We discuss novel advanced concepts suitable for the practical design of gamma-ray sources of directed energy. One concept is based on the self-channeling of a powerful optical laser in a gas within a metal tube. Anoth...We discuss novel advanced concepts suitable for the practical design of gamma-ray sources of directed energy. One concept is based on the self-channeling of a powerful optical laser in a gas within a metal tube. Another concept employs a direct excitation of a quadrupole nuclear level by a powerful optical laser. The third concept is based on the process of a high-order harmonic generation by an x-ray laser. All three concepts can be used for designing gamma-ray lasers that would have significant advantages over x-ray lasers. First, missile defense systems employing gamma-ray lasers would be weather independent. Second, the gamma-ray laser radiation can penetrate through the sand, which could be suspended in the air in a desert either naturally (due to strong winds) or artificially (as a protective “shield”). Besides, the first out of the three concepts can beemployed for creating non-laser gamma-ray sources of directed energy to be used for detecting stored radioactive materials, including the radioactive materials carried by an aircraft or a satellite. Last but not least: these concepts can be also used for remotely destroying biological and chemical weapons as a preemptive strike or during its delivery phase, as well as for distinguishing a nuclear warhead from decoy warheads. Thus, the defense capabilities of the proposed gamma-ray lasers can save numerous lives.展开更多
An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside di...An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside directly. This kind of structure is named "active pipe-embedded building envelope" due to dealing with the thermal energy actively inside the structure mass by circulating water. This structure not only deals with thermal energy before the external disturbance becomes cooling/heating load by using the circulating water, but also may use low-grade energy sources such as evaporative cooling, solar energy, and geothermal energy. In the meantime, this structure can also improve the indoor thermal comfort by tempering the internal wall surface temperature variation due to the thermal removal in the mass. This work further presents the thermal performance of this structure under a typical hot summer weather condition by comparing it with that of the conventional external wall/roof with numerical simulation. The results show that this pipe-embedded structure may reduce the external heat transfer significantly and reduce the internal wall surface temperature for improving thermal comfort. This work also presents the effects of the water temperature and the pipe spacing on the heat transfer of this structure. The internal surface heat transfer may reduce by about 2.6 W/mE when the water temperature reduces by 1℃ as far as a brick wall with pipes embedded inside is concerned. When the pipe spacing reduces by 50 mm, the internal wall surface heat flux can also reduce by about 2.3 W/m2.展开更多
We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, di...We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, distribution grid connection capacity can be doubled. We also present the setting and fi rst results of a fi eld test for validating the approach in a rural distribution grid in northern Germany.展开更多
Ochrobactrum anthropi CTS-325 isolated from a chromium-contaminated site had better resistance to Cr(Ⅵ) in LB medium under aerobic condition.Meanwhile,it was found that the reduction of Cr(Ⅵ) is not complete dur...Ochrobactrum anthropi CTS-325 isolated from a chromium-contaminated site had better resistance to Cr(Ⅵ) in LB medium under aerobic condition.Meanwhile,it was found that the reduction of Cr(Ⅵ) is not complete during the experimental process.Therefore,a series of small molecule energy sources including nitrogen and carbon sources were added into the LB medium in the bacterial stationary phase to promote the chromium reducibility.The result showed that the bacterial growth was positively correlated with the chromium reduction.SDS-PAGE analysis indicated that the protein groups were changed when the bacteria were stimulated by the chromium.Additionally,it was revealed that O.anthropi CTS-325 could utilize the cheaper alternative of sugar(sucrose residue leaching solution) well for further growth and restart the chromium reduction,which offered a new method for practical appli-cations.展开更多
The purpose of this research was to study economic incentives to use renewable energy sources in the Republic of Kazakhstan and to give suggestions for production and circulation of the "green" certificates as a new...The purpose of this research was to study economic incentives to use renewable energy sources in the Republic of Kazakhstan and to give suggestions for production and circulation of the "green" certificates as a new financial instrument. The author analyzed European Union and Kazakhstani experience of economic incentives to reduce emissions and introduction of renewable energy sources. As a result of conducted research, the proposal to produce and circulate new financial instruments in Kazakhstan is made; as well as economic and environmental factors of renewable energy sources in the Republic of Kazakhstan are defined.展开更多
In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the...In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.展开更多
A newly developed energy source basein China,Huaibei City,is located inthe northern part of Anhui Province,under the direct control of the provincialgovernment.Under its jurisdiction,there arethree districts and one c...A newly developed energy source basein China,Huaibei City,is located inthe northern part of Anhui Province,under the direct control of the provincialgovernment.Under its jurisdiction,there arethree districts and one county,covering atotal area of 2725 sq km and with a populationof 1.8 million. The city boasts unique mineralresources.A total of 13 minerals have beensurveyed,including coal,iron and kaoline.The reserves of coal,the richest of all,areestimated at about 10 billion tons and theprospective reserves 35 billion tons.Basedon its coal resources,the city has set up 24pairs of large and modern mines with anannual production capacity of 20 milliontons,ranking fifth in the country.The展开更多
Mining industry is a substantial consumer of the energy indispensable to power mining and mineral processing equipment and processes. As more and more mine operations move to remote locations, the access to reliable, ...Mining industry is a substantial consumer of the energy indispensable to power mining and mineral processing equipment and processes. As more and more mine operations move to remote locations, the access to reliable, secure and environment friendly energy sources becomes a key concern. At present, a great majority of remote mines relies heavily on diesel fuel that has to be transported over long distances. In this context, some of the renewable energy sources such as wind power or solar energy seem to provide potentially interesting and viable alternatives. Mine operations, however, have a very particular character, much different from other industries and from other potential applications of renewable power sources. This paper presents operational conditions of some mining operations, particularly those in remote regions, in the context of their energy needs. The authors analyse current and future capacities to decrease a reliance of remote mines on conventional fuels and energy. The paper also analyses and discusses the conditions to be met by alternative energy sources so that they might become a viable alternative for remote mining operations.展开更多
This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) o...This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.展开更多
Worldwide,there are many options to ensure domestic hot water(DHW)provision in dwellings.This study aimed to depict the distribution of energy sources and DHW production systems in the Calabria region.The research was...Worldwide,there are many options to ensure domestic hot water(DHW)provision in dwellings.This study aimed to depict the distribution of energy sources and DHW production systems in the Calabria region.The research was focused on understanding which variables,among contextual variables and building characteristics,may influence the adoption of a particular energy source or production system.Descriptive statistics and chi-square test of independence have been developed.Significant relationships were found between the climatic zone and the energy source used as well as between the climatic zone and the production system installed in both households with a separated and a combined DHW production system.Furthermore,the population of the municipality and the dwelling type resulted to be significant variables for the preference of an energy source or the diffusion of a combined production system.展开更多
RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (v...RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints.展开更多
The growing integration of renewable energy sources manifests as an effective strategy for reducing carbon emissions. This paper strives to efficiently approximate the set of optimal scheduling plans(OSPs) to enhance ...The growing integration of renewable energy sources manifests as an effective strategy for reducing carbon emissions. This paper strives to efficiently approximate the set of optimal scheduling plans(OSPs) to enhance the performance of the steady-state adaptive cruise method(SACM) of power grid, improving the ability of dealing with operational uncertainties. Initially, we provide a mathematical definition of the exact boxconstrained economic operating region(EBC-EOR) for the power grid and its dispatchable components. Following this, we introduce an EBC-EOR formulation algorithm and the corresponding bi-level optimization models designed to explore the economic operating boundaries. In addition, we propose an enhanced big-M method to expedite the computation of the EBCEOR. Finally, the effectiveness of the EBC-EOR formulation, its economic attributes, correlation with the scheduling plan underpinned by model predictive control, and the significant improvement in computational efficiency(over twelvefold) are verified through case studies conducted on two test systems..展开更多
With the continuous development of information technology,data centers(DCs)consume significant and evergrowing amounts of electrical energy.Renewable energy sources(RESs)can act as clean solutions to meet this require...With the continuous development of information technology,data centers(DCs)consume significant and evergrowing amounts of electrical energy.Renewable energy sources(RESs)can act as clean solutions to meet this requirement without polluting the environment.Each DC serves numerous users for their data service demands,which are regarded as flexible loads.In this paper,the willingness to pay and time sensitivities of DC users are firstly explored,and the user-side demand response is then devised to improve the overall benefits of DC operation.Then,a Stackelberg game between a DC and its users is proposed.The upper-level model aims to maximize the profit of the DC,in which the time-varying pricing of data services is optimized,and the lower-level model addresses user’s optimal decisions for using data services while balancing their time and cost requirements.The original bi-level optimization problem is then transformed into a single-level problem using the Karush-Kuhn-Tucker optimality conditions and strong duality theory,which enables the problem to be solved efficiently.Finally,case studies are conducted to demonstrate the feasibility and effectiveness of the proposed method,as well as the effects of the time-varying data service price mechanism on the RES accommodation.展开更多
In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for n...In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.展开更多
Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink...Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.展开更多
In this paper,the primary energy source of high current electron beam accelerator based on spiral pulse forming line is investigated.It consists of the constant-current power supply,the high voltage pulse capacitor,th...In this paper,the primary energy source of high current electron beam accelerator based on spiral pulse forming line is investigated.It consists of the constant-current power supply,the high voltage pulse capacitor,the field distortion switch,and the protection system.The primary energy source can discharge to the primary winding of the transformer with high voltage pulses whose amplitude of voltage is 40kV,current is 80kA,pulse width is 8μs and repetition frequency is less than 5Hz.The primary energy source is applied to a high current electron beam accelerator, and is featured by its compactness,stability and reliability.展开更多
When a microgrid is mainly supplied by renewable energy sources(RESs), the frequency deviations may deteriorate significantly the power quality delivered to the loads. This paper proposes a frequency-based control str...When a microgrid is mainly supplied by renewable energy sources(RESs), the frequency deviations may deteriorate significantly the power quality delivered to the loads. This paper proposes a frequency-based control strategy, ensuring the frequency among the strict limits imposed by the Standard EN 50160. The frequency of the microgrid common AC bus is determined by the energy storage converter, implementing a proposed droop curve among the state of charge(SoC) of the battery and the frequency. Therefore, the information of the SoC becomes known to every distributed energy resource(DER) of the microgrid and determines the active power injection of the converter-interfaced DERs. The active power injection of the rotating generators remains unaffected, while any mismatch among the power generation and consumption is absorbed by the energy storage system. Finally, in case of a solid short-circuit within the microgrid, the energy storage system detects the severe voltage decrease and injects a large current in order to clear the fault by activating the protection device closer to the fault. The proposed control methodology is applied in a microgrid with PVs, wind generators and a battery, while its effectiveness is evaluated by detailed simulation tests.展开更多
Wind power, solar power and water power are technologies that can be used as the main sources of renewable energy so that the target of decarbonisation in the energy sector can be achieved. However, when compared with...Wind power, solar power and water power are technologies that can be used as the main sources of renewable energy so that the target of decarbonisation in the energy sector can be achieved. However, when compared with conventional power plants, they have a significant difference. The share of renewable energy has made a difference and posed various challenges, especially in the power generation system. The reliability of the power system can achieve the decarbonization target but this objective often collides with several challenges and failures, such that they make achievement of the target very vulnerable, Even so, the challenges and technological solutions are still very rarely discussed in the literature. This study carried out specific investigations on various technological solutions and challenges, especially in the power system domain. The results of the review of the solution matrix and the interrelated technological challenges are the most important parts to be developed in the future. Developing a matrix with various renewable technology solutions can help solve RE challenges. The potential of the developed technological solutions is expected to be able to help and prioritize them especially cost-effective energy. In addition, technology solutions that are identified in groups can help reduce certain challenges. The categories developed in this study are used to assist in determining the specific needs and increasing transparency of the renewable energy integration process in the future.展开更多
Microgrid with hybrid renewable energy sources is a promising solution where the distribution network expansion is unfeasible or not economical.Integration of renewable energy sources provides energy security,substant...Microgrid with hybrid renewable energy sources is a promising solution where the distribution network expansion is unfeasible or not economical.Integration of renewable energy sources provides energy security,substantial cost savings and reduction in greenhouse gas emissions,enabling nation to meet emission targets.Microgrid energy management is a challenging task for microgrid operator(MGO)for optimal energy utilization in microgrid with penetration of renewable energy sources,energy storage devices and demand response.In this paper,optimal energy dispatch strategy is established for grid connected and standalone microgrids integrated with photovoltaic(PV),wind turbine(WT),fuel cell(FC),micro turbine(MT),diesel generator(DG)and battery energy storage system(ESS).Techno-economic benefits are demonstrated for the hybrid power system.So far,microgrid energy management problem has been addressed with the aim of minimizing operating cost only.However,the issues of power losses and environment i.e.,emission-related objectives need to be addressed for effective energy management of microgrid system.In this paper,microgrid energy management(MGEM)is formulated as mixedinteger linear programming and a new multi-objective solution is proposed for MGEM along with demand response program.Demand response is included in the optimization problem to demonstrate it’s impact on optimal energy dispatch and techno-commercial benefits.Fuzzy interface has been developed for optimal scheduling of ESS.Simulation results are obtained for the optimal capacity of PV,WT,DG,MT,FC,converter,BES,charging/discharging scheduling,state of charge of battery,power exchange with grid,annual net present cost,cost of energy,initial cost,operational cost,fuel cost and penalty of greenhouse gases emissions.The results show that CO_(2) emissions in standalone hybrid microgrid system is reduced by 51.60%compared to traditional system with grid only.Simulation results obtained with the proposed method is compared with various evolutionary algorithms to verify it’s effectiveness.展开更多
This paper applies double-uncertainty optimization theory to the operation of AC/DC hybrid microgrids to deal with uncertainties caused by a high proportion of intermittent energy sources.A fuzzy stochastic expectatio...This paper applies double-uncertainty optimization theory to the operation of AC/DC hybrid microgrids to deal with uncertainties caused by a high proportion of intermittent energy sources.A fuzzy stochastic expectation economic model for day-ahead scheduling based on uncertain optimization theory is proposed to minimize the operational costs of hybrid AC/DC microgrids.The fuzzy stochastic alternating direction multiplier method is proposed to solve the double-uncertainty optimization problem.A real-time intra-day unbalanced power adjustment model is established to minimize real-time adjustment costs.Through comparative analysis of deterministic optimization,stochastic optimization and fuzzy stochastic optimization of day-ahead scheduling and real-time adjustment,the validity of fuzzy stochastic optimization based on a fuzzy stochastic expectation model is proved.展开更多
文摘We discuss novel advanced concepts suitable for the practical design of gamma-ray sources of directed energy. One concept is based on the self-channeling of a powerful optical laser in a gas within a metal tube. Another concept employs a direct excitation of a quadrupole nuclear level by a powerful optical laser. The third concept is based on the process of a high-order harmonic generation by an x-ray laser. All three concepts can be used for designing gamma-ray lasers that would have significant advantages over x-ray lasers. First, missile defense systems employing gamma-ray lasers would be weather independent. Second, the gamma-ray laser radiation can penetrate through the sand, which could be suspended in the air in a desert either naturally (due to strong winds) or artificially (as a protective “shield”). Besides, the first out of the three concepts can beemployed for creating non-laser gamma-ray sources of directed energy to be used for detecting stored radioactive materials, including the radioactive materials carried by an aircraft or a satellite. Last but not least: these concepts can be also used for remotely destroying biological and chemical weapons as a preemptive strike or during its delivery phase, as well as for distinguishing a nuclear warhead from decoy warheads. Thus, the defense capabilities of the proposed gamma-ray lasers can save numerous lives.
基金Project(51178201) supported by the National Natural Science Foundation of China Project(2011CDB292) supported by the Natural Science Foundation of Hubei Province,China
文摘An active pipe-embedded building envelope, which is an external wall or roof with pipes embedded inside, was presented. This structure may utilize the circulating water in the pipe to transfer heat or coolth inside directly. This kind of structure is named "active pipe-embedded building envelope" due to dealing with the thermal energy actively inside the structure mass by circulating water. This structure not only deals with thermal energy before the external disturbance becomes cooling/heating load by using the circulating water, but also may use low-grade energy sources such as evaporative cooling, solar energy, and geothermal energy. In the meantime, this structure can also improve the indoor thermal comfort by tempering the internal wall surface temperature variation due to the thermal removal in the mass. This work further presents the thermal performance of this structure under a typical hot summer weather condition by comparing it with that of the conventional external wall/roof with numerical simulation. The results show that this pipe-embedded structure may reduce the external heat transfer significantly and reduce the internal wall surface temperature for improving thermal comfort. This work also presents the effects of the water temperature and the pipe spacing on the heat transfer of this structure. The internal surface heat transfer may reduce by about 2.6 W/mE when the water temperature reduces by 1℃ as far as a brick wall with pipes embedded inside is concerned. When the pipe spacing reduces by 50 mm, the internal wall surface heat flux can also reduce by about 2.3 W/m2.
文摘We describe a specific approach to capacity man a ge ment for distribution grids. Based on simulations, it has been found that by curtailing a maximum of 5% of the yearly energy production on a per-generator basis, distribution grid connection capacity can be doubled. We also present the setting and fi rst results of a fi eld test for validating the approach in a rural distribution grid in northern Germany.
基金Supported by the National Basic Research Program of China (973 program,No. 2007CB815601,2010CB933501)the National Natural Science Foundation of China (40772034, 40902097)+2 种基金 the Outstanding Youth Fund (50625205) the Opening Project of Key Laboratory of Solid Waste Treatment and Resource Recycle (No. 09zxgk05),Ministry of Educationthe CAS Foundation (KJCX1.YW.07)
文摘Ochrobactrum anthropi CTS-325 isolated from a chromium-contaminated site had better resistance to Cr(Ⅵ) in LB medium under aerobic condition.Meanwhile,it was found that the reduction of Cr(Ⅵ) is not complete during the experimental process.Therefore,a series of small molecule energy sources including nitrogen and carbon sources were added into the LB medium in the bacterial stationary phase to promote the chromium reducibility.The result showed that the bacterial growth was positively correlated with the chromium reduction.SDS-PAGE analysis indicated that the protein groups were changed when the bacteria were stimulated by the chromium.Additionally,it was revealed that O.anthropi CTS-325 could utilize the cheaper alternative of sugar(sucrose residue leaching solution) well for further growth and restart the chromium reduction,which offered a new method for practical appli-cations.
文摘The purpose of this research was to study economic incentives to use renewable energy sources in the Republic of Kazakhstan and to give suggestions for production and circulation of the "green" certificates as a new financial instrument. The author analyzed European Union and Kazakhstani experience of economic incentives to reduce emissions and introduction of renewable energy sources. As a result of conducted research, the proposal to produce and circulate new financial instruments in Kazakhstan is made; as well as economic and environmental factors of renewable energy sources in the Republic of Kazakhstan are defined.
文摘In recent times, renewable energy production from renewable energy sources is an alternative way to fulfill the increased energy demands. However, the increasing energy demand rate places more pressure, leading to the termination of conventional energy resources. However, the cost of power generation from coal-fired plants is higher than the power generation’s price from renewable energy sources. This experiment is focused on cost optimization during power generation through pumped storage power plant and wind power plant. The entire modeling of cost optimization has been conducted in two parts. The mathematical modeling was done using MATLAB simulation while the hydro and wind power plant’s emulation was performed using SCADA (Supervisory control and data acquisition) designer implementation. The experiment was conducted using ranges of generated power from both power sources. The optimum combination of output power and cost from both generators is determined via MATLAB simulation within the assumed generated output power range. Secondly, the hydro-generator and wind generator’s emulation were executed individually through synchronizing the grid to determine each generator’s specification using SCADA designer, which provided the optimum power generation from both generators with the specific speed, aligning with results generated through MATLAB. Finally, the operational power cost (with no losses consideration) from MATLAB was compared with the local energy provider to determine the cost-efficiency. This experiment has provided the operational cost optimization of the hydro-wind combined power system with stable wind power generation using SCADA, which will ultimately assist in operations of large-scale power systems, remotely minimizing multi-area dynamic issues while maximizing the system efficiency.
文摘A newly developed energy source basein China,Huaibei City,is located inthe northern part of Anhui Province,under the direct control of the provincialgovernment.Under its jurisdiction,there arethree districts and one county,covering atotal area of 2725 sq km and with a populationof 1.8 million. The city boasts unique mineralresources.A total of 13 minerals have beensurveyed,including coal,iron and kaoline.The reserves of coal,the richest of all,areestimated at about 10 billion tons and theprospective reserves 35 billion tons.Basedon its coal resources,the city has set up 24pairs of large and modern mines with anannual production capacity of 20 milliontons,ranking fifth in the country.The
文摘Mining industry is a substantial consumer of the energy indispensable to power mining and mineral processing equipment and processes. As more and more mine operations move to remote locations, the access to reliable, secure and environment friendly energy sources becomes a key concern. At present, a great majority of remote mines relies heavily on diesel fuel that has to be transported over long distances. In this context, some of the renewable energy sources such as wind power or solar energy seem to provide potentially interesting and viable alternatives. Mine operations, however, have a very particular character, much different from other industries and from other potential applications of renewable power sources. This paper presents operational conditions of some mining operations, particularly those in remote regions, in the context of their energy needs. The authors analyse current and future capacities to decrease a reliance of remote mines on conventional fuels and energy. The paper also analyses and discusses the conditions to be met by alternative energy sources so that they might become a viable alternative for remote mining operations.
文摘This paper focused on generation scheduling problem with consideration of wind, solar and PHES (pumped hydro energy storage) system. Wind, solar and PHES are being considered in the NEPS (northeast power system) of Afghanistan to schedule all units power output so as to minimize the total operation cost of thermal units plus aggregate imported power tariffs during the scheduling horizon, subject to the system and unit operation constraints. Apart from determining the optimal output power of each unit, this research also involves in deciding the on/off status of thermal units. In order to find the optimal values of the variables, GA (genetic algorithm) is proposed. The algorithm performs efficiently in various sized thermal power system with equivalent wind, solar and PHES and can produce a high-quality solution. Simulation results reveal that with wind, solar and PHES the system is the most-cost effective than the other combinations.
文摘Worldwide,there are many options to ensure domestic hot water(DHW)provision in dwellings.This study aimed to depict the distribution of energy sources and DHW production systems in the Calabria region.The research was focused on understanding which variables,among contextual variables and building characteristics,may influence the adoption of a particular energy source or production system.Descriptive statistics and chi-square test of independence have been developed.Significant relationships were found between the climatic zone and the energy source used as well as between the climatic zone and the production system installed in both households with a separated and a combined DHW production system.Furthermore,the population of the municipality and the dwelling type resulted to be significant variables for the preference of an energy source or the diffusion of a combined production system.
文摘RES (renewable energy sources), such as wind and photovoltaic power plants, suffer from their stochastic nature that is why their behavior on market is very delicate. In order to diversify risk, a concept of VPP (virtual power plant) has been developed. The VPP is composed of several RES, from which at least one of them is fully controllable. Because the production of noncontrollable RES can not be forecasted perfectly, therefore an optimal dispatch schedule within VPP is needed. To address this problem, an APSO (accelerated particle swarm optimization) is used to solve the constrained optimal dispatch problem within VPP. The experimental results show that the proposed optimization method provides high quality solutions while meeting constraints.
基金supported by the Science and Technology Project of State Grid Corporation(No.5400-202099286A-0-0-00).
文摘The growing integration of renewable energy sources manifests as an effective strategy for reducing carbon emissions. This paper strives to efficiently approximate the set of optimal scheduling plans(OSPs) to enhance the performance of the steady-state adaptive cruise method(SACM) of power grid, improving the ability of dealing with operational uncertainties. Initially, we provide a mathematical definition of the exact boxconstrained economic operating region(EBC-EOR) for the power grid and its dispatchable components. Following this, we introduce an EBC-EOR formulation algorithm and the corresponding bi-level optimization models designed to explore the economic operating boundaries. In addition, we propose an enhanced big-M method to expedite the computation of the EBCEOR. Finally, the effectiveness of the EBC-EOR formulation, its economic attributes, correlation with the scheduling plan underpinned by model predictive control, and the significant improvement in computational efficiency(over twelvefold) are verified through case studies conducted on two test systems..
基金supported in part by National Natural Science Foundation of China(No.U1910216)in part by Science and Technology Project of State Grid Zhejiang Electric Power Co.,Ltd.(No.5211JY19000T)。
文摘With the continuous development of information technology,data centers(DCs)consume significant and evergrowing amounts of electrical energy.Renewable energy sources(RESs)can act as clean solutions to meet this requirement without polluting the environment.Each DC serves numerous users for their data service demands,which are regarded as flexible loads.In this paper,the willingness to pay and time sensitivities of DC users are firstly explored,and the user-side demand response is then devised to improve the overall benefits of DC operation.Then,a Stackelberg game between a DC and its users is proposed.The upper-level model aims to maximize the profit of the DC,in which the time-varying pricing of data services is optimized,and the lower-level model addresses user’s optimal decisions for using data services while balancing their time and cost requirements.The original bi-level optimization problem is then transformed into a single-level problem using the Karush-Kuhn-Tucker optimality conditions and strong duality theory,which enables the problem to be solved efficiently.Finally,case studies are conducted to demonstrate the feasibility and effectiveness of the proposed method,as well as the effects of the time-varying data service price mechanism on the RES accommodation.
基金supported by the Deanship of Postgraduate Studies and Scientific Research at Majmaah University in Saudi Arabia under Project Number(ICR-2024-1002).
文摘In the contemporary era,the global expansion of electrical grids is propelled by various renewable energy sources(RESs).Efficient integration of stochastic RESs and optimal power flow(OPF)management are critical for network optimization.This study introduces an innovative solution,the Gaussian Bare-Bones Levy Cheetah Optimizer(GBBLCO),addressing OPF challenges in power generation systems with stochastic RESs.The primary objective is to minimize the total operating costs of RESs,considering four functions:overall operating costs,voltage deviation management,emissions reduction,voltage stability index(VSI)and power loss mitigation.Additionally,a carbon tax is included in the objective function to reduce carbon emissions.Thorough scrutiny,using modified IEEE 30-bus and IEEE 118-bus systems,validates GBBLCO’s superior performance in achieving optimal solutions.Simulation results demonstrate GBBLCO’s efficacy in six optimization scenarios:total cost with valve point effects,total cost with emission and carbon tax,total cost with prohibited operating zones,active power loss optimization,voltage deviation optimization and enhancing voltage stability index(VSI).GBBLCO outperforms conventional techniques in each scenario,showcasing rapid convergence and superior solution quality.Notably,GBBLCO navigates complexities introduced by valve point effects,adapts to environmental constraints,optimizes costs while considering prohibited operating zones,minimizes active power losses,and optimizes voltage deviation by enhancing the voltage stability index(VSI)effectively.This research significantly contributes to advancing OPF,emphasizing GBBLCO’s improved global search capabilities and ability to address challenges related to local minima.GBBLCO emerges as a versatile and robust optimization tool for diverse challenges in power systems,offering a promising solution for the evolving needs of renewable energy-integrated power grids.
文摘Energy in its varied forms and applications has become the main driver of today’s modern society. However, recent changes in power demand and climatic changes (decarbonization policy) has awakened the need to rethink through the current energy generating and distribution system. This led to the exploration of other energy sources of which renewable energy (like thermal, solar and wind energy) is fast becoming an integral part of most energy system. However, this innovative and promising energy source is highly unreliable in maintaining a constant peak power that matches demand. Energy storage systems have thus been highlighted as a solution in managing such imbalances and maintaining the stability of supply. Energy storage technologies absorb and store energy, and release it on demand. This includes gravitational potential energy (pumped hydroelectric), chemical energy (batteries), kinetic energy (flywheels or compressed air), and energy in the form of electrical (capacitors) and magnetic fields. This paper provides a detailed and comprehensive overview of some of the state-of-the-art energy storage technologies, its evolution, classification, and comparison along with various area of applications. Also highlighted in this paper is a plethora of power electronic Interface technologies that plays a significant role in enabling optimum performance and utilization of energy storage systems in different areas of application.
文摘In this paper,the primary energy source of high current electron beam accelerator based on spiral pulse forming line is investigated.It consists of the constant-current power supply,the high voltage pulse capacitor,the field distortion switch,and the protection system.The primary energy source can discharge to the primary winding of the transformer with high voltage pulses whose amplitude of voltage is 40kV,current is 80kA,pulse width is 8μs and repetition frequency is less than 5Hz.The primary energy source is applied to a high current electron beam accelerator, and is featured by its compactness,stability and reliability.
文摘When a microgrid is mainly supplied by renewable energy sources(RESs), the frequency deviations may deteriorate significantly the power quality delivered to the loads. This paper proposes a frequency-based control strategy, ensuring the frequency among the strict limits imposed by the Standard EN 50160. The frequency of the microgrid common AC bus is determined by the energy storage converter, implementing a proposed droop curve among the state of charge(SoC) of the battery and the frequency. Therefore, the information of the SoC becomes known to every distributed energy resource(DER) of the microgrid and determines the active power injection of the converter-interfaced DERs. The active power injection of the rotating generators remains unaffected, while any mismatch among the power generation and consumption is absorbed by the energy storage system. Finally, in case of a solid short-circuit within the microgrid, the energy storage system detects the severe voltage decrease and injects a large current in order to clear the fault by activating the protection device closer to the fault. The proposed control methodology is applied in a microgrid with PVs, wind generators and a battery, while its effectiveness is evaluated by detailed simulation tests.
基金funding of this research is the grand research of the professor with the contract number of(32/UN11.2.1/PT.01.03/PNBP/2020).
文摘Wind power, solar power and water power are technologies that can be used as the main sources of renewable energy so that the target of decarbonisation in the energy sector can be achieved. However, when compared with conventional power plants, they have a significant difference. The share of renewable energy has made a difference and posed various challenges, especially in the power generation system. The reliability of the power system can achieve the decarbonization target but this objective often collides with several challenges and failures, such that they make achievement of the target very vulnerable, Even so, the challenges and technological solutions are still very rarely discussed in the literature. This study carried out specific investigations on various technological solutions and challenges, especially in the power system domain. The results of the review of the solution matrix and the interrelated technological challenges are the most important parts to be developed in the future. Developing a matrix with various renewable technology solutions can help solve RE challenges. The potential of the developed technological solutions is expected to be able to help and prioritize them especially cost-effective energy. In addition, technology solutions that are identified in groups can help reduce certain challenges. The categories developed in this study are used to assist in determining the specific needs and increasing transparency of the renewable energy integration process in the future.
文摘Microgrid with hybrid renewable energy sources is a promising solution where the distribution network expansion is unfeasible or not economical.Integration of renewable energy sources provides energy security,substantial cost savings and reduction in greenhouse gas emissions,enabling nation to meet emission targets.Microgrid energy management is a challenging task for microgrid operator(MGO)for optimal energy utilization in microgrid with penetration of renewable energy sources,energy storage devices and demand response.In this paper,optimal energy dispatch strategy is established for grid connected and standalone microgrids integrated with photovoltaic(PV),wind turbine(WT),fuel cell(FC),micro turbine(MT),diesel generator(DG)and battery energy storage system(ESS).Techno-economic benefits are demonstrated for the hybrid power system.So far,microgrid energy management problem has been addressed with the aim of minimizing operating cost only.However,the issues of power losses and environment i.e.,emission-related objectives need to be addressed for effective energy management of microgrid system.In this paper,microgrid energy management(MGEM)is formulated as mixedinteger linear programming and a new multi-objective solution is proposed for MGEM along with demand response program.Demand response is included in the optimization problem to demonstrate it’s impact on optimal energy dispatch and techno-commercial benefits.Fuzzy interface has been developed for optimal scheduling of ESS.Simulation results are obtained for the optimal capacity of PV,WT,DG,MT,FC,converter,BES,charging/discharging scheduling,state of charge of battery,power exchange with grid,annual net present cost,cost of energy,initial cost,operational cost,fuel cost and penalty of greenhouse gases emissions.The results show that CO_(2) emissions in standalone hybrid microgrid system is reduced by 51.60%compared to traditional system with grid only.Simulation results obtained with the proposed method is compared with various evolutionary algorithms to verify it’s effectiveness.
基金supported by the National Natural Science Foundation of China(No.51577068)Science&Technology Foundation of SGCC(No.520201150012)
文摘This paper applies double-uncertainty optimization theory to the operation of AC/DC hybrid microgrids to deal with uncertainties caused by a high proportion of intermittent energy sources.A fuzzy stochastic expectation economic model for day-ahead scheduling based on uncertain optimization theory is proposed to minimize the operational costs of hybrid AC/DC microgrids.The fuzzy stochastic alternating direction multiplier method is proposed to solve the double-uncertainty optimization problem.A real-time intra-day unbalanced power adjustment model is established to minimize real-time adjustment costs.Through comparative analysis of deterministic optimization,stochastic optimization and fuzzy stochastic optimization of day-ahead scheduling and real-time adjustment,the validity of fuzzy stochastic optimization based on a fuzzy stochastic expectation model is proved.