Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile ...Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa.展开更多
The influence of hot working on the microstructures of TC11/Ti2 Al Nb dual-alloy joints welded by electron beam welding(EBW) process was investigated. The tensile tests were performed at room temperature for specimens...The influence of hot working on the microstructures of TC11/Ti2 Al Nb dual-alloy joints welded by electron beam welding(EBW) process was investigated. The tensile tests were performed at room temperature for specimens before and after thermal exposure. The results show that the fusion zone of TC11/Ti2 Al Nb dual-alloy joint welded by EBW is mainly composed of β phase. After deformation and heat treatment, the grain boundaries of the as-cast alloy are broken and the fusion zone mainly consists of β, α2and α phases. The fusion zone performs poor property in the tensile test. Specimens before and after thermal exposure all fail in this area under different deformation conditions. The ultimate tensile strength of specimens after heat treatment is up to 1190 MPa at room temperature. The joints by water quenching after deformation have better plasticity with an elongation up to 4.4%. After thermal exposure at 500 °C for 100 h, the tensile strength of the specimen slightly rises while the ductility changes a little. SEM observation shows that the fracture mechanism is predominantly transgranular under different deformation conditions.展开更多
Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning ...Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning electron microscopy and X-ray diffraction analysis. Mechanical properties of the joints were evaluated according to tensile strength and microhardness. As a result, influences of filler metals on microstructures and mechanical properties of electron beam welded titanium-stainless steel joints were discussed. The results showed that all the filler metals were helpful to restrain the Ti-Fe intermetallics. The welds with different filler metals were all characterized by solid solution and interfacial intermetallics. For each type of the filler metal, the type of solid solution and interfacial intermetallics depended on the metallurgical reactions between the filler metals and base metals. The interfacial intermetallics were Fe2Ti+Ni3Ti+NiTi2, TiFe, and Cu2Ti+CuTi+CuTi2 in the joints welded with Ni, V, and Cu filler metals, respectively. The tensile strengths of the joints were dependent on the hardness of the interfacial intermetallics. The joint welded with Ag filler metal had the highest tensile strength, which is about 310 MPa.展开更多
Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy...Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.展开更多
A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In...A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In the model,anadaptive heat source model tracking keyhole depth is employed to simulate the heating process of electron beam.Heat and masstransport of different vortexes induced by surface tension,thermo-capillary force,recoil pressure,hydrostatic pressure and thermalbuoyancy is coupled with keyhole evolution.A series of physical phenomena involving keyhole drilling,collapse,reopening,quasi-stability,backfilling and the coupled thermal field are analyzed systematically.The results indicate that the decreased heat fluxof beam in depth can decelerate the keyholing velocity of recoil pressure and promote the quasi-steady state.Before and close to thisstate,the keyhole collapses and complicates the fluid transport of vortexes.Finally,all simulation results are validated againstexperiments.展开更多
The Ti-24Al-15Nb-1.5Mo alloy, in the as-forged and heat-treated states, was joined to the as-forged TC 11 titanium alloy by electron beam welding with the heat inputs of 135 and 150 kJ/m. Then the microstructure and p...The Ti-24Al-15Nb-1.5Mo alloy, in the as-forged and heat-treated states, was joined to the as-forged TC 11 titanium alloy by electron beam welding with the heat inputs of 135 and 150 kJ/m. Then the microstructure and property of the Ti-24Al-15Nb- 1.5Mo/TC 11 welding interface were investigated. The results show that the phase constitution of the weld is not related to the heat input, and is mainly composed of α' phase. Moreover, the intermetallic phases of TiEAlNb, MoNb, NbaAl, and TiAl3 are formed in the weld zone. Therefore, the microhardness value of the weld zone is higher than that of the other portions in the same sample. The profile of the weld is asymmetrically fimnel-like. The grain sizes of the weld and its heat-affected zones are increased with increasing heat input. There is an obvious difference in the element content of the welding interface; only the alloying elements in the fusion zone reach a new balance during solidification.展开更多
SiCp/2024 matrix composites reinforced with SiC particles and 2219 aluminum alloy were joined via centered electron beam welding and deflection beam welding,respectively,and the microstructures and mechanical properti...SiCp/2024 matrix composites reinforced with SiC particles and 2219 aluminum alloy were joined via centered electron beam welding and deflection beam welding,respectively,and the microstructures and mechanical properties of these joints were investigated.The results revealed that SiC particle segregation was more likely during centered electron beam welding(than during deflection beam welding),and strong interface reactions led to the formation of many Al4C3 brittle intermetallic compounds.Moreover,the tensile strength of the joints was 104 MPa.The interface reaction was restrained via deflection electron beam welding,and only a few Al4C3 intermetallic compounds formed at the top of the joint and heat affected zone of SiCp/Al.Quasi-cleavage fracture occurred at the interface reaction layer of the base metal.Both methods yielded a hardness transition zone near the SiCp/2024 fusion zone,and the brittle intermetallic Al4C3compounds formed in this zone resulted in high hardness.展开更多
In order to maintain the structural consistency during the welding of precipitation hardened copperchromium-zirconium(PH-CuCrZr)alloy components,electron beam welding(EBW)process was employed.Experimental study and nu...In order to maintain the structural consistency during the welding of precipitation hardened copperchromium-zirconium(PH-CuCrZr)alloy components,electron beam welding(EBW)process was employed.Experimental study and numerical modeling of EBW process during welding of PH-CuCrZr alloy components were carried out.A 3D finite element model was developed to predict the output responses(bead penetration and bead width)as a function of EBW input parameters(beam current,acceleration voltage and weld speed).A combined circular and conical source with Gaussian heat distribution was used to model the deep penetration characteristic of the EBW process.Numerical modeling was carried out by developing user defined function in Ansys software.Numerical predictions were compared with the experimental results which had a good agreement with each other.The developed model can be used for parametric study in wide range of problems involving complex geometries which are to be welded using EBW process.The present work illustrates that the input current with a contribution of 44.56%and 81.13%is the most significant input parameter for the bead penetration and bead width,respectively.展开更多
The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization a...The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization and imaging were realized. The ultrasonic phased array technology can detect kinds of defects in electron beam welding (EBW) quickly and easily.展开更多
A three-dimensional mathematical model using volume-of-fluid method is developed to investigate the heat transfer, fluid flow and keyhole dynamics during electron beam welding of 2219 aluminum alloy plate. In the mode...A three-dimensional mathematical model using volume-of-fluid method is developed to investigate the heat transfer, fluid flow and keyhole dynamics during electron beam welding of 2219 aluminum alloy plate. In the model, an adaptive heat source is employed to simulate the heating process of electron beam. Fluid flow is mainly driven by surface tension, thermo-capillary force, recoil pressure, hydrostatic pressure and thermal buoyancy. The thermal-fluid transport behaviors of welding pool during the drilling and backfilling stages of keyhole and the formation reason of the nail-shaped weld with an arc crater are systematically analyzed. Finally, all calculation results are validated by experiments and show good agreements.展开更多
Electron beam welding of titanium alloy to aluminum alloy was carried out by melting and melt-brazing to investigate the effects of welding parameters on microstructure of the joint. The results indicated that the joi...Electron beam welding of titanium alloy to aluminum alloy was carried out by melting and melt-brazing to investigate the effects of welding parameters on microstructure of the joint. The results indicated that the joint of the specimen welded by melting was well-formed but contained a large amount of intermetallic compounds. These intermetallic compounds were mainly composed of brittle phases such as TiAl and TiAl3 that decreased the ductility of the joints and resulted in a tensile strength 50 % lower than that of the base metal. In the melt-brazing experiment, direct heat was applied to the aluminum alloy to melt the aluminum rather than the titanium alloy, creating a well-formed joint. The weld was mainly composed of Al element and only a 3 ~m thickness of intermetallic compounds formed near the fusion line at the Ti side. The ductility and the performauce of the joint were significantly improved compared with those of the melting-only joint. In addition, the tensile strength of the joint reached 80 % of that of the aluminum base metal.展开更多
The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress i...The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress is tension stress along weld center and the stress peak value appears in the middle of the welded seam; the transversal residual stress is compression stress ; the residual stress in thickness direction is very small.展开更多
The effects of two post-weld heat treatment processes on the microstructure and fatigue properties of the electron beam welded joints of 30CrMnSiNi2A steel were studied. Electron beam local post-weld heat treatment (E...The effects of two post-weld heat treatment processes on the microstructure and fatigue properties of the electron beam welded joints of 30CrMnSiNi2A steel were studied. Electron beam local post-weld heat treatment (EBLPWHT), in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were accepted. The experimental results show that, after EBLPWHT, the main microstructure of weld is changed from coarse acicular martensite into lath martensite, and base metal is changed from ferrite and perlite into upper bainite and residual austenite, however the microstructures of different zones of joints in FWPWHT conditions are tempered sorbite. The fatigue crack growth rate da/dN of welds and base metal are not obviously changed among EBLPWHT, FWPWHT test and as-welded (AW) test, as the mechanical properties of materials have a certain but not large effect on the da/dN of welded joints. The resistance to near threshold fatigue crack growth data of welded joints can be largely improved by EBLPWHT and it is related to microstructure and crack closure effect.展开更多
Butt joints of QCr0.8/1Cr21Ni5Ti equal-thickness dissimilar materials were obtained by electron beam welding with fixed accelerating voltage 60 kV and focus current ~1.99 A , changed electron beam current and welding ...Butt joints of QCr0.8/1Cr21Ni5Ti equal-thickness dissimilar materials were obtained by electron beam welding with fixed accelerating voltage 60 kV and focus current ~1.99 A , changed electron beam current and welding velocity. Microstructure and composition of the EBW joint were investigated by means of optical micrography and EDX analysis, mechanical properties of the joint were also tested. The results show that joint’s macrostructure was divided into three zones: top weld zone near QCr0.8 and bottom weld zone consisting of Cu(ss.Fe) with a certain amount of dispersedly distributed (α+ε) mixed microstructure, middle weld zone consisting of (α+ε) microstructure with a small amount of Cu(ss.Fe) particles. Morphological inhomogeneous macrostructure and uneven chemical compostion of QCr0.8/1Cr21Ni5Ti joint by EBW are the most important factor to result in decreasing joining strength.展开更多
Carbon nauotube( CNT) reinforced aluminum metal matrix composites were welded by electron beam welding and the microstructures of welded joints were investigated. The result showed that the interracial reaction happ...Carbon nauotube( CNT) reinforced aluminum metal matrix composites were welded by electron beam welding and the microstructures of welded joints were investigated. The result showed that the interracial reaction happened between the CNTs and Al matrix, which resulted in producing brittle Al4 C3 compounds in electron beam welds. The extent of interfacial reaction varies gradually in the depth and width direction. The length of the reactants Al4C3 became short duo to the temperature gradient in the molten pool. The quantity and size of Al4 C3 compounds increased with the increase of beam current and the decrease of welding speed in the middle zone of weld. However, no needle-like phase Al4C3 was observed in HAZ.展开更多
A feature extraction method was proposed to sectorial scan image of Ti-6Al-4V electron beam welding seam based on principal component analysis to solve problem of high-dimensional data resulting in timeconsuming in de...A feature extraction method was proposed to sectorial scan image of Ti-6Al-4V electron beam welding seam based on principal component analysis to solve problem of high-dimensional data resulting in timeconsuming in defect recognition. Seven features were extracted from the image and represented 87. 3% information of the original data. Both the extracted features and the original data were used to train support vector machine model to assess the feature extraction performance in two aspects: recognition accuracy and training time. The results show that using the extracted features the recognition accuracy of pore,crack,lack of fusion and lack of penetration are 93%,90.7%,94.7% and 89.3%,respectively,which is slightly higher than those using the original data. The training time of the models using the extracted features is extremely reduced comparing with those using the original data.展开更多
Flow field of weld pool during deep penetration electron beam welding of TA 15 titanium alloy was numerically and experimentally studied using a hybrid heat source of Gaussian surface heat source and rotational parabo...Flow field of weld pool during deep penetration electron beam welding of TA 15 titanium alloy was numerically and experimentally studied using a hybrid heat source of Gaussian surface heat source and rotational paraboloidal body heat source. And the formation mechanism of the weld pool flow field was analyzed. The results showed that the movement of the liquid metal in the top weld pool was the fiercest and weakened gradually in the middle and bottom of the weld pool. The maximum flow velocity of the liquid metal was about 0. 295 m/s in the top surface of weld pool. The primary driving forces of the movement of liquid metal in the weld pool were the recoil pressure of metal vapor and the surface tension.展开更多
In this article, the electron beam welding of the Cu alloy ( QCrO. 8) with Ti alloy (TC4) sheet was processed and the joint microstructure as well as the welding process were studied. The results show that brittle...In this article, the electron beam welding of the Cu alloy ( QCrO. 8) with Ti alloy (TC4) sheet was processed and the joint microstructure as well as the welding process were studied. The results show that brittle reaction layer which was mainly composed of TiCu, Ti2Cu, Ti2Cu3 and TiCu2formed at the weld fusion line, regardless of welding on the middle or on the Cu side. The mechanical properties of the joint were severely deteriorated by the layer that tensile strength was only 89. 4 MPa for welding on the Cu side. The microstructure of the joint was improved with pure nickel as filler metal for the electron beam welding. The weld was mainly composed of solid solution. Intermetallic compound phase decreased signifwantly in fusion line compared with the joint without filler metal. The mechanical properties of the joint were obviously improved that the average tensile strength was 205.2 MPa and the bending strength was 413.3 MPa with O. 5 mm offset of electron beam on the Cu side.展开更多
Using ANSYS software, a finite element model for electron beam welding of 14. 5 mm thick Ti-6Al-4V alloy plate is developed by a sequentially coupled thermal-mechanical analysis method. For the purpose of model valida...Using ANSYS software, a finite element model for electron beam welding of 14. 5 mm thick Ti-6Al-4V alloy plate is developed by a sequentially coupled thermal-mechanical analysis method. For the purpose of model validation, welding trial is carried out. Meanwhile, fusion zone dimensions and residual stresses are measured. The fusion-boundary profile is reproduced accurately by using a conical volume heat source model. The predicted residual stresses are in reasonable agreement with the results determined by the hole-drilling method. Through the analysis of predicted residual stresses, it is found that the normal residual stress in the interior of plate can not be negligible and the maximum value of three dimensional residual tensile stresses arises at 10. 15 mm depth in the weld zone.展开更多
QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in c...QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in centered welding and at the Ti fusion line when the beam is deviated towards Cu. A new method referred to as electron-beam superposition welding was presented, and the optimal welding sequence was considered. The IMC-layer produced by centered welding was fragmented and remelted during Cu-side non-centered welding, giving a finely structured compound layer and improved mechanical properties of the joint. The tensile strength of joint is 276.0 MPa, 76.7% that of the base metal.展开更多
基金Project(2010CB731704)supported by the National Basic Research Program of ChinaProject(2011DFR50760)supported by International Science&Technology Cooperation Program of China
文摘Electron beam welding (EBW) of 304 stainless steel to QCr0.8 copper alloy with copper filler wire was carried out. Orthogonal experiment was performed to investigate the effects of process parameters on the tensile strength of the joints, and the process parameters were optimized. The optimum process parameters are as follows:beam current of 30 mA, welding speed of 100 mm/min, wire feed rate of 1 m/min and beam offset of-0.3 mm. The microstructures of the optimum joint were studied. The results indicate that the weld is mainly composed of dendriticαphase with little globularεphase, and copper inhomogeneity only occurs at the top of the fusion zone. In addition, a melted region without mixing exists near the weld junction of copper side. This region with a coarser grain size is the weakest section of the joints. It is found that the microhardness of the weld decreases with the increase of the copper content in solid solution. The highest tensile strength of the joint is 276 MPa.
基金Project(51175431)supported by the National Natural Science Foundation of China
文摘The influence of hot working on the microstructures of TC11/Ti2 Al Nb dual-alloy joints welded by electron beam welding(EBW) process was investigated. The tensile tests were performed at room temperature for specimens before and after thermal exposure. The results show that the fusion zone of TC11/Ti2 Al Nb dual-alloy joint welded by EBW is mainly composed of β phase. After deformation and heat treatment, the grain boundaries of the as-cast alloy are broken and the fusion zone mainly consists of β, α2and α phases. The fusion zone performs poor property in the tensile test. Specimens before and after thermal exposure all fail in this area under different deformation conditions. The ultimate tensile strength of specimens after heat treatment is up to 1190 MPa at room temperature. The joints by water quenching after deformation have better plasticity with an elongation up to 4.4%. After thermal exposure at 500 °C for 100 h, the tensile strength of the specimen slightly rises while the ductility changes a little. SEM observation shows that the fracture mechanism is predominantly transgranular under different deformation conditions.
基金Project(2011DFR50760)supported by International Science&Technology Cooperation Program of China
文摘Electron beam welding experiments of titanium alloy to stainless steel were carried out with different filler metals, such as Ni, V, and Cu. Microstructures of the joints were examined by optical microscopy, scanning electron microscopy and X-ray diffraction analysis. Mechanical properties of the joints were evaluated according to tensile strength and microhardness. As a result, influences of filler metals on microstructures and mechanical properties of electron beam welded titanium-stainless steel joints were discussed. The results showed that all the filler metals were helpful to restrain the Ti-Fe intermetallics. The welds with different filler metals were all characterized by solid solution and interfacial intermetallics. For each type of the filler metal, the type of solid solution and interfacial intermetallics depended on the metallurgical reactions between the filler metals and base metals. The interfacial intermetallics were Fe2Ti+Ni3Ti+NiTi2, TiFe, and Cu2Ti+CuTi+CuTi2 in the joints welded with Ni, V, and Cu filler metals, respectively. The tensile strengths of the joints were dependent on the hardness of the interfacial intermetallics. The joint welded with Ag filler metal had the highest tensile strength, which is about 310 MPa.
文摘Electron beam welding of Ti-15-3 titanium alloy to 304 stainless steel with a copper sheet as interlayer was carried out.Microstructures of the joint were studied by optical microscopy(OM),scanning electron microscopy(SEM) and X-ray diffractometry(XRD).In addition,the mechanical properties of the joint were evaluated by tensile test and the microhardness was measured.These two alloys were successfully welded by adding copper transition layer into the weld.Solid solution with a certain thickness was located at the interfaces between weld and base metal in both sides.Regions inside the weld and near the stainless steel were characterized by solid solution of copper with TiFe2 intermetallics dispersedly distributed in it.While weld near titanium alloy contained Ti-Cu and Ti-Fe-Cu intermetallics layer,in which the hardness of weld came to the highest value.Brittle fracture occurred in the intermetallics layer when the joint was stretched.
文摘A two-dimensional mathematical model based on volume-of-fluid method is proposed to investigate the heat transfer,fluidflow and keyhole dynamics during electron beam welding(EBW)on20mm-thick2219aluminum alloy plate.In the model,anadaptive heat source model tracking keyhole depth is employed to simulate the heating process of electron beam.Heat and masstransport of different vortexes induced by surface tension,thermo-capillary force,recoil pressure,hydrostatic pressure and thermalbuoyancy is coupled with keyhole evolution.A series of physical phenomena involving keyhole drilling,collapse,reopening,quasi-stability,backfilling and the coupled thermal field are analyzed systematically.The results indicate that the decreased heat fluxof beam in depth can decelerate the keyholing velocity of recoil pressure and promote the quasi-steady state.Before and close to thisstate,the keyhole collapses and complicates the fluid transport of vortexes.Finally,all simulation results are validated againstexperiments.
基金supported by the National Natural Science Foundation of China (No.50775187)
文摘The Ti-24Al-15Nb-1.5Mo alloy, in the as-forged and heat-treated states, was joined to the as-forged TC 11 titanium alloy by electron beam welding with the heat inputs of 135 and 150 kJ/m. Then the microstructure and property of the Ti-24Al-15Nb- 1.5Mo/TC 11 welding interface were investigated. The results show that the phase constitution of the weld is not related to the heat input, and is mainly composed of α' phase. Moreover, the intermetallic phases of TiEAlNb, MoNb, NbaAl, and TiAl3 are formed in the weld zone. Therefore, the microhardness value of the weld zone is higher than that of the other portions in the same sample. The profile of the weld is asymmetrically fimnel-like. The grain sizes of the weld and its heat-affected zones are increased with increasing heat input. There is an obvious difference in the element content of the welding interface; only the alloying elements in the fusion zone reach a new balance during solidification.
基金Project was supported by the National Nature Science Foundation of China(51375115).
文摘SiCp/2024 matrix composites reinforced with SiC particles and 2219 aluminum alloy were joined via centered electron beam welding and deflection beam welding,respectively,and the microstructures and mechanical properties of these joints were investigated.The results revealed that SiC particle segregation was more likely during centered electron beam welding(than during deflection beam welding),and strong interface reactions led to the formation of many Al4C3 brittle intermetallic compounds.Moreover,the tensile strength of the joints was 104 MPa.The interface reaction was restrained via deflection electron beam welding,and only a few Al4C3 intermetallic compounds formed at the top of the joint and heat affected zone of SiCp/Al.Quasi-cleavage fracture occurred at the interface reaction layer of the base metal.Both methods yielded a hardness transition zone near the SiCp/2024 fusion zone,and the brittle intermetallic Al4C3compounds formed in this zone resulted in high hardness.
文摘In order to maintain the structural consistency during the welding of precipitation hardened copperchromium-zirconium(PH-CuCrZr)alloy components,electron beam welding(EBW)process was employed.Experimental study and numerical modeling of EBW process during welding of PH-CuCrZr alloy components were carried out.A 3D finite element model was developed to predict the output responses(bead penetration and bead width)as a function of EBW input parameters(beam current,acceleration voltage and weld speed).A combined circular and conical source with Gaussian heat distribution was used to model the deep penetration characteristic of the EBW process.Numerical modeling was carried out by developing user defined function in Ansys software.Numerical predictions were compared with the experimental results which had a good agreement with each other.The developed model can be used for parametric study in wide range of problems involving complex geometries which are to be welded using EBW process.The present work illustrates that the input current with a contribution of 44.56%and 81.13%is the most significant input parameter for the bead penetration and bead width,respectively.
文摘The basic principle and features of ultrasonic phased array imaging are discussed in this paper. Through the ultrasonic phased array technology, the electron beam welding defects and frozen keyholes characterization and imaging were realized. The ultrasonic phased array technology can detect kinds of defects in electron beam welding (EBW) quickly and easily.
文摘A three-dimensional mathematical model using volume-of-fluid method is developed to investigate the heat transfer, fluid flow and keyhole dynamics during electron beam welding of 2219 aluminum alloy plate. In the model, an adaptive heat source is employed to simulate the heating process of electron beam. Fluid flow is mainly driven by surface tension, thermo-capillary force, recoil pressure, hydrostatic pressure and thermal buoyancy. The thermal-fluid transport behaviors of welding pool during the drilling and backfilling stages of keyhole and the formation reason of the nail-shaped weld with an arc crater are systematically analyzed. Finally, all calculation results are validated by experiments and show good agreements.
文摘Electron beam welding of titanium alloy to aluminum alloy was carried out by melting and melt-brazing to investigate the effects of welding parameters on microstructure of the joint. The results indicated that the joint of the specimen welded by melting was well-formed but contained a large amount of intermetallic compounds. These intermetallic compounds were mainly composed of brittle phases such as TiAl and TiAl3 that decreased the ductility of the joints and resulted in a tensile strength 50 % lower than that of the base metal. In the melt-brazing experiment, direct heat was applied to the aluminum alloy to melt the aluminum rather than the titanium alloy, creating a well-formed joint. The weld was mainly composed of Al element and only a 3 ~m thickness of intermetallic compounds formed near the fusion line at the Ti side. The ductility and the performauce of the joint were significantly improved compared with those of the melting-only joint. In addition, the tensile strength of the joint reached 80 % of that of the aluminum base metal.
基金The project is supported by the Found of Key Fields Project of Inner Mongolia Education Department (No ZL02021)
文摘The residual stresses distribution of 7075 aluminum alloy in vacuum electron beam welding joint was numerically simulated using nonlinear finite element method. The result shows that the longitudinal residual stress is tension stress along weld center and the stress peak value appears in the middle of the welded seam; the transversal residual stress is compression stress ; the residual stress in thickness direction is very small.
基金thefoundationoftheNationalDefenseTechnologyKeyLaboratory (No .99JS5 0 .3 .2JW14 0 2 )
文摘The effects of two post-weld heat treatment processes on the microstructure and fatigue properties of the electron beam welded joints of 30CrMnSiNi2A steel were studied. Electron beam local post-weld heat treatment (EBLPWHT), in a vacuum chamber, immediately after welding and a traditional furnace whole post-weld heat treatment (FWPWHT) were accepted. The experimental results show that, after EBLPWHT, the main microstructure of weld is changed from coarse acicular martensite into lath martensite, and base metal is changed from ferrite and perlite into upper bainite and residual austenite, however the microstructures of different zones of joints in FWPWHT conditions are tempered sorbite. The fatigue crack growth rate da/dN of welds and base metal are not obviously changed among EBLPWHT, FWPWHT test and as-welded (AW) test, as the mechanical properties of materials have a certain but not large effect on the da/dN of welded joints. The resistance to near threshold fatigue crack growth data of welded joints can be largely improved by EBLPWHT and it is related to microstructure and crack closure effect.
文摘Butt joints of QCr0.8/1Cr21Ni5Ti equal-thickness dissimilar materials were obtained by electron beam welding with fixed accelerating voltage 60 kV and focus current ~1.99 A , changed electron beam current and welding velocity. Microstructure and composition of the EBW joint were investigated by means of optical micrography and EDX analysis, mechanical properties of the joint were also tested. The results show that joint’s macrostructure was divided into three zones: top weld zone near QCr0.8 and bottom weld zone consisting of Cu(ss.Fe) with a certain amount of dispersedly distributed (α+ε) mixed microstructure, middle weld zone consisting of (α+ε) microstructure with a small amount of Cu(ss.Fe) particles. Morphological inhomogeneous macrostructure and uneven chemical compostion of QCr0.8/1Cr21Ni5Ti joint by EBW are the most important factor to result in decreasing joining strength.
基金supported by the fund of Doctoral Startup Research of Nanchang Hangkong University(EA201203402)Aeronautical Science Foundation(20135456009)+1 种基金National Defense Key Disciplines Laboratory of Light Alloy Processing Science and Technology(gf201401003)State Key Laboratory of Solidification Processing in NWPU(SKLSP201412)
文摘Carbon nauotube( CNT) reinforced aluminum metal matrix composites were welded by electron beam welding and the microstructures of welded joints were investigated. The result showed that the interracial reaction happened between the CNTs and Al matrix, which resulted in producing brittle Al4 C3 compounds in electron beam welds. The extent of interfacial reaction varies gradually in the depth and width direction. The length of the reactants Al4C3 became short duo to the temperature gradient in the molten pool. The quantity and size of Al4 C3 compounds increased with the increase of beam current and the decrease of welding speed in the middle zone of weld. However, no needle-like phase Al4C3 was observed in HAZ.
基金Sponsored by the National Natural Science Foundation of China(Grant Nos.51575134 and 51205083)
文摘A feature extraction method was proposed to sectorial scan image of Ti-6Al-4V electron beam welding seam based on principal component analysis to solve problem of high-dimensional data resulting in timeconsuming in defect recognition. Seven features were extracted from the image and represented 87. 3% information of the original data. Both the extracted features and the original data were used to train support vector machine model to assess the feature extraction performance in two aspects: recognition accuracy and training time. The results show that using the extracted features the recognition accuracy of pore,crack,lack of fusion and lack of penetration are 93%,90.7%,94.7% and 89.3%,respectively,which is slightly higher than those using the original data. The training time of the models using the extracted features is extremely reduced comparing with those using the original data.
文摘Flow field of weld pool during deep penetration electron beam welding of TA 15 titanium alloy was numerically and experimentally studied using a hybrid heat source of Gaussian surface heat source and rotational paraboloidal body heat source. And the formation mechanism of the weld pool flow field was analyzed. The results showed that the movement of the liquid metal in the top weld pool was the fiercest and weakened gradually in the middle and bottom of the weld pool. The maximum flow velocity of the liquid metal was about 0. 295 m/s in the top surface of weld pool. The primary driving forces of the movement of liquid metal in the weld pool were the recoil pressure of metal vapor and the surface tension.
基金This work was supported by the National Natural Science Foundation of China( Grant No. 51375115) and Fundamental Research Funds for the central Universities( Grant No. HIT. NSRIF. 2014007).
文摘In this article, the electron beam welding of the Cu alloy ( QCrO. 8) with Ti alloy (TC4) sheet was processed and the joint microstructure as well as the welding process were studied. The results show that brittle reaction layer which was mainly composed of TiCu, Ti2Cu, Ti2Cu3 and TiCu2formed at the weld fusion line, regardless of welding on the middle or on the Cu side. The mechanical properties of the joint were severely deteriorated by the layer that tensile strength was only 89. 4 MPa for welding on the Cu side. The microstructure of the joint was improved with pure nickel as filler metal for the electron beam welding. The weld was mainly composed of solid solution. Intermetallic compound phase decreased signifwantly in fusion line compared with the joint without filler metal. The mechanical properties of the joint were obviously improved that the average tensile strength was 205.2 MPa and the bending strength was 413.3 MPa with O. 5 mm offset of electron beam on the Cu side.
文摘Using ANSYS software, a finite element model for electron beam welding of 14. 5 mm thick Ti-6Al-4V alloy plate is developed by a sequentially coupled thermal-mechanical analysis method. For the purpose of model validation, welding trial is carried out. Meanwhile, fusion zone dimensions and residual stresses are measured. The fusion-boundary profile is reproduced accurately by using a conical volume heat source model. The predicted residual stresses are in reasonable agreement with the results determined by the hole-drilling method. Through the analysis of predicted residual stresses, it is found that the normal residual stress in the interior of plate can not be negligible and the maximum value of three dimensional residual tensile stresses arises at 10. 15 mm depth in the weld zone.
基金Project (2010CB731704) supported by the National Basic Research Program of China
文摘QCr0.8 was electron-beam welded to TC4 and the effect of the intermetallic layer (IMC-layer) on the mechanical properties of the joint was investigated. The IMC-layers are joint weaknesses at the Cu fusion line in centered welding and at the Ti fusion line when the beam is deviated towards Cu. A new method referred to as electron-beam superposition welding was presented, and the optimal welding sequence was considered. The IMC-layer produced by centered welding was fragmented and remelted during Cu-side non-centered welding, giving a finely structured compound layer and improved mechanical properties of the joint. The tensile strength of joint is 276.0 MPa, 76.7% that of the base metal.