPSs).With the extensive use of open communication mechanisms,the impact of cyber disturbances in public communication networks cannot be diminshed.In this paper,a parameter optimal method for a distributed secondary controller based on the robust control theory and consensus algorithm is presented to enhance the robustness of a secondary control system under data disturbance,parameter perturbation,and time delay.First,a distributed secondary control strategy of microgrids is demonstrated that coordinates frequency and voltage restoration and power sharing.Then,considering the impact of cyber events on the secondary control,a distributed robust controller gain design method is proposed to satisfy the H∞ performance index.The solution of the distributed robust control is transformed into a linear matrix in equation problem and latency margin is simultaneously obtained.Finally,a test microgrid CPS is simulated with and without time delay to investigate the impact of cyber events on system operational states and the effectiveness and robustness of the proposed method.展开更多
Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited comp...Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited computation and communication resources of the secondary controller.To enhance the efficiency of secondary control,we developed a novel distributed self-triggered active power-sharing control strategy by introducing the signum function and a flexible linear clock.Unlike continuous communication–based controllers,the proposed self-triggered distributed controller prompts distributed generators to perform control actions and share information with their neighbors only at specific time instants monitored by the linear clock.Therefore,this approach results in a significant reduction in both the computation and communication requirements.Moreover,this design naturally avoids Zeno behavior.Furthermore,a modified triggering condition was established to achieve further reductions in computation and communication.The simulation results confirmed that the proposed control scheme achieves distributed active power sharing with very few controller triggers,thereby substantially enhancing the efficacy of secondary control in MGs.展开更多
In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory...In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.展开更多
The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calcula...The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.展开更多
The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked age...The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.展开更多
High penetration of solar energy can result in voltage rise in midday,while growth in residential air conditioning is the main contributor of overloading and voltage drop issues during peak demand time.This paper prov...High penetration of solar energy can result in voltage rise in midday,while growth in residential air conditioning is the main contributor of overloading and voltage drop issues during peak demand time.This paper provides a hierarchical control scheme to coordinate multiple groups of aggregated thermostatically controlled loads to regulate network loading and voltage in a distribution network.Considering the limited number of messages that can be exchanged in a realistic communication environment,an event-triggered distributed control strategy is proposed in this paper.Through intermittent on and off toggling of air conditioners,the required active power adjustment is shared among participating aggregators to solve the issue.A case study is conducted and simulation results are presented to demonstrate the performance of the proposed control scheme.展开更多
In this paper, an online optimal distributed learning algorithm is proposed to solve leader-synchronization problem of nonlinear multi-agent differential graphical games. Each player approximates its optimal control p...In this paper, an online optimal distributed learning algorithm is proposed to solve leader-synchronization problem of nonlinear multi-agent differential graphical games. Each player approximates its optimal control policy using a single-network approximate dynamic programming(ADP) where only one critic neural network(NN) is employed instead of typical actorcritic structure composed of two NNs. The proposed distributed weight tuning laws for critic NNs guarantee stability in the sense of uniform ultimate boundedness(UUB) and convergence of control policies to the Nash equilibrium. In this paper, by introducing novel distributed local operators in weight tuning laws, there is no more requirement for initial stabilizing control policies. Furthermore, the overall closed-loop system stability is guaranteed by Lyapunov stability analysis. Finally, Simulation results show the effectiveness of the proposed algorithm.展开更多
Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To...Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To deal with the distributed time-delay in a large-scale plant,the time-delay compensation controller based on DCS devices is designed by using operator theory and particle filter.Distributed control system(DCS)device is developed to monitor and control from the central monitoring room to each process.The particle filter is a probabilistic method to estimate unobservable information from observable information.First,remote control system and experimental equipment are introduced.Second,control system based on an operator theory is designed.Then,process system with distributed time-delay using particle filter is carried out.Finally,the actual experiment is conducted by using the proposed time-delay compensation controller.When estimating with the proposed method,the result is close to the case in which the distributed time-delay does not exist.The effectiveness of the proposed control system is confirmed by experiment results.展开更多
This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on th...This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.展开更多
基金supported by the National Natural Science Fundation of China(5147618751506221)+1 种基金the Natural Science Basic Research Plan in Shaanxi Province of China(2015JQ51792015JM5207)
文摘The chattering characteristic of sliding mode control isanalyzed when it is applied in distributed control systems (DCSs).For a DCS with random time delay and packet dropout, a discreteswitching system model with time varying sampling period isconstructed based on the time delay system method. The reachinglaw based sliding mode controller is applied in the proposedsystem. The exponential stability condition in the form of linearmatrix inequality is figured out based on the multi-Lyaponov functionmethod. Then, the chattering characteristic is analyzed for theswitching system, and a chattering region related with time varyingsampling period and external disturbance is proposed. Finally, numericalexamples are given to illustrate the validity of the analysisresult.
基金Project supported by the National Natural Science Foundation of China (Nos. 62373025, 12332004,62003013, and 11932003)。
文摘This paper proposes a distributed control method based on the differential flatness(DF) property of robot swarms. The swarm DF mapping is established for underactuated differentially flat dynamics, according to the control objective. The DF mapping refers to the fact that the system state and input of each robot can be derived algebraically from the flat outputs of the leaders and the cooperative errors and their finite order derivatives. Based on the proposed swarm DF mapping, a distributed controller is designed. The distributed implementation of swarm DF mapping is achieved through observer design. The effectiveness of the proposed method is validated through a numerical simulation of quadrotor swarm synchronization.
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB101001)
文摘A distributed control system of Neutral Beam Injector (NBI) on the Experimental Advanced Superconducting Tokamak (EAST-NBI) is briefly presented in this paper. The control system is developed in accordance with the experimental operational characteristics of the EAST- NBI. The NBI control system (NBICS), which is based on the computer network technologies and classified according to the control levels, consists of three levels: a remote monitoring layer, a server control layer, and a field control layer. The 3-layer architecture is capable of extending the system functions and upgrading devices. The timing system provides the reference clock of the synchronization and interlock for the EAST-NBI system. An interlock system ensures the safety of the experiment operators and field devices. Both of the ion sources of the beamline are designed to operate independently. This lays an important foundation for developing a control system for the second beamline on EAST. Experimental results demonstrate that the NBICS meets functional requirements of the EAST-NBI control, and makes experimental operations visual and automatic.
基金supported in part by NSF grants #0552758,#0851709, and #0540179.
文摘This paper considers how to use a group of robots to sense and control a diffusion process.The diffusion process is modeled by a partial differential equation (PDE),which is a both spatially and temporally variant system.The robots can serve as mobile sensors,actuators,or both.Centroidal Voronoi Tessellations based coverage control algorithm is proposed for the cooperative sensing task.For the diffusion control problem,this paper considers spraying control via a group of networked mobile robots equipped with chemical neutralizers,known as smart mobile sprayers or actuators,in a domain of interest having static mesh sensor network for concentration sensing.This paper also introduces the information sharing and consensus strategy when using centroidal Voronoi tessellations algorithm to control a diffusion process.The information is shared not only on where to spray but also on how much to spray among the mobile actuators.Benefits from using CVT and information consensus seeking for sensing and control of a diffusion process are demonstrated in simulation results.
文摘A dynamic modelling and controller design were presented for a single-link smart materials beam, a flexible beam bonded with piezoelectric actuators and sensors for better control performance. Taking into account bounded disturbances, a robust distributed controller was constructed based on the system model, which was described by a set of partial differential equations (PDEs) and boundary conditions (BCs) . Subsequently, a finite dimensional controller was further developed, and it was proven that this controller can stabilize the finite dimensional model with arbitrary number of flexible modes. Keywords Dynamic modelling - Robust distributed controller - Flexible beam - Smart material
文摘A distributed control system is designed for plasma spraying equipment and the configurations of system software and hardware is discussed. Through founding an expert database, the spraying process parameters are worked out and the initialization and control of spraying process are realized. The plasma spraying system with this control configuration can simplify the spraying operation, improve automation level of spray process, and approach the experience criterion as soon as possible.
基金Supported by the National Natural Science Foundation of China(No.61701010,61571021,61601330)
文摘Considering dual distributed controllers, a design of optimal state estimation strategy is studied for the wireless sensor and actuator network(WSAN). In particular, the optimal linear quadratic(LQ) control strategy with estimated plant state is formulated as a non-cooperative game with network-induced delays. Then, using the Kalman filter approach, an optimal estimation of the plant state is obtained based on the information fusion of the distributed controllers. Finally, an optimal state estimation strategy is derived as a linear function of the current estimated plant state and the last control strategy of multiple controllers. The effectiveness of the proposed closed-loop control strategy is verified by the simulation experiments.
文摘In this study, a distributed optimal control problem for <em>n</em> × <em>n</em> cooperative hyperbolic systems with infinite order operators and Dirichlet conditions are considered. The existence and uniqueness of the state of these systems are proved. The necessary and sufficient conditions for optimality of distributed control with constraints are found, and the set of equations and inequalities that defining the optimal control of these systems is also obtained. Finally, some examples for the control problem without constraints are given.
文摘The paper presents the distributed control system for rice mill using C#language.The real-time manufacturing system can be implemented by utilizing the signal from the real time control units that is more operative than other old-fashioned control systems in the extent of modern industrial days.The software-based Distributed Control System(DCS)is novel fashionable than any other conventional control systems in the state-ofthe-art manufacturing developments.This research study emphasizes on the implementation of the DCS-based rice mill using visual C#.net.The Industrial Ethernet(IE)is realized between the top level controller for the operator and the controlled station for the remote devices.The model of client-server approach is more appropriate for the automation and manufacturing research purposes.In this study,the computer graphical simulation of the complete control development is depicted in real-time status quo by visual C#language under Visual Studio 2008 software.The parallel ports in the computers of remote terminal level and the master terminal level controllers have been interconnected with port interface coding by visual C#program.
基金supported by the National Natural Science Foundation of China(61922063,61773289)Shanghai Shuguang Project(18SG18)+2 种基金Shanghai Natural Science Foundation(19ZR1461400)Shanghai Sailing Program(20YF1452900)Fundamental Research Funds for the Central Universities。
文摘This paper studies the fully distributed formation control problem of multi-robot systems without global position measurements subject to unknown longitudinal slippage constraints.It is difficult for robots to obtain accurate and stable global position information in many cases,such as when indoors,tunnels and any other environments where GPS(global positioning system)is denied,thus it is meaningful to overcome the dependence on global position information.Additionally,unknown slippage,which is hard to avoid for wheeled robots due to the existence of ice,sand,or muddy roads,can not only affect the control performance of wheeled robot,but also limits the application scene of wheeled mobile robots.To solve both problems,a fully distributed finite time state observer which does not require any global position information is proposed,such that each follower robot can estimate the leader’s states within finite time.The distributed adaptive controllers are further designed for each follower robot such that the desired formation can be achieved while overcoming the effect of unknown slippage.Finally,the effectiveness of the proposed observer and control laws are verified by simulation results.
文摘Aiming at the shortcomings of a traditional centralized control in an active distribution network(AND),this paper proposes a leader-follower distributed group cooperative control strategy to realize multiple operation and control tasks for an ADN.The distributed information exchange protocols of the distributed generation(DG)group devoted to node voltage regulation or exchange power control are developed using a DG power utilization ratio as the consensus variable.On these bases,this study further investigates the leader optimal selection method for a DG group to improve the response speed of the distributed control system.Furthermore,a single or multiple leader selection model is established to minimize the constraints of the one-step convergence factor and the number of leaders to improve the response speed of the distributed control system.The simulation results of the IEEE 33 bus standard test system show the effectiveness of the proposed distributed control strategy.In addition,the response speed of a DG control group can be improved effectively when the single or multiple leaders are selected optimally.
文摘The physical connections and logical relationships between microgrids and communication networks allow microgrids to develop into typical cyber-physical systems(CPSs).With the extensive use of open communication mechanisms,the impact of cyber disturbances in public communication networks cannot be diminshed.In this paper,a parameter optimal method for a distributed secondary controller based on the robust control theory and consensus algorithm is presented to enhance the robustness of a secondary control system under data disturbance,parameter perturbation,and time delay.First,a distributed secondary control strategy of microgrids is demonstrated that coordinates frequency and voltage restoration and power sharing.Then,considering the impact of cyber events on the secondary control,a distributed robust controller gain design method is proposed to satisfy the H∞ performance index.The solution of the distributed robust control is transformed into a linear matrix in equation problem and latency margin is simultaneously obtained.Finally,a test microgrid CPS is simulated with and without time delay to investigate the impact of cyber events on system operational states and the effectiveness and robustness of the proposed method.
基金Key Laboratory of Modern Power System Simulation and Control&Renewable Energy Technology(Northeast Electric Power University)Open Fund(MPSS2023⁃01)National Natural Science Foundation of China(No.52477133)+2 种基金Hainan Provincial Natural Science Foundation of China(No.524RC532)Research Startup Funding from Hainan Institute of Zhejiang University(No.0210-6602-A12202)Project of Sanya Yazhou Bay Science and Technology City(No.SKJC-2022-PTDX-009/010/011).
文摘Traditional active power sharing in microgrids,achieved by the distributed average consensus,requires each controller to continuously trigger and communicate with each other,which is a wasteful use of the limited computation and communication resources of the secondary controller.To enhance the efficiency of secondary control,we developed a novel distributed self-triggered active power-sharing control strategy by introducing the signum function and a flexible linear clock.Unlike continuous communication–based controllers,the proposed self-triggered distributed controller prompts distributed generators to perform control actions and share information with their neighbors only at specific time instants monitored by the linear clock.Therefore,this approach results in a significant reduction in both the computation and communication requirements.Moreover,this design naturally avoids Zeno behavior.Furthermore,a modified triggering condition was established to achieve further reductions in computation and communication.The simulation results confirmed that the proposed control scheme achieves distributed active power sharing with very few controller triggers,thereby substantially enhancing the efficacy of secondary control in MGs.
文摘In this paper, platoons of autonomous vehicles operating in urban road networks are considered. From a methodological point of view, the problem of interest consists of formally characterizing vehicle state trajectory tubes by means of routing decisions complying with traffic congestion criteria. To this end, a novel distributed control architecture is conceived by taking advantage of two methodologies: deep reinforcement learning and model predictive control. On one hand, the routing decisions are obtained by using a distributed reinforcement learning algorithm that exploits available traffic data at each road junction. On the other hand, a bank of model predictive controllers is in charge of computing the more adequate control action for each involved vehicle. Such tasks are here combined into a single framework:the deep reinforcement learning output(action) is translated into a set-point to be tracked by the model predictive controller;conversely, the current vehicle position, resulting from the application of the control move, is exploited by the deep reinforcement learning unit for improving its reliability. The main novelty of the proposed solution lies in its hybrid nature: on one hand it fully exploits deep reinforcement learning capabilities for decisionmaking purposes;on the other hand, time-varying hard constraints are always satisfied during the dynamical platoon evolution imposed by the computed routing decisions. To efficiently evaluate the performance of the proposed control architecture, a co-design procedure, involving the SUMO and MATLAB platforms, is implemented so that complex operating environments can be used, and the information coming from road maps(links,junctions, obstacles, semaphores, etc.) and vehicle state trajectories can be shared and exchanged. Finally by considering as operating scenario a real entire city block and a platoon of eleven vehicles described by double-integrator models, several simulations have been performed with the aim to put in light the main f eatures of the proposed approach. Moreover, it is important to underline that in different operating scenarios the proposed reinforcement learning scheme is capable of significantly reducing traffic congestion phenomena when compared with well-reputed competitors.
基金supported by the National Natural Science Foundation of China(52372310)the State Key Laboratory of Advanced Rail Autonomous Operation(RAO2023ZZ001)+1 种基金the Fundamental Research Funds for the Central Universities(2022JBQY001)Beijing Laboratory of Urban Rail Transit.
文摘The emerging virtual coupling technology aims to operate multiple train units in a Virtually Coupled Train Set(VCTS)at a minimal but safe distance.To guarantee collision avoidance,the safety distance should be calculated using the state-of-the-art space-time separation principle that separates the Emergency Braking(EB)trajectories of two successive units during the whole EB process.In this case,the minimal safety distance is usually numerically calculated without an analytic formulation.Thus,the constrained VCTS control problem is hard to address with space-time separation,which is still a gap in the existing literature.To solve this problem,we propose a Distributed Economic Model Predictive Control(DEMPC)approach with computation efficiency and theoretical guarantee.Specifically,to alleviate the computation burden,we transform implicit safety constraints into explicitly linear ones,such that the optimal control problem in DEMPC is a quadratic programming problem that can be solved efficiently.For theoretical analysis,sufficient conditions are derived to guarantee the recursive feasibility and stability of DEMPC,employing compatibility constraints,tube techniques and terminal ingredient tuning.Moreover,we extend our approach with globally optimal and distributed online EB configuration methods to shorten the minimal distance among VCTS.Finally,experimental results demonstrate the performance and advantages of the proposed approaches.
基金Supported by the National Natural Science Foundation of China(91016017)the National Aviation Found of China(20115868009)~~
文摘The cooperative control and stability analysis problems for the multi-agent system with sampled com- munication are investigated. Distributed state feedback controllers are adopted for the cooperation of networked agents. A theorem in the form of linear matrix inequalities(LMI) is derived to analyze the system stability. An- other theorem in the form of optimization problem subject to LMI constraints is proposed to design the controller, and then the algorithm is presented. The simulation results verify the validity and the effectiveness of the pro- posed approach.
基金supported in part by the National Natural Science Foundation of China under Grant 71331001,71401017funding from mid-career researcher development scheme,the Faculty of Engineering&Information Technologies,The University of Sydneyin part by the 2015 Science and Technology Project of China Southern Power Grid under Grant WYKJ00000027.
文摘High penetration of solar energy can result in voltage rise in midday,while growth in residential air conditioning is the main contributor of overloading and voltage drop issues during peak demand time.This paper provides a hierarchical control scheme to coordinate multiple groups of aggregated thermostatically controlled loads to regulate network loading and voltage in a distribution network.Considering the limited number of messages that can be exchanged in a realistic communication environment,an event-triggered distributed control strategy is proposed in this paper.Through intermittent on and off toggling of air conditioners,the required active power adjustment is shared among participating aggregators to solve the issue.A case study is conducted and simulation results are presented to demonstrate the performance of the proposed control scheme.
文摘In this paper, an online optimal distributed learning algorithm is proposed to solve leader-synchronization problem of nonlinear multi-agent differential graphical games. Each player approximates its optimal control policy using a single-network approximate dynamic programming(ADP) where only one critic neural network(NN) is employed instead of typical actorcritic structure composed of two NNs. The proposed distributed weight tuning laws for critic NNs guarantee stability in the sense of uniform ultimate boundedness(UUB) and convergence of control policies to the Nash equilibrium. In this paper, by introducing novel distributed local operators in weight tuning laws, there is no more requirement for initial stabilizing control policies. Furthermore, the overall closed-loop system stability is guaranteed by Lyapunov stability analysis. Finally, Simulation results show the effectiveness of the proposed algorithm.
基金Project(K117K06225)supported by JSPS KAKENHI,Japan
文摘Remote control process system with distributed time-delay has attracted much attention in different fields.In this paper,non-linear remote control of a single tank process system with wireless network is considered.To deal with the distributed time-delay in a large-scale plant,the time-delay compensation controller based on DCS devices is designed by using operator theory and particle filter.Distributed control system(DCS)device is developed to monitor and control from the central monitoring room to each process.The particle filter is a probabilistic method to estimate unobservable information from observable information.First,remote control system and experimental equipment are introduced.Second,control system based on an operator theory is designed.Then,process system with distributed time-delay using particle filter is carried out.Finally,the actual experiment is conducted by using the proposed time-delay compensation controller.When estimating with the proposed method,the result is close to the case in which the distributed time-delay does not exist.The effectiveness of the proposed control system is confirmed by experiment results.
基金supported in part by the National Natural Science Foundation of China(61873056,61621004,61420106016)the Fundamental Research Funds for the Central Universities in China(N2004001,N2004002,N182608004)the Research Fund of State Key Laboratory of Synthetical Automation for Process Industries in China(2013ZCX01)。
文摘This paper investigates the distributed fault-tolerant containment control(FTCC)problem of nonlinear multi-agent systems(MASs)under a directed network topology.The proposed control framework which is independent on the global information about the communication topology consists of two layers.Different from most existing distributed fault-tolerant control(FTC)protocols where the fault in one agent may propagate over network,the developed control method can eliminate the phenomenon of fault propagation.Based on the hierarchical control strategy,the FTCC problem with a directed graph can be simplified to the distributed containment control of the upper layer and the fault-tolerant tracking control of the lower layer.Finally,simulation results are given to demonstrate the effectiveness of the proposed control protocol.