The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around...The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate.展开更多
Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is...Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is used to systematically analyze the effects of astronomical factors,such as solar activity,Earth’s rotation,lunar declination angle,celestial tidal force,and other phenomena on M≥8 global earthquakes at the beginning of the 21st century.With regard to solar activity,this study focuses on the analysis of the 11-year and century cycles of solar activity.The causal relationship of the Earth’s rotation is not obvious in this work and previous works;in contrast,the valley period of the solar activity century cycle may be an important astronomical factor leading to the frequent occurrence of global earthquakes at the beginning of the 21st century.This topic warrants further study.展开更多
The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters...The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters.Forecasting of the underlying intensity trend plays an important role in the analysis of data and disaster monitoring.Combining chaos theory and the radial basis function neural network,this paper proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal.The main strategy of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neural network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data.In verification experiments,we employ the 3 and 6 days’data of two channels as training samples to forecast the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively.According to the forecasting results and absolute error results,the chaotic radial basis function forecasting model can fit the fluctuation trend of the actual signal strength,effectively reduce the forecasting error compared with the traditional radial basis function model.Hence,this network may be useful for studying the characteristics of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can contribute to the electromagnetic anomaly monitoring before the earthquake.展开更多
The basic principle of spectral combination method is discussed,and the general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are shown.What...The basic principle of spectral combination method is discussed,and the general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are shown.What's more,based on degree error RMS of potential coefficients,the detailed expressions of spectral combination formulae and the corresponding spectral weights in the Earth's gravitational field model(EGM) determination using GOCE + GRACE and CHAMP + GRACE + GOCE are derived.The fundamental situation that ulux-champ2013 s,tongji-GRACE01,go-cons-gcf-2-tim-r5 constructed respectively by CHAMP,GRACE,GOCE data and go-cons-gcf-2-dir-r5 constructed by syncretic processing of GRACE,GOCE and LAGEOS data are explained briefly,the degree error RMS,cumulative geoid height error and cumulative gravity anomaly error of these models are calculated.A syncretic model constructed from CHAMP,GRACE and GOCE data,which is expressed by champ + grace + goce,is obtained based on spectral combination method.Experimentation results show that the precision of CHAMP data model is the lowest in satellite-only models,so it is not needed in the determination of syncretic models.The GRACE data model can improve the GOCE data model in medium-long wavelength,so the overall precision of syncretic model can be improved.Consequently,as many types of gravimetric data as possible should be combined together in the data processing in order to strengthen the quality and reliability with widening scope and improve the precision and spatial resolution of the computational results.展开更多
The synthetic tidal parameters with high spatial resolution for gravity over China and its neighbor area are constructed with Earth's tidal model and ocean tide loading calculated using TPXO7 global ocean tide model ...The synthetic tidal parameters with high spatial resolution for gravity over China and its neighbor area are constructed with Earth's tidal model and ocean tide loading calculated using TPXO7 global ocean tide model as well as tidal data over China seas. The comparison between synthetic parameters and ones observed by spring gravimeters at some seismic network stations and Hong Kong station and one observed by super-conducting gravimeter at Wuhan station shows that the average differences in amplitude factors and phases are smaller than 0.005 and 0.5° respectively; and that the discrepancies between observational and synthetic parameters are dependent on gravimetric technique in that the synthetic parameters are in well agreement with the superconducting gravimetric observations. This also indicates that the synthetic result is a good estimation for tidal gravity, and the numerical results in the present paper not only can provide ground and space gravimetry such as absolute gravimetry with correction model of tidal gravity, but also provide effective tidal parameters over areas where no observation is carried out.展开更多
Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer ...Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications.展开更多
We compile the GOCE-only satellite model GOSG01S complete to spherical harmonic degree of 220 using Satellite Gravity Gradiometry (SGG) data and the Satellite-to-Satellite Tracking (SST) observations along the GOC...We compile the GOCE-only satellite model GOSG01S complete to spherical harmonic degree of 220 using Satellite Gravity Gradiometry (SGG) data and the Satellite-to-Satellite Tracking (SST) observations along the GOCE orbit based on applying a least-squares analysis. The diagonal components (Vxx, Vyy, Vzz) of the gravitational gradient tensor are used to form the system of observation equations with the band-pass ARMA filter. The point-wise acceleration observations (ax, ay, az) along the orbit are used to form the system of observation equations up to the maximum spherical harmonic degree/order 130. The analysis of spectral accuracy characteristics of the newly derived gravitational model GOSG01S and the existing models GOTIM04S, GODIR04S, GOSPW04S and JYY_GOCE02S based on their comparison with the ultrahigh degree model EIGEN-6C2 reveals a significant consistency at the spectral window approximately between 80 and 190 due to the same period SGG data used to compile these models. The GOCE related satellite gravity models GOSG01S, GOTIM05S, GODIR05S, GOTIM04S, GODIR04S, GOSPW04S, JYY_- GOCE02S, EIGEN-6C2 and EGM2008 are also validated by using GPS-leveling data in China and USA. According to the truncation at degree 200, the statistic results show that all GGMs have very similar differences at GPS-leveling points in USA, and all GOCE related gravity models have better performance than EGM2008 in China. This suggests that all these models provide much more information on the gravity field than EGM2008 in areas with low terrestrial gravity coverage. And STDs of height anomaly differences in China for the selected truncation degrees show that GOCE has improved the accuracy of the global models beyond degree 90 and the accuracies of the models improve from 24 cm to 16 cm. STDs of geoid height differences in USA show that GOSG01S model has best consistency comparing with GPSleveling data for the frequency band of the degree between 20 and 160.展开更多
The insecticidal efficacy of the diatomaceous earth against granary weevil, Sitophilus granarius L. (Coleoptera: Curculionidae), with two essential oils for the degree of repellent activity, was evaluated in an exp...The insecticidal efficacy of the diatomaceous earth against granary weevil, Sitophilus granarius L. (Coleoptera: Curculionidae), with two essential oils for the degree of repellent activity, was evaluated in an experimental model in laboratory tests. The diatomaceous earth was obtained from three Romanian sources (Patirlagele, Urloaia and Adamclisi) and was applied at four doses of 100, 300, 500 and 900 ppm (5, 15, 25 and 45 mg, respectively) on three replicates each variant. Mortality of S. granarius adults was estimated after 7, 14 and 21 d of exposure on treated grain. The insecticidal efficacy of the examined diatomaceous earth against the granary weevil was highly influenced by exposure time, dose and essential oil type. The longer exposure times increased weevil mortality in the case of low doses (100 ppm and 300 ppm). After 60 d from the experiment initiation, the exposed grains from each variant were assessed about the progeny production. For the model proposed as bio-experiment, two essential oils in concentration of 80μL/L air and 125μL/L of Thymus vulgaris L. and Satureja hortensis L., respectively, were tested compared with untreated control in laboratory conditions. Both plant species belong to the family Lamiaceae, and the major active insecticidal compound was thymol among other providing to terpenoid class, such as eugenol and linalool. The species S. granarius chosen for experimental model was grown in the Research-Development Institute of Plant Protection (RDIPP) Bucharest bio-base. The results show that mortality induced from diatomaceous earth was at the level between 83.33% and 100% in all variants after 21 d, compared with untreated control and a standard product Silicosec.展开更多
The Macao Science Satellite-1(MSS-1),designed by the Macao University of Science and Technology and the National Space Science Center(NSSC)of China,is equipped to detect the fine structure of the magnetic field over t...The Macao Science Satellite-1(MSS-1),designed by the Macao University of Science and Technology and the National Space Science Center(NSSC)of China,is equipped to detect the fine structure of the magnetic field over the South Atlantic Anomaly(SAA)region,monitoring geomagnetic field variations,and obtaining the energetic electron spectrum distributions in the Earth’s inner radiation belt.In this study,we simulate the distributions of trapped,quasi-trapped,and untrapped electrons along the orbit of MSS-1 based on a drift-source model.The simulation results show that the particle detector with 90°looking direction can observe trapped electrons in the SAA region,untrapped electrons in the regions conjugated with the SAA region at the north hemisphere,and quasitrapped electrons in all other regions.In contrast,the detectors with<60°looking directions can measure only untrapped electrons.Generally,quasi-trapped electron fluxes accumulate along the drift trajectory and are due primarily to CRAND,until reaching the SAA region where quasi-trapped electrons are all lost into the atmosphere.展开更多
The systematic discrepancies in both tsunami arrival time and leading negative phase(LNP)were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel,Chile by examining the wave characteristics ...The systematic discrepancies in both tsunami arrival time and leading negative phase(LNP)were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel,Chile by examining the wave characteristics from the tsunami records at 21 Deep-ocean Assessment and Reporting of Tsunami(DART)sites and 29 coastal tide gauge stations.The results revealed systematic travel time delay of as much as 22 min(approximately 1.7%of the total travel time)relative to the simulated long waves from the 2015 Chilean tsunami.The delay discrepancy was found to increase with travel time.It was difficult to identify the LNP from the near-shore observation system due to the strong background noise,but the initial negative phase feature became more obvious as the tsunami propagated away from the source area in the deep ocean.We determined that the LNP for the Chilean tsunami had an average duration of 33 min,which was close to the dominant period of the tsunami source.Most of the amplitude ratios to the first elevation phase were approximately 40%,with the largest equivalent to the first positive phase amplitude.We performed numerical analyses by applying the corrected long wave model,which accounted for the effects of seawater density stratification due to compressibility,self-attraction and loading(SAL)of the earth,and wave dispersion compared with observed tsunami waveforms.We attempted to accurately calculate the arrival time and LNP,and to understand how much of a role the physical mechanism played in the discrepancies for the moderate transoceanic tsunami event.The mainly focus of the study is to quantitatively evaluate the contribution of each secondary physical effect to the systematic discrepancies using the corrected shallow water model.Taking all of these effects into consideration,our results demonstrated good agreement between the observed and simulated waveforms.We can conclude that the corrected shallow water model can reduce the tsunami propagation speed and reproduce the LNP,which is observed for tsunamis that have propagated over long distances frequently.The travel time delay between the observed and corrected simulated waveforms is reduced to<8 min and the amplitude discrepancy between them was also markedly diminished.The incorporated effects amounted to approximately 78%of the travel time delay correction,with seawater density stratification,SAL,and Boussinesq dispersion contributing approximately 39%,21%,and 18%,respectively.The simulated results showed that the elastic loading and Boussinesq dispersion not only affected travel time but also changed the simulated waveforms for this event.In contrast,the seawater stratification only reduced the tsunami speed,whereas the earth’s elasticity loading was responsible for LNP due to the depression of the seafloor surrounding additional tsunami loading at far-field stations.This study revealed that the traditional shallow water model has inherent defects in estimating tsunami arrival,and the leading negative phase of a tsunami is a typical recognizable feature of a moderately strong transoceanic tsunami.These results also support previous theory and can help to explain the observed discrepancies.展开更多
The geological structure of the White Sea area and the surrounding land areas has been well studied in the framework of individual case studies. There are a number of local models of the deep structure of the Earth’s...The geological structure of the White Sea area and the surrounding land areas has been well studied in the framework of individual case studies. There are a number of local models of the deep structure of the Earth’s crust available. We propose a uniform assessment of deep crustal bodies responsible for long-period (regional) magnetic anomalies and consider their correlation with surface structures. The aim of the study is to build a three-dimensional magnetic model of the Earth’s crust in the White Sea region using aeromagnetic data and modeling technologies of the Integro software package. The model is formed on the basis of a digital map of the anomalous magnetic field reduced to the pole. The sources of magnetic anomalies are considered to be located in the Earth’s crust. The 3D distribution of the relative magnetic susceptibility of rocks was obtained by solving the inverse problem of <span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">magnetic survey. To separate the magnetic sources by frequency and depth, it was necessary to continue the magnetic field of the model upward and to calculate the TDR derivatives, which determine the lateral boundaries of the sources of positive magnetic field anomalies. 2D distributions of magnetic sources of the model for vertical and horizontal sections with depths of 10, 15 and 20 km are analyzed. The correlation between the surface and deep structures of magnetic sources of the Earth’s crust in the region is shown.</span>展开更多
The adaptability of recent ocean tidal models and Earth tidal models is investigated comprehensively by means of 22 high precision tidal gravity observation series at 20 stations of the Global Geodynamics Project. Car...The adaptability of recent ocean tidal models and Earth tidal models is investigated comprehensively by means of 22 high precision tidal gravity observation series at 20 stations of the Global Geodynamics Project. Careful preprocessing of the original observations was carried out using international standard algorithms and the tidal gravity parameters were computed. The gravity load vectors of 8 main constituents are obtained based on loading computation theory and various global ocean models. The loading corrections of 14 secondary constituents are obtained based on a two-dimensional interpolation technique. Considering different characteristics of the wave amplitude, a method of “non-identical weighted mean” is developed for computing the av-eraged observed residual and remaining residual vectors at each station. The efficiency of the loading correction and the discrepancy between corrected amplitude factors and theoretical ones are analyzed. Meanwhile the calibration problem of the instruments is also discussed. After loading correction, the averaged tidal gravity parameters for all stations are obtained. The results show that the discrepancies between the global mean amplitude factors and theoretical values are less than 0.3%, the largest calibration error of the instruments is less than 0.5%. On the other hand, there are indications that the slight phase advance of K1 with respect to O1 in Mathews’ theory could be verified by ground based tidal gravity observations.展开更多
Based on the 28 series of the high precision and high minute sampling tidal gravity observations at 20 stations in Global Geodynamics Project (GGP) network, the resonant parameters of the Earth's nearly diurnal fr...Based on the 28 series of the high precision and high minute sampling tidal gravity observations at 20 stations in Global Geodynamics Project (GGP) network, the resonant parameters of the Earth's nearly diurnal free wobble (including the eigenperiods, resonant strengths and quality factots) are precisely determined. The discrepancy of the eigenperiod between observed and theoretical values is studied, the important conclusion that the real dynamic ellipticity of the liquid core is about 5% larger than the one under the static equilibrium assumption is approved by using our gravity technique. The experimental Earth's tidal gravity models with considering the nearly diurnal free wobble of the Earth's liquid core are constructed in this study. The numerical results show that the difference among three experimental models is less than 0.1%, and the largest discrepancy compared to those widely used nowdays given by Dehant (1999) and Mathews (2001) is only about 0.4%. It can provide with the most recent real experimental tidal gravity models for the global study of the Earth's tides, geodesy and space techniques and so on.展开更多
There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutte...There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutter by using OoSMs. In order to address the nonlinear OoSMs obtained by the airborne radar located on a moving platform from a maneuvering target in clut- ter, an interacting multiple model probabilistic data association (IMMPDA) algorithm with the OoSM is developed. To be practical, the algorithm is based on the Earth-centered Earth-fixed (ECEF) coordinate system where it considers the effect of the platform's attitude and the curvature of the Earth. The proposed method is validated through the Monte Carlo test compared with the perfor- mance of the standard IMMPDA algorithm ignoring the OoSM, and the conclusions show that using the OoSM can improve the track- ing performance, and the shorter the lag step is, the greater degree the performance is improved, but when the lag step is large, the performance is not improved any more by using the OoSM, which can provide some references for engineering application.展开更多
Hypersphere World-Universe Model (WUM) is, in fact, a Paradigm Shift in Cosmology [1]. In this paper, we provide seven Pillars of WUM: Medium of the World;Inter-Connectivity of Primary Cosmological Parameters;Creation...Hypersphere World-Universe Model (WUM) is, in fact, a Paradigm Shift in Cosmology [1]. In this paper, we provide seven Pillars of WUM: Medium of the World;Inter-Connectivity of Primary Cosmological Parameters;Creation of Matter;Multicomponent Dark Matter;Macroobjects;Volcanic Rotational Fission;Dark Matter Reactors. We describe the evolution of the World from the Beginning up to the birth of the Solar System and discuss the condition of the Early Earth before the beginning of life on it.展开更多
文摘The rotation of the Earth and the related length of the day (LOD) are predominantly affected by tidal dissipation through the Moon and the growth of the Earth’s core. Due to the increased concentration of mass around the rotation axis of the spinning Earth during the growth of the core the rotation should have been accelerated. Controversially the tidal dissipation by the Moon, which is mainly dependent on the availability of open shallow seas and the kind of Moon escape from a nearby position, acts towards a deceleration of the rotating Earth. Measurements of LOD for Phanerozoic and Precambrian times open ways to solve questions concerning the geodynamical history of the Earth. These measurements encompass investigations of growth patterns in fossils and depositional patterns in sediments (Cyclostratigraphy, Tidalites, Stromatolites, Rhythmites). These patterns contain information on the LOD and on the changing distance between Earth and Moon and can be used as well for a discussion about the growth of the Earth’s core. By updating an older paper with its simple approach as well as incorporating newly published results provided by the geoscientific community, a moderate to fast growth of the core in a hot early Earth will be favored controversially to the assumption of a delayed development of the core in an originally cold Earth. Core development with acceleration of Earth’s rotation and the contemporaneous slowing down due to tidal dissipation during the filling of the ocean may significantly interrelate.
文摘Since the beginning of the 21st century,major earthquakes have frequently occurred worldwide.To explore the impact of astronomical factors on earthquakes,in this study,the statistical analysis method of correlation is used to systematically analyze the effects of astronomical factors,such as solar activity,Earth’s rotation,lunar declination angle,celestial tidal force,and other phenomena on M≥8 global earthquakes at the beginning of the 21st century.With regard to solar activity,this study focuses on the analysis of the 11-year and century cycles of solar activity.The causal relationship of the Earth’s rotation is not obvious in this work and previous works;in contrast,the valley period of the solar activity century cycle may be an important astronomical factor leading to the frequent occurrence of global earthquakes at the beginning of the 21st century.This topic warrants further study.
基金sponsored by the National Natural Science Foundation of China(61333002)Open Research Foundation of the State Key Laboratory of Geodesy and Earth’s Dynamics(SKLGED2018-5-4-E)+5 种基金Foundation of the Hubei Key Laboratory of Advanced Control and Intelligent Automation for Complex Systems(ACIA2017002)111 projects under Grant(B17040)Open Research Project of the Hubei Key Laboratory of Intelligent Geo-Information Processing(KLIGIP-2017A02)supported by the Three Gorges Research Center for geo-hazardMinistry of Education cooperation agreements of Krasnoyarsk Science Center and Technology BureauRussian Academy of Sciences。
文摘The Earth’s natural pulse electromagnetic field data consists typically of an underlying variation tendency of intensity and irregularities.The change tendency may be related to the occurrence of earthquake disasters.Forecasting of the underlying intensity trend plays an important role in the analysis of data and disaster monitoring.Combining chaos theory and the radial basis function neural network,this paper proposes a forecasting model of the chaotic radial basis function neural network to conduct underlying intensity trend forecasting by the Earth’s natural pulse electromagnetic field signal.The main strategy of this forecasting model is to obtain parameters as the basis for optimizing the radial basis function neural network and to forecast the reconstructed Earth’s natural pulse electromagnetic field data.In verification experiments,we employ the 3 and 6 days’data of two channels as training samples to forecast the 14 and 21-day Earth’s natural pulse electromagnetic field data respectively.According to the forecasting results and absolute error results,the chaotic radial basis function forecasting model can fit the fluctuation trend of the actual signal strength,effectively reduce the forecasting error compared with the traditional radial basis function model.Hence,this network may be useful for studying the characteristics of the Earth’s natural pulse electromagnetic field signal before a strong earthquake and we hope it can contribute to the electromagnetic anomaly monitoring before the earthquake.
基金supported by the National Natural Science Foundation of China(41304022)the National 973 Foundation(61322201,2013CB733303)the Youth Innovation Foundation of High Resolution Earth Observation(GFZX04060103-5-12)
文摘The basic principle of spectral combination method is discussed,and the general expressions of the spectral weight and spectral combination of the united-processing of various types of gravimetric data are shown.What's more,based on degree error RMS of potential coefficients,the detailed expressions of spectral combination formulae and the corresponding spectral weights in the Earth's gravitational field model(EGM) determination using GOCE + GRACE and CHAMP + GRACE + GOCE are derived.The fundamental situation that ulux-champ2013 s,tongji-GRACE01,go-cons-gcf-2-tim-r5 constructed respectively by CHAMP,GRACE,GOCE data and go-cons-gcf-2-dir-r5 constructed by syncretic processing of GRACE,GOCE and LAGEOS data are explained briefly,the degree error RMS,cumulative geoid height error and cumulative gravity anomaly error of these models are calculated.A syncretic model constructed from CHAMP,GRACE and GOCE data,which is expressed by champ + grace + goce,is obtained based on spectral combination method.Experimentation results show that the precision of CHAMP data model is the lowest in satellite-only models,so it is not needed in the determination of syncretic models.The GRACE data model can improve the GOCE data model in medium-long wavelength,so the overall precision of syncretic model can be improved.Consequently,as many types of gravimetric data as possible should be combined together in the data processing in order to strengthen the quality and reliability with widening scope and improve the precision and spatial resolution of the computational results.
基金The Knowledge Innovation Program of the Chinese Academy of Sciences (KZCX2-YW-133)National Nature Science Foundation of China (40730316, 40574034).
文摘The synthetic tidal parameters with high spatial resolution for gravity over China and its neighbor area are constructed with Earth's tidal model and ocean tide loading calculated using TPXO7 global ocean tide model as well as tidal data over China seas. The comparison between synthetic parameters and ones observed by spring gravimeters at some seismic network stations and Hong Kong station and one observed by super-conducting gravimeter at Wuhan station shows that the average differences in amplitude factors and phases are smaller than 0.005 and 0.5° respectively; and that the discrepancies between observational and synthetic parameters are dependent on gravimetric technique in that the synthetic parameters are in well agreement with the superconducting gravimetric observations. This also indicates that the synthetic result is a good estimation for tidal gravity, and the numerical results in the present paper not only can provide ground and space gravimetry such as absolute gravimetry with correction model of tidal gravity, but also provide effective tidal parameters over areas where no observation is carried out.
基金supported by the National Natural Science Foundation of China (Grant Nos. 42025404, 42188101, and 42241143)the National Key R&D Program of China (Grant Nos. 2022YFF0503700 and 2022YFF0503900)+1 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences (Grant No. XDB41000000)the Fundamental Research Funds for the Central Universities (Grant No. 2042022kf1012)
文摘Because radiation belt electrons can pose a potential threat to the safety of satellites orbiting in space,it is of great importance to develop a reliable model that can predict the highly dynamic variations in outer radiation belt electron fluxes.In the present study,we develop a forecast model of radiation belt electron fluxes based on the data assimilation method,in terms of Van Allen Probe measurements combined with three-dimensional radiation belt numerical simulations.Our forecast model can cover the entire outer radiation belt with a high temporal resolution(1 hour)and a spatial resolution of 0.25 L over a wide range of both electron energy(0.1-5.0 MeV)and pitch angle(5°-90°).On the basis of this model,we forecast hourly electron fluxes for the next 1,2,and 3 days during an intense geomagnetic storm and evaluate the corresponding prediction performance.Our model can reasonably predict the stormtime evolution of radiation belt electrons with high prediction efficiency(up to~0.8-1).The best prediction performance is found for~0.3-3 MeV electrons at L=~3.25-4.5,which extends to higher L and lower energies with increasing pitch angle.Our results demonstrate that the forecast model developed can be a powerful tool to predict the spatiotemporal changes in outer radiation belt electron fluxes,and the model has both scientific significance and practical implications.
基金financially supported by the National Key Basic Research Program of China(973 program,grant no.:2013CB733302,2013CB733301)the Major International(Regional) Joint Research Project(grant no.:41210006)+1 种基金DAAD Thematic Network Project(grant no.:57173947)the National Natural Science Foundation of China(grant No.41374022)
文摘We compile the GOCE-only satellite model GOSG01S complete to spherical harmonic degree of 220 using Satellite Gravity Gradiometry (SGG) data and the Satellite-to-Satellite Tracking (SST) observations along the GOCE orbit based on applying a least-squares analysis. The diagonal components (Vxx, Vyy, Vzz) of the gravitational gradient tensor are used to form the system of observation equations with the band-pass ARMA filter. The point-wise acceleration observations (ax, ay, az) along the orbit are used to form the system of observation equations up to the maximum spherical harmonic degree/order 130. The analysis of spectral accuracy characteristics of the newly derived gravitational model GOSG01S and the existing models GOTIM04S, GODIR04S, GOSPW04S and JYY_GOCE02S based on their comparison with the ultrahigh degree model EIGEN-6C2 reveals a significant consistency at the spectral window approximately between 80 and 190 due to the same period SGG data used to compile these models. The GOCE related satellite gravity models GOSG01S, GOTIM05S, GODIR05S, GOTIM04S, GODIR04S, GOSPW04S, JYY_- GOCE02S, EIGEN-6C2 and EGM2008 are also validated by using GPS-leveling data in China and USA. According to the truncation at degree 200, the statistic results show that all GGMs have very similar differences at GPS-leveling points in USA, and all GOCE related gravity models have better performance than EGM2008 in China. This suggests that all these models provide much more information on the gravity field than EGM2008 in areas with low terrestrial gravity coverage. And STDs of height anomaly differences in China for the selected truncation degrees show that GOCE has improved the accuracy of the global models beyond degree 90 and the accuracies of the models improve from 24 cm to 16 cm. STDs of geoid height differences in USA show that GOSG01S model has best consistency comparing with GPSleveling data for the frequency band of the degree between 20 and 160.
文摘The insecticidal efficacy of the diatomaceous earth against granary weevil, Sitophilus granarius L. (Coleoptera: Curculionidae), with two essential oils for the degree of repellent activity, was evaluated in an experimental model in laboratory tests. The diatomaceous earth was obtained from three Romanian sources (Patirlagele, Urloaia and Adamclisi) and was applied at four doses of 100, 300, 500 and 900 ppm (5, 15, 25 and 45 mg, respectively) on three replicates each variant. Mortality of S. granarius adults was estimated after 7, 14 and 21 d of exposure on treated grain. The insecticidal efficacy of the examined diatomaceous earth against the granary weevil was highly influenced by exposure time, dose and essential oil type. The longer exposure times increased weevil mortality in the case of low doses (100 ppm and 300 ppm). After 60 d from the experiment initiation, the exposed grains from each variant were assessed about the progeny production. For the model proposed as bio-experiment, two essential oils in concentration of 80μL/L air and 125μL/L of Thymus vulgaris L. and Satureja hortensis L., respectively, were tested compared with untreated control in laboratory conditions. Both plant species belong to the family Lamiaceae, and the major active insecticidal compound was thymol among other providing to terpenoid class, such as eugenol and linalool. The species S. granarius chosen for experimental model was grown in the Research-Development Institute of Plant Protection (RDIPP) Bucharest bio-base. The results show that mortality induced from diatomaceous earth was at the level between 83.33% and 100% in all variants after 21 d, compared with untreated control and a standard product Silicosec.
基金supported by the National Natural Science Foundation of China(Grant Nos.42188101,42174190,42025404,41904143,41974186,and 41904144)the Fundamental Research Funds for the Central Universities(2042021kf0016)+2 种基金the B-type Strategic Priority Program of the Chinese Academy of Sciences(Grant No.XDB41000000)the pre-research projects on Civil Aerospace Technologies funded by the China National Space Administration(Grant Nos.D020303,D020308,D020104)the China Postdoctoral Science Foundation Project(Grant No.2019M662700,2020M672405)。
文摘The Macao Science Satellite-1(MSS-1),designed by the Macao University of Science and Technology and the National Space Science Center(NSSC)of China,is equipped to detect the fine structure of the magnetic field over the South Atlantic Anomaly(SAA)region,monitoring geomagnetic field variations,and obtaining the energetic electron spectrum distributions in the Earth’s inner radiation belt.In this study,we simulate the distributions of trapped,quasi-trapped,and untrapped electrons along the orbit of MSS-1 based on a drift-source model.The simulation results show that the particle detector with 90°looking direction can observe trapped electrons in the SAA region,untrapped electrons in the regions conjugated with the SAA region at the north hemisphere,and quasitrapped electrons in all other regions.In contrast,the detectors with<60°looking directions can measure only untrapped electrons.Generally,quasi-trapped electron fluxes accumulate along the drift trajectory and are due primarily to CRAND,until reaching the SAA region where quasi-trapped electrons are all lost into the atmosphere.
基金The National Key Research and Development Program of China under contract Nos 2018YFC1407000 and2016YFC1401500the National Natural Science Foundation of China under contract Nos 41806045 and 51579090。
文摘The systematic discrepancies in both tsunami arrival time and leading negative phase(LNP)were identified for the recent transoceanic tsunami on 16 September 2015 in Illapel,Chile by examining the wave characteristics from the tsunami records at 21 Deep-ocean Assessment and Reporting of Tsunami(DART)sites and 29 coastal tide gauge stations.The results revealed systematic travel time delay of as much as 22 min(approximately 1.7%of the total travel time)relative to the simulated long waves from the 2015 Chilean tsunami.The delay discrepancy was found to increase with travel time.It was difficult to identify the LNP from the near-shore observation system due to the strong background noise,but the initial negative phase feature became more obvious as the tsunami propagated away from the source area in the deep ocean.We determined that the LNP for the Chilean tsunami had an average duration of 33 min,which was close to the dominant period of the tsunami source.Most of the amplitude ratios to the first elevation phase were approximately 40%,with the largest equivalent to the first positive phase amplitude.We performed numerical analyses by applying the corrected long wave model,which accounted for the effects of seawater density stratification due to compressibility,self-attraction and loading(SAL)of the earth,and wave dispersion compared with observed tsunami waveforms.We attempted to accurately calculate the arrival time and LNP,and to understand how much of a role the physical mechanism played in the discrepancies for the moderate transoceanic tsunami event.The mainly focus of the study is to quantitatively evaluate the contribution of each secondary physical effect to the systematic discrepancies using the corrected shallow water model.Taking all of these effects into consideration,our results demonstrated good agreement between the observed and simulated waveforms.We can conclude that the corrected shallow water model can reduce the tsunami propagation speed and reproduce the LNP,which is observed for tsunamis that have propagated over long distances frequently.The travel time delay between the observed and corrected simulated waveforms is reduced to<8 min and the amplitude discrepancy between them was also markedly diminished.The incorporated effects amounted to approximately 78%of the travel time delay correction,with seawater density stratification,SAL,and Boussinesq dispersion contributing approximately 39%,21%,and 18%,respectively.The simulated results showed that the elastic loading and Boussinesq dispersion not only affected travel time but also changed the simulated waveforms for this event.In contrast,the seawater stratification only reduced the tsunami speed,whereas the earth’s elasticity loading was responsible for LNP due to the depression of the seafloor surrounding additional tsunami loading at far-field stations.This study revealed that the traditional shallow water model has inherent defects in estimating tsunami arrival,and the leading negative phase of a tsunami is a typical recognizable feature of a moderately strong transoceanic tsunami.These results also support previous theory and can help to explain the observed discrepancies.
文摘The geological structure of the White Sea area and the surrounding land areas has been well studied in the framework of individual case studies. There are a number of local models of the deep structure of the Earth’s crust available. We propose a uniform assessment of deep crustal bodies responsible for long-period (regional) magnetic anomalies and consider their correlation with surface structures. The aim of the study is to build a three-dimensional magnetic model of the Earth’s crust in the White Sea region using aeromagnetic data and modeling technologies of the Integro software package. The model is formed on the basis of a digital map of the anomalous magnetic field reduced to the pole. The sources of magnetic anomalies are considered to be located in the Earth’s crust. The 3D distribution of the relative magnetic susceptibility of rocks was obtained by solving the inverse problem of <span style="font-family:Verdana;">the </span><span style="font-family:Verdana;">magnetic survey. To separate the magnetic sources by frequency and depth, it was necessary to continue the magnetic field of the model upward and to calculate the TDR derivatives, which determine the lateral boundaries of the sources of positive magnetic field anomalies. 2D distributions of magnetic sources of the model for vertical and horizontal sections with depths of 10, 15 and 20 km are analyzed. The correlation between the surface and deep structures of magnetic sources of the Earth’s crust in the region is shown.</span>
基金supported jointly by the Knowledge Innovation Project(Grant No.KZCX3-SW-131)the Hundred Talents Program,the Chinese Academy of Sciences,the National Natural Science Foundation of China(Grant No.40374029)the Key International Scientific Cooperation Project via the Ministry of Sciences and Technology of China(Grant No.2002CB713904).
文摘The adaptability of recent ocean tidal models and Earth tidal models is investigated comprehensively by means of 22 high precision tidal gravity observation series at 20 stations of the Global Geodynamics Project. Careful preprocessing of the original observations was carried out using international standard algorithms and the tidal gravity parameters were computed. The gravity load vectors of 8 main constituents are obtained based on loading computation theory and various global ocean models. The loading corrections of 14 secondary constituents are obtained based on a two-dimensional interpolation technique. Considering different characteristics of the wave amplitude, a method of “non-identical weighted mean” is developed for computing the av-eraged observed residual and remaining residual vectors at each station. The efficiency of the loading correction and the discrepancy between corrected amplitude factors and theoretical ones are analyzed. Meanwhile the calibration problem of the instruments is also discussed. After loading correction, the averaged tidal gravity parameters for all stations are obtained. The results show that the discrepancies between the global mean amplitude factors and theoretical values are less than 0.3%, the largest calibration error of the instruments is less than 0.5%. On the other hand, there are indications that the slight phase advance of K1 with respect to O1 in Mathews’ theory could be verified by ground based tidal gravity observations.
基金supported jointly by the National Outstanding Youth Science Foundation of China (Grant No.49925411)the Knowledge Innovation Project of the Chinese Academy of Sciences(Grant No.KZCX3-CW-131)the National Natural Science Foundation of China(Grant No.40174022).
文摘Based on the 28 series of the high precision and high minute sampling tidal gravity observations at 20 stations in Global Geodynamics Project (GGP) network, the resonant parameters of the Earth's nearly diurnal free wobble (including the eigenperiods, resonant strengths and quality factots) are precisely determined. The discrepancy of the eigenperiod between observed and theoretical values is studied, the important conclusion that the real dynamic ellipticity of the liquid core is about 5% larger than the one under the static equilibrium assumption is approved by using our gravity technique. The experimental Earth's tidal gravity models with considering the nearly diurnal free wobble of the Earth's liquid core are constructed in this study. The numerical results show that the difference among three experimental models is less than 0.1%, and the largest discrepancy compared to those widely used nowdays given by Dehant (1999) and Mathews (2001) is only about 0.4%. It can provide with the most recent real experimental tidal gravity models for the global study of the Earth's tides, geodesy and space techniques and so on.
基金supported by the National Natural Science Foundation of China(61102168)
文摘There are many proposed optimal or suboptimal al- gorithms to update out-of-sequence measurement(s) (OoSM(s)) for linear-Gaussian systems, but few algorithms are dedicated to track a maneuvering target in clutter by using OoSMs. In order to address the nonlinear OoSMs obtained by the airborne radar located on a moving platform from a maneuvering target in clut- ter, an interacting multiple model probabilistic data association (IMMPDA) algorithm with the OoSM is developed. To be practical, the algorithm is based on the Earth-centered Earth-fixed (ECEF) coordinate system where it considers the effect of the platform's attitude and the curvature of the Earth. The proposed method is validated through the Monte Carlo test compared with the perfor- mance of the standard IMMPDA algorithm ignoring the OoSM, and the conclusions show that using the OoSM can improve the track- ing performance, and the shorter the lag step is, the greater degree the performance is improved, but when the lag step is large, the performance is not improved any more by using the OoSM, which can provide some references for engineering application.
文摘Hypersphere World-Universe Model (WUM) is, in fact, a Paradigm Shift in Cosmology [1]. In this paper, we provide seven Pillars of WUM: Medium of the World;Inter-Connectivity of Primary Cosmological Parameters;Creation of Matter;Multicomponent Dark Matter;Macroobjects;Volcanic Rotational Fission;Dark Matter Reactors. We describe the evolution of the World from the Beginning up to the birth of the Solar System and discuss the condition of the Early Earth before the beginning of life on it.