Daily precipitation amounts from 1961 to 2005 in 35 observation stations in Liaoning Province were selected in order to study the temporal and spatial distribution of extreme precipitation events.By dint of EOF,REOF,m...Daily precipitation amounts from 1961 to 2005 in 35 observation stations in Liaoning Province were selected in order to study the temporal and spatial distribution of extreme precipitation events.By dint of EOF,REOF,mean-square-error and other ways,the changes in different regions of extreme precipitation and distribution were reflected.The analysis showed that,extreme precipitation in Liaoning Province could be divided into three areas,which were western Liaoning mountains and parts of northern areas,eastern Liaoning mountainous,near-coastal areas of Liaohe River Plain.In the relatively large precipitation areas,extreme precipitation threshold was also higher,and vice versa.The lower frequency of extreme precipitation events had a greater contribution to total precipitation;extreme precipitation,total precipitation and total rain days had the greatest changes in the summer,and the least changes in the winter;number of days of extreme precipitation changes in each season were not great;the change of extreme precipitation was not obvious in the long term.展开更多
Using the daily precipitation data of 740 stations in China from 1960 to 2000, the analysis on the variations and distributions of the frequency and the percentage of extreme precipitation to the annual rainfall have ...Using the daily precipitation data of 740 stations in China from 1960 to 2000, the analysis on the variations and distributions of the frequency and the percentage of extreme precipitation to the annual rainfall have been performed in this paper. Results indicate that the percentage of heavy rains (above 25mm/day) in the annual rainfall has increased, while on average the day number of heavy rains has slightly reduced during the past 40 years. In the end of 1970s and the beginning of 1980s, both the number of days with extreme precipitation and the percentage of extreme precipitation abruptly changed over China, especially in the northern China. By moving t test, the abrupt change year of extreme precipitation for each station and its spatial distribution over the whole country are also obtained. The abrupt change years concentrated in 1978-1982 for most regions of northern China while occurred at various stations in southern China in greatly different/diverse years. Besides the abrupt change years of extreme precipitation at part stations of Northwest China happened about 5 years later in comparison with that of the country's average.展开更多
Using the daily precipitation data of 118 meteorological stations in Northwest China from January 1, 1961 to December 31,2010, we analyzed extreme precipitation events from prime precipitation data by applying R-langu...Using the daily precipitation data of 118 meteorological stations in Northwest China from January 1, 1961 to December 31,2010, we analyzed extreme precipitation events from prime precipitation data by applying R-language Climate Index (RClimDex). The spatial-temporal change characteristics in the past 50 years have been examined using the method of trend analysis, Mann-Kendall and the spatial analysis module of Arcgis9.2. The results show that the spatial distribution of the indices for extreme precipitation in Northwest China is greatly influenced by geographic location, atmospheric circulation and topography, and the spatial difference of extreme precipitation events is very evident, while the indices reduce from the southeast to the northwest except Consecutive Dry Days (CDD). In Xinjiang region, high values appear in Tianshan Mountains and decrease towards the south and north respectively. In the past 50 years, the temporal variation tendency of the indices for extreme precipitation in Northwest China has a great spatial distinction. It shows that the variation tendency is opposite between the east (decrease) and the west (increase), and CDD has a decreasing tendency while other indices increase. For each region, it is found that the indices for extreme precipitation in Xinjiang and Qinghai Province shows an increasing trend, and it is remarkable in Tianshan Mountains, the north of Xinjiang and the northeast of Qinghai Province. The temporal variation tendency of the indices for extreme precipitation in Ningxia, Shaanxi and Gansu has a large spatial distinction. The stations which have an increasing tend are mainly found in the north of Ningxia, south of Shaanxi and Hexi Corridor of Gansu. However, the south of Ningxia, north of Shaanxi and Longnan of Gansu Province mainly present a decreasing trend. The temporal variation tendency of the indices for extreme precipitation in Inner Mongolia is not obvious. Overall, the east part of Northwest China has a dry tendency, while the west part has an opposite trend.展开更多
Based on monthly mean wind,geopotential height,specific humidity,and surface pressure of NCAR/NCEP reanalysis,NOAA-reconstructed sea surface temperature (SST) of the Indian Ocean,and daily precipitation data at 97 met...Based on monthly mean wind,geopotential height,specific humidity,and surface pressure of NCAR/NCEP reanalysis,NOAA-reconstructed sea surface temperature (SST) of the Indian Ocean,and daily precipitation data at 97 meteorological stations over the eastern NW China in the past 47 years,the threshold values for extreme precipitation events (EPE) are defined using the percentile method.Singular Value Decomposition and synthetic analysis methods are used to analyze the relationship between summer EPE in the eastern NW China and SSTA in the preceding fall,winter,spring,and the concurrent summer.The result shows that preceding spring SST anomalies (SSTA) in the Indian Ocean are clear indicators for the forecast of summer EPE in the eastern NW China,and a key area of impact is located in the equatorial Indian Ocean.When spring SST is anomalously high in the equatorial Indian Ocean,the meridional circulation averaged over 100°E-110°E will be anomalously ascending near the equator but anomalously descending near 30°N in the middle and upper troposphere from the concurrent to the subsequent summer.In the meantime,the Southwest Monsoon from the Indian Ocean will be anomalously weak and there will be no anomalous water vapor transport to the eastern NW China,resulting in a lack of EPE in the subsequent summer,and vice versa.In addition,in response to anomalously high SST in the equatorial Indian Ocean in spring,the South Asia high pressure tends to be strong in the subsequent summer and more to the west.In the anomalously low SST year,however,the South Asia high tends to be weak in the subsequent summer and more to the east.This is another possible cause of the variation of summer EPE in the eastern NW China.展开更多
[ Objective] The aim was to study the spatial and temporal changes of extreme precipitation events in Ningxia in recent 50 years. [ Method] Using dally precipitation data at 20 stations in Ningxia from 1961 to 2010, a...[ Objective] The aim was to study the spatial and temporal changes of extreme precipitation events in Ningxia in recent 50 years. [ Method] Using dally precipitation data at 20 stations in Ningxia from 1961 to 2010, and defining the threshold value of extreme precipitation in each sta- tion by percentage method, choosing indicators such as precipitation, frequency and intensity of extreme precipitation events, the characteristics of the spatial and temporal distribution and linear trend of extreme precipitation events in Ningxia were analyzed based on linear regression and M-K non-parameter statistical test method. [ Result] The percentage method suggested the threshold value of average extreme precipitation in Ningxia in recent 50 years decreased from south to north. The large threshold value was in southern Haiyuan, Tongxin and northern Yancheng, which was similar to the distribution of mean annual precipitation in Ningxia. In recent 50 years, extreme precipitation frequency and extreme precipitation de- creased in most part of Ningxia but the intensity tended to strengthen. Study of extreme precipitation in Mahuang Mountain and Liupan Mountain in- dicated that precipitation frequency, intensity and extreme precipitation reduced. Annual extreme precipitation frequency narrowed and then in- creased after 1994 and had mutation in 2003. Annual extreme precipitation intensity enhanced since 1984. Mutation took place in 1984. Intensity in Liupan Mountain had weakened since 1978. [ Conclusion] The study provided theoretical basis for the mutation of climate in Ningxia.展开更多
The dominant frequency modes of pre-summer extreme precipitation events(EPEs)over South China(SC)between1998 and 2018 were investigated.The 67 identified EPEs were all characterized by the 3-8-d(synoptic)frequency ban...The dominant frequency modes of pre-summer extreme precipitation events(EPEs)over South China(SC)between1998 and 2018 were investigated.The 67 identified EPEs were all characterized by the 3-8-d(synoptic)frequency band.However,multiscale combined modes of the synoptic and three low-frequency bands[10-20-d(quasi-biweekly,QBW);15-40-d(quasi-monthly,QM);and 20-60-d(intraseasonal)]accounted for the majority(63%)of the EPEs,and the precipitation intensity on the peak wet day was larger than that of the single synoptic mode.It was found that EPEs form within strong southwesterly anomalous flows characterized by either lower-level cyclonic circulation over SC or a deep trough over eastern China.Bandpass-filtered disturbances revealed the direct precipitating systems and their life cycles.Synoptic-scale disturbances are dominated by mid-high latitude troughs,and the cyclonic anomalies originate from downstream of the Tibetan Plateau(TP).Given the warm and moist climate state,synoptic-scale northeasterly flows can even induce EPEs.At the QBW and QM scales,the disturbances originate from the tropical Pacific,downstream of the TP,or mid-high latitudes(QBW only).Each is characterized by cyclonic-anticyclonic wave trains and intense southwesterly flows between them within a region of large horizontal pressure gradient.The intraseasonal disturbances are confined to tropical regions and influence SC by marginal southwesterly flows.It is concluded that low-frequency disturbances provide favorable background conditions for EPEs over SC and synoptic-scale disturbances ultimately induce EPEs on the peak wet days.Both should be simultaneously considered for EPE predictions over SC.展开更多
Based on the hourly precipitation data at 176 observational stations over south China and the hourly ERA5reanalysis data during the 40-yr period of 1981-2020, we analyzed the universal characteristics of moisture tran...Based on the hourly precipitation data at 176 observational stations over south China and the hourly ERA5reanalysis data during the 40-yr period of 1981-2020, we analyzed the universal characteristics of moisture transport and their associated background circulations for four types of regional extreme precipitation events(REPEs) over south China. Main findings are shown as follow.(i) The wind that transported moisture for the REPEs over south China featured a notable diurnal variation, which was consistent with the variations of the precipitation.(ii) Four types of REPEs could be determined, among which the southwest type(SWT) and the southeast type(SET) accounted for ~92%and ~5.7%, respectively, ranking the first and second, respectively.(iii) Trajectory analyses showed that the air particles of the SWT-REPEs had the largest specific humidity and experienced the most intense ascending motion, and therefore their precipitation was the strongest among the four types.(iv) South China was dominated by notable moisture flux convergence for the four types of REPEs, but their moisture transport was controlled by different flow paths.(v)Composite analyses indicated that the background circulation of the four types of REPEs showed different features,particularly for the intensity, location and coverage of a western Pacific subtropical high. For the SWT-REPEs, their moisture transport was mainly driven by a lower-tropospheric strong southwesterly wind band in the low-latitude regions. Air particles for this type of REPEs mainly passed over the Indochina Peninsula and South China Sea. For the SET-REPEs, their moisture transport was mainly steered by a strong low-tropospheric southeasterly wind northeast of a transversal trough. Air particles mainly passed over the South China Sea for this type of REPEs.展开更多
Fifty cases of regional yearly extreme precipitation events (RYEPEs) were identified over the Yangtze-Huaihe River Valley (YHRV) during 1979-2016 applying the statistical percentile method. There were five types o...Fifty cases of regional yearly extreme precipitation events (RYEPEs) were identified over the Yangtze-Huaihe River Valley (YHRV) during 1979-2016 applying the statistical percentile method. There were five types of RYEPEs, namely Yangtze Meiyu (YM-RYEPE), Huaihe Meiyu (HM-RYEPE), southwest-northeast-oriented Meiyu (SWNE-RYEPE) and typhoon I and II (TC-RYEPE) types of RYEPEs. Potential vorticity diagnosis showed that propagation trajectories of the RYEPEs along the Western Pacific Subtropical High and its steering flow were concentrated over the southern YHRV. As a result, the strongest and most frequently RYEPEs events, about 16-21 cases with average rainfall above 100 mm, occurred in the southern YHRV, particularly in the Nanjing metropolitan area. There have been 14 cases of flood-inducing RYEPEs since 1979, with the submerged area exceeding 120 km2 as simulated by the FloodArea hydraulic model, comprising six HM-RYEPEs, five YM- RYEPEs, two TC-RYEPEs, and one SWNE-RYEPE. The combination of evolving RYEPEs and rapid expansion of urban agglomeration is most likely to change the flood risk distribution over the Nanjing metropolitan area in the future. In the RCP6.0 (RCPS.5) scenario, the built-up area increases at a rate of about 10.41 km2 (10 yr)-t(24.67 km2 (10 yr)-1) from 2010 to 2100, and the area of high flood risk correspondingly increases from 3.86 km2(3.86 km2) to 9.00 kin2(13.51 km2). Areas of high flood risk are mainly located at Chishan Lake in Jurong, Lukou International Airport in Nanjing, Dongshan in Jiangning District, Lishui District and other low-lying areas. The accurate simulation of flood scenarios can help reduce losses due to torrential flooding and improve early warnings, evacuation planning and risk analysis. More attention should be paid to the projected high flood risk because of the concentrated population, industrial zones and social wealth throughout the Nanjing metropolitan area.展开更多
Sichuan Basin is located in southwestern China and affected by a complex water vapor (WV) sources. Here, the spatial and temporal patterns of precipitation and extreme events are investigated by six indices of World...Sichuan Basin is located in southwestern China and affected by a complex water vapor (WV) sources. Here, the spatial and temporal patterns of precipitation and extreme events are investigated by six indices of World Meteorology Organization Commission, including annual precipitation total (AP), maximum daily precipitation (Maxld), intensity of rainfall over 1 mm/d (IR1), maximum and mean consecutive dry days (Max CDD, Mean CDD) and coefficient of variance. Based on 24 daily precipitation time series from 1951 to 2o11, Mann-Kendall test is employed to quantify the significant level of these indices, from which the classification of precipitation change and its spatial patterns are obtained. Meanwhile, the probability distributions of these indices are identified by L-moment analysis and the Goodness-of-fit test, and the corresponding values are calculated by theoretical model at different return periods. The results reveal that the western basin displays normal drought: less AP and precipitation intensity while longer drought. The southern basin shows normal increase: larger AP and precipitation intensity but shorter CDD. However, in hilly region of the central basin and the transition zone between basin and mountains, precipitation changes abnormally: increasing both drought (one or both of Mean CDD and MaxCDD) and precipitation intensity (one or both of Maxld and trend of AP is. Probability IR1) no matter what the distribution models also demonstrate the complex patterns: a negative correlation between Maxld and Max CDD in the west (R2≥0.61) while a positive correlation in the east (R2≥0.41) at all return periods. These patterns are induced by the changes in WV sources and the layout of local terrain. The increase of WV in summer and decrease in spring leads to the heavier rainfall and longer drought respectively. The large heat island effect of the basin contributes to a lower temperature in transition zones and more precipitation in the downwind area. These results are helpful in reevaluating the risk regionally and making better decisions on water resources management and disaster prevention.展开更多
A new available dataset of daily observational precipitation is used to study the temporal and spatial variability of extreme precipitation events for 1956-2008 in the ten large river basins of China. The maximum dail...A new available dataset of daily observational precipitation is used to study the temporal and spatial variability of extreme precipitation events for 1956-2008 in the ten large river basins of China. The maximum daily rainfall and heavy precipitation days (≥50 mm d^-1) are analyzed for the basins of the Songhua River, Liaohe River, Haihe River, Yellow River, Northwest China Rivers, Huaihe River, Yangtze River, Pearl River, Southeast China Rivers, and Southwest China Rivers. The results indicate that the maximum daily rainfall was increasing in southern river basins, while it was decreasing in northern river basins, which leads to no discernible increasing or decreasing trend in the maximum daily rainfall of whole China,especially 2001. The national averaged heavy precipitation days shows an insignificant increase. However, a rise in heavy precipitation days of southern river basins and a decline of northern river basins are observed.展开更多
The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1 D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavele...The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1 D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavelet transform method. The research results indicated that: 1) Spatial distribution of RID is similar in comparison with that of R3D, R5D and R7D. The Jialingjiang and Hanjiang river basins are dominated by decreasing trend, which is significant at 〉95% confidence level in Jialingjiang River basin and insignificant at 〉95% confidence level in Hanjiang River basin. The southern part of the Yangtze River basin and the western part of the upper Yangtze River basin are dominated by significant increasing trend of RID extreme precipitation at 〉95% confidence level. 2) As for the R3D, R5D and R7D, the western part of the upper Yangtze River basin is dominated by significant increasing trend at 〉95% confidence level. The eastern part of the upper Yangtze River basin is dominated by decreasing trend, but is insignificant at 〉95% confidence level. The middle and lower Yangtze River basin is dominated by increasing trend, but insignificant at 〉95% confidence level. 3) The frequency and intensity of extreme precipitation events are intensified over time. Precipitation anomalies indicated that the southeastern part, southern part and southwestern part of the Yangtze River basin are dominated by positive extreme precipitation anomalies between 1993-2002 and 1961-1992. The research results of this text indicate that the occurrence probability of flash flood is higher in the western part of the upper Yangtze River basin and the middle and lower Yangtze River basin, esp. in the southwestern and southeastern parts of the Yangtze River basin.展开更多
This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 200...This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 2008 and the extremely heavy precipitation thresholds determined for different stations by REOF, trend coefficients, linear trend, Mann-Kendall test and variance analysis. The results are shown as follows. The frequency distribution of extremely heavy precipitation is high in the middle of South China and low in the Guangdong coast and western Guangxi. There are three spatial distribution types of extremely heavy precipitation in South China. The consistent anomaly distribution is the main type. Distribution reversed between the east and the west and between the south and the north is also an important type. Extremely heavy precipitation events in South China mainly occurred in the summer-half of the year. Their frequency during this time accounts for 83.7% of the total frequency. In the 1960 s and 1980 s, extremely heavy precipitation events were less frequent while having an increasing trend from the late 1980 s. Their climatological tendency rates decrease in the central and rise in the other areas of South China, and on average the mean series also shows an upward but insignificant trend at all of the stations. South China's frequency of extremely heavy precipitation events can be divided into six major areas and each of them shows a different inter-annual trend and three of the representative stations experience abrupt changes by showing remarkable increases in terms of Mann-Kendall tests.展开更多
By using the observation data from 89 weather stations in Xinjiang during 1961-2010, this paper analyzed the basic climatic elements including temperature, precipitation, wind speed, sunshine duration, water vapor pre...By using the observation data from 89 weather stations in Xinjiang during 1961-2010, this paper analyzed the basic climatic elements including temperature, precipitation, wind speed, sunshine duration, water vapor pressure, and dust storm in the entire Xinjiang and the subareas: North Xinjiang, Tianshan Mountains, and South Xinjiang. The results indicate that from 1961 to 2010 the annual and seasonal mean temperatures in the entire Xinjiang show an increasing trend with the increasing rate rising from south to north. The increasing rate of annual mean minimum temperature is over twice more than that of the annual mean maximum temperature, contributing much to the increase in the annual averages. The magnitude of the decrease rate of low-temperature days is larger than the increase rate of high-temperature days. The increase of warm days and warm nights and the decrease of cold days and cold nights further reveal that the temperature increasing in Xinjiang is higher. In addition, annual and seasonal rainfalls have been increasing. South Xinjiang experiences higher increase in rainfall amounts than North Xinjiang and Tianshan Mountains. Annual rainy days, longest consecutive rainy days, the daily maximum precipitation and extreme precipitation events, annual torrential rain days and amount, annual blizzard days and amount, all show an increasing trend, corresponding to the increasing in annual mean water vapor pressure. This result shows that the humidity has increased with temperature increasing in the past 50 years. The decrease in annual mean wind speed and gale days lessen the impact of dust storm, sandstorm, and floating dust events. The increase in annual rainy days is the cause of the decrease in annual sunshine duration, while the increase in spring sunshine duration corresponds with the decrease in dust weather. Therefore, the increase in precipitation indicators, the decrease in gales and dust weather, and the increasing in sunshine duration in spring will be beneficial to crops growth.展开更多
Persistent heavy rainfall events (PHR events) comprise one category of weather- and climate- related extreme events. Based on daily rainfall data measured in China during the period of 1951-2004, several quantitativ...Persistent heavy rainfall events (PHR events) comprise one category of weather- and climate- related extreme events. Based on daily rainfall data measured in China during the period of 1951-2004, several quantitative criteria were developed to define PHR events by means of their precipitation intensity, temporal duration, spatial extent and persistence. Then a semi-objective classification based on these criteria was applied to summer daily rainfall data to identify all PHR events. A total of 197 events were observed during the study period. All events were further classified into 5 categories according to their comprehensive intensity; into 3 types according to their circulation regime; and into 8 groups according to the geographic locations of their rainbands. Based on these different classifications, finally, the behaviors of 130 PHR events identified as the most severe, severe and moderate categories since the year of 1951, including characteristics of the spatial and temporal distributions of their frequencies, intensities, and rainbands, were investigated in order to present a comprehensive description of the PHR events. The results will be helpful to the future study of revealing and understanding the processes that govern the production of the PHR events and to the improvement of the forecasts of the PHR events.展开更多
Atmospheric wet deposition plays an important role in the supply of nutrients and toxic substances to terrestrial and aquatic environments. Although long-term(e.g. annual, multi-year) wet deposition is recorded well...Atmospheric wet deposition plays an important role in the supply of nutrients and toxic substances to terrestrial and aquatic environments. Although long-term(e.g. annual, multi-year) wet deposition is recorded well, pronounced and short-term changes in precipitation chemistry are less well investigated. In the present study, the precipitation chemistry and scavenging ratio of air pollutants were observed during an extreme torrential rain event(325.6 mm at the observation site) that occurred over 19–21 July 2016 in the North China Plain(NCP). The scavenging ratio of particles showed a similar spatial distribution to that of the precipitation amount in the NCP, indicating the efficient removal of particulate matter due to the large amount and precipitation intensity of the storm. In addition, the scavenging ratio of water soluble ions was larger than that of organics and gaseous pollutants such as SO_2 and NO_2, likely due to their differences in water solubility.Consequently, raindrops incorporated more aerosol sulfate than gaseous compounds. Due to the heavy precipitation amount, almost all species in rainwater during this storm showed their lowest concentration but the highest flux compared with other rain events, indicating an important role played by this storm in terms of the substances received by the terrestrial and marine ecosystems of the region. However, the contribution of this storm to the annual chemical flux was lower than that of precipitation amount, indicating that the atmospheric compounds were scavenged below-cloud first and were then diluted by the cloud/rainwater. Future studies are needed in the context of the occurrence of extreme rainfall events in the NCP from the perspective of climate variability.展开更多
Based on daily precipitation data of more than 2000 Chinese stations and more than 50 yr, we constructed time series of extreme precipitation based on six different indices for each station: annual and summer maximum(...Based on daily precipitation data of more than 2000 Chinese stations and more than 50 yr, we constructed time series of extreme precipitation based on six different indices for each station: annual and summer maximum(top-1) precipitation,accumulated amount of 10 precipitation maxima(annual, summer; top-10), and total annual and summer precipitation.Furthermore, we constructed the time series of the total number of stations based on the total number of stations with top-1 and top-10 annual extreme precipitation for the whole data period, the whole country, and six subregions, respectively. Analysis of these time series indicate three regions with distinct trends of extreme precipitation:(1) a positive trend region in Southeast China,(2) a positive trend region in Northwest China, and(3) a negative trend region in North China. Increasing(decreasing)ratios of 10–30% or even >30% were observed in these three regions. The national total number of stations with top-1 and top-10 precipitation extremes increased respectively by 2.4 and 15 stations per decade on average but with great inter-annual variations.There have been three periods with highly frequent precipitation extremes since 1960:(1) early 1960 s,(2) middle and late 1990 s,and(3) early 21 st century. There are significant regional differences in trends of regional total number of stations with top-1 and top-10 precipitation. The most significant increase was observed over Northwest China. During the same period, there are significant changes in the atmospheric variables that favor the decrease of extreme precipitation over North China: an increase in the geopotential height over North China and its upstream regions, a decrease in the low-level meridional wind from South China coast to North China, and the corresponding low moisture content in North China. The extreme precipitation values with a50-year empirical return period are 400–600 mm at the South China coastal regions and gradually decrease to less than 50 mm in Northwest China. The mean increase rate in comparison with 20-year empirical return levels is 6.8%. The historical maximum precipitation is more than twice the 50-year return levels.展开更多
The variations of regional mean daily precipitation extreme (RMDPE) events in central China and associated circulation anomalies during June, July, and August (JJA) of 1961-2010 are investigated by using daily in-...The variations of regional mean daily precipitation extreme (RMDPE) events in central China and associated circulation anomalies during June, July, and August (JJA) of 1961-2010 are investigated by using daily in-situ precipitation observations and the NCEP/NCAR reanalysis data. The precipitation data were collected at 239 state-level stations distributed throughout the provinces of Henan, Hubei, and Hunan. During 1961-2010, the 99th percentile threshold for RMDPE is 23.585 mm day-1. The number of RMDPE events varies on both interannual and interdecadal timescales, and increases significantly after the mid 1980s. The RMDPE events happen most frequently between late June and mid July, and are generally associated with anomalous baroclinic tropospheric circulations. The supply of moisture to the southern part of central China comes in a stepping way from the outer-region of an abnormal anticyclone over the Bay of Bengal and the South China Sea. Fluxes of wave activity generated over the northeastern Tibetan Plateau converge over central China, which favors the genesis and maintenance of wave disturbances over the region. RMDPE events typically occur in tandem with a strong heating gradient formed by net heating in central China and the large-scale net cooling in the surrounding area. The occurrence of RMDPE events over central China is tied to anomalous local cyclonic circulations, topographic forcing over the northeast Tibetan Plateau, and anomalous gradients of diabatic heating between central China and the surrounding areas.展开更多
This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,...This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,and the results from the high-resolution large-eddy simulation nested in the Weather Research and Forecasting(WRF)model with assimilation of satellite and radar observations.The results show that the abundant and persistent southeasterly supply of water vapor,induced by Typhoons In-Fa and Cempaka,under a particular synoptic pattern featured with abnormal northwestward displacement of the western Pacific subtropical high,was conducive to warm rain processes through a high vapor condensation rate of cloud water and an efficient collision–coalescence process of cloud water to rainwater.Such conditions were favorable for the formation and maintenance of the quasi-stationary warmsector heavy rainfall.Precipitation formation through the collision–coalescence process of cloud water to rainwater accounted for approximately 70%of the total,while the melting of snow and graupel accounted for only approximately 30%,indicating that warm cloud processes played a dominant role in this extreme rainfall event.However,enhancement of cold cloud processes promoted by latent heat release also exerted positive effect on rainfall during the period of most intense hourly rainfall.It was also found that rainwater advection from outside of Zhengzhou City played an important role in maintaining the extreme precipitation event.展开更多
As a natural disaster,extreme precipitation is among the most destructive and influential,but predicting its occurrence and evolution accurately is very challenging because of its rarity and uniqueness.Taking the exam...As a natural disaster,extreme precipitation is among the most destructive and influential,but predicting its occurrence and evolution accurately is very challenging because of its rarity and uniqueness.Taking the example of the“21·7”extreme precipitation event(17–21 July 2021)in Henan Province,this study explores the potential of using physics-guided machine learning to improve the accuracy of forecasting the intensity and location of extreme precipitation.Three physics-guided ways of embedding physical features,fusing physical model forecasts and revised loss function are used,i.e.,(1)analyzing the anomalous circulation and thermodynamical factors,(2)analyzing the multi-model forecast bias and the associated underlying reasons for it,and(3)using professional forecasting knowledge to design the loss function,and the corresponding results are used as input for machine learning to improve the forecasting accuracy.The results indicate that by learning the relationship between anomalous physical features and heavy precipitation,the forecasting of precipitation intensity is improved significantly,but the location is rarely adjusted and more false alarms appear.Possible reasons for this are as follows.The anomalous features used here mainly contain information about large-scale systems and factors which are consistent with the model precipitation deviation;moreover,the samples of extreme precipitation are sparse and so the algorithm used here is simple.However,by combining“good and different”multi models with machine learning,the advantages of each model are extracted and then the location of the precipitation center in the forecast is improved significantly.Therefore,by combining the appropriate anomalous features with multi-model fusion,an integrated improvement of the forecast of the rainfall intensity and location is achieved.Overall,this study is a novel exploration to improve the refined forecasting of heavy precipitation with extreme intensity and high variability,and provides a reference for the deep fusion of physics and artificial intelligence methods to improve intense rain forecast.展开更多
文摘Daily precipitation amounts from 1961 to 2005 in 35 observation stations in Liaoning Province were selected in order to study the temporal and spatial distribution of extreme precipitation events.By dint of EOF,REOF,mean-square-error and other ways,the changes in different regions of extreme precipitation and distribution were reflected.The analysis showed that,extreme precipitation in Liaoning Province could be divided into three areas,which were western Liaoning mountains and parts of northern areas,eastern Liaoning mountainous,near-coastal areas of Liaohe River Plain.In the relatively large precipitation areas,extreme precipitation threshold was also higher,and vice versa.The lower frequency of extreme precipitation events had a greater contribution to total precipitation;extreme precipitation,total precipitation and total rain days had the greatest changes in the summer,and the least changes in the winter;number of days of extreme precipitation changes in each season were not great;the change of extreme precipitation was not obvious in the long term.
基金Project supported by the National Natural Science Foundation of China (Grant No 40675044)the State Key Development Program for Basic Research of China (Grant No 2006CB400503)the Laboratory for Climate Studies of China Meteorological Administration Climate Research Program (Grant No LCS-2006-04)
文摘Using the daily precipitation data of 740 stations in China from 1960 to 2000, the analysis on the variations and distributions of the frequency and the percentage of extreme precipitation to the annual rainfall have been performed in this paper. Results indicate that the percentage of heavy rains (above 25mm/day) in the annual rainfall has increased, while on average the day number of heavy rains has slightly reduced during the past 40 years. In the end of 1970s and the beginning of 1980s, both the number of days with extreme precipitation and the percentage of extreme precipitation abruptly changed over China, especially in the northern China. By moving t test, the abrupt change year of extreme precipitation for each station and its spatial distribution over the whole country are also obtained. The abrupt change years concentrated in 1978-1982 for most regions of northern China while occurred at various stations in southern China in greatly different/diverse years. Besides the abrupt change years of extreme precipitation at part stations of Northwest China happened about 5 years later in comparison with that of the country's average.
基金Supported by the Natural Science Foundation of Shandong Province,China(ZR2010DM011)
文摘Using the daily precipitation data of 118 meteorological stations in Northwest China from January 1, 1961 to December 31,2010, we analyzed extreme precipitation events from prime precipitation data by applying R-language Climate Index (RClimDex). The spatial-temporal change characteristics in the past 50 years have been examined using the method of trend analysis, Mann-Kendall and the spatial analysis module of Arcgis9.2. The results show that the spatial distribution of the indices for extreme precipitation in Northwest China is greatly influenced by geographic location, atmospheric circulation and topography, and the spatial difference of extreme precipitation events is very evident, while the indices reduce from the southeast to the northwest except Consecutive Dry Days (CDD). In Xinjiang region, high values appear in Tianshan Mountains and decrease towards the south and north respectively. In the past 50 years, the temporal variation tendency of the indices for extreme precipitation in Northwest China has a great spatial distinction. It shows that the variation tendency is opposite between the east (decrease) and the west (increase), and CDD has a decreasing tendency while other indices increase. For each region, it is found that the indices for extreme precipitation in Xinjiang and Qinghai Province shows an increasing trend, and it is remarkable in Tianshan Mountains, the north of Xinjiang and the northeast of Qinghai Province. The temporal variation tendency of the indices for extreme precipitation in Ningxia, Shaanxi and Gansu has a large spatial distinction. The stations which have an increasing tend are mainly found in the north of Ningxia, south of Shaanxi and Hexi Corridor of Gansu. However, the south of Ningxia, north of Shaanxi and Longnan of Gansu Province mainly present a decreasing trend. The temporal variation tendency of the indices for extreme precipitation in Inner Mongolia is not obvious. Overall, the east part of Northwest China has a dry tendency, while the west part has an opposite trend.
基金National Development Program on Key Foundamental Research of China (2006CB400504)Special Research Program for Public Welfare (Meteorology) of China (GYHY200906016)a project of Research Foundation for Plateau Meteorology (LAP2007002)
文摘Based on monthly mean wind,geopotential height,specific humidity,and surface pressure of NCAR/NCEP reanalysis,NOAA-reconstructed sea surface temperature (SST) of the Indian Ocean,and daily precipitation data at 97 meteorological stations over the eastern NW China in the past 47 years,the threshold values for extreme precipitation events (EPE) are defined using the percentile method.Singular Value Decomposition and synthetic analysis methods are used to analyze the relationship between summer EPE in the eastern NW China and SSTA in the preceding fall,winter,spring,and the concurrent summer.The result shows that preceding spring SST anomalies (SSTA) in the Indian Ocean are clear indicators for the forecast of summer EPE in the eastern NW China,and a key area of impact is located in the equatorial Indian Ocean.When spring SST is anomalously high in the equatorial Indian Ocean,the meridional circulation averaged over 100°E-110°E will be anomalously ascending near the equator but anomalously descending near 30°N in the middle and upper troposphere from the concurrent to the subsequent summer.In the meantime,the Southwest Monsoon from the Indian Ocean will be anomalously weak and there will be no anomalous water vapor transport to the eastern NW China,resulting in a lack of EPE in the subsequent summer,and vice versa.In addition,in response to anomalously high SST in the equatorial Indian Ocean in spring,the South Asia high pressure tends to be strong in the subsequent summer and more to the west.In the anomalously low SST year,however,the South Asia high tends to be weak in the subsequent summer and more to the east.This is another possible cause of the variation of summer EPE in the eastern NW China.
基金Supported by Climate Changes in Chinese Meteorological Bureau (CCSF2011-26)Ningxia Science and Technology Development(KGX12-09-02)Ningxia Natural Science Fund(NZ11246) and (NZ10212)
文摘[ Objective] The aim was to study the spatial and temporal changes of extreme precipitation events in Ningxia in recent 50 years. [ Method] Using dally precipitation data at 20 stations in Ningxia from 1961 to 2010, and defining the threshold value of extreme precipitation in each sta- tion by percentage method, choosing indicators such as precipitation, frequency and intensity of extreme precipitation events, the characteristics of the spatial and temporal distribution and linear trend of extreme precipitation events in Ningxia were analyzed based on linear regression and M-K non-parameter statistical test method. [ Result] The percentage method suggested the threshold value of average extreme precipitation in Ningxia in recent 50 years decreased from south to north. The large threshold value was in southern Haiyuan, Tongxin and northern Yancheng, which was similar to the distribution of mean annual precipitation in Ningxia. In recent 50 years, extreme precipitation frequency and extreme precipitation de- creased in most part of Ningxia but the intensity tended to strengthen. Study of extreme precipitation in Mahuang Mountain and Liupan Mountain in- dicated that precipitation frequency, intensity and extreme precipitation reduced. Annual extreme precipitation frequency narrowed and then in- creased after 1994 and had mutation in 2003. Annual extreme precipitation intensity enhanced since 1984. Mutation took place in 1984. Intensity in Liupan Mountain had weakened since 1978. [ Conclusion] The study provided theoretical basis for the mutation of climate in Ningxia.
基金supported by the National Key R&D Program of China(Grant No.2018YFC1507403)。
文摘The dominant frequency modes of pre-summer extreme precipitation events(EPEs)over South China(SC)between1998 and 2018 were investigated.The 67 identified EPEs were all characterized by the 3-8-d(synoptic)frequency band.However,multiscale combined modes of the synoptic and three low-frequency bands[10-20-d(quasi-biweekly,QBW);15-40-d(quasi-monthly,QM);and 20-60-d(intraseasonal)]accounted for the majority(63%)of the EPEs,and the precipitation intensity on the peak wet day was larger than that of the single synoptic mode.It was found that EPEs form within strong southwesterly anomalous flows characterized by either lower-level cyclonic circulation over SC or a deep trough over eastern China.Bandpass-filtered disturbances revealed the direct precipitating systems and their life cycles.Synoptic-scale disturbances are dominated by mid-high latitude troughs,and the cyclonic anomalies originate from downstream of the Tibetan Plateau(TP).Given the warm and moist climate state,synoptic-scale northeasterly flows can even induce EPEs.At the QBW and QM scales,the disturbances originate from the tropical Pacific,downstream of the TP,or mid-high latitudes(QBW only).Each is characterized by cyclonic-anticyclonic wave trains and intense southwesterly flows between them within a region of large horizontal pressure gradient.The intraseasonal disturbances are confined to tropical regions and influence SC by marginal southwesterly flows.It is concluded that low-frequency disturbances provide favorable background conditions for EPEs over SC and synoptic-scale disturbances ultimately induce EPEs on the peak wet days.Both should be simultaneously considered for EPE predictions over SC.
基金National Key Research and Development Program of China(2019YFC1510400)National Natural Science Foundation of China(42075002)。
文摘Based on the hourly precipitation data at 176 observational stations over south China and the hourly ERA5reanalysis data during the 40-yr period of 1981-2020, we analyzed the universal characteristics of moisture transport and their associated background circulations for four types of regional extreme precipitation events(REPEs) over south China. Main findings are shown as follow.(i) The wind that transported moisture for the REPEs over south China featured a notable diurnal variation, which was consistent with the variations of the precipitation.(ii) Four types of REPEs could be determined, among which the southwest type(SWT) and the southeast type(SET) accounted for ~92%and ~5.7%, respectively, ranking the first and second, respectively.(iii) Trajectory analyses showed that the air particles of the SWT-REPEs had the largest specific humidity and experienced the most intense ascending motion, and therefore their precipitation was the strongest among the four types.(iv) South China was dominated by notable moisture flux convergence for the four types of REPEs, but their moisture transport was controlled by different flow paths.(v)Composite analyses indicated that the background circulation of the four types of REPEs showed different features,particularly for the intensity, location and coverage of a western Pacific subtropical high. For the SWT-REPEs, their moisture transport was mainly driven by a lower-tropospheric strong southwesterly wind band in the low-latitude regions. Air particles for this type of REPEs mainly passed over the Indochina Peninsula and South China Sea. For the SET-REPEs, their moisture transport was mainly steered by a strong low-tropospheric southeasterly wind northeast of a transversal trough. Air particles mainly passed over the South China Sea for this type of REPEs.
基金supported by the National Natural Science Foundation of China (Grant Nos. 41205063 & 41330529)the China Meteorological Administration Special Public Welfare Research Fund (Grant No. GYHY201506006)+1 种基金the Project of Development of Key Techniques in Meteorological Forecasting Operation (Grant No. CMAHX20160404)the Huaihe Basin Meteorological Research Foundation (Grant No. HRM201605)
文摘Fifty cases of regional yearly extreme precipitation events (RYEPEs) were identified over the Yangtze-Huaihe River Valley (YHRV) during 1979-2016 applying the statistical percentile method. There were five types of RYEPEs, namely Yangtze Meiyu (YM-RYEPE), Huaihe Meiyu (HM-RYEPE), southwest-northeast-oriented Meiyu (SWNE-RYEPE) and typhoon I and II (TC-RYEPE) types of RYEPEs. Potential vorticity diagnosis showed that propagation trajectories of the RYEPEs along the Western Pacific Subtropical High and its steering flow were concentrated over the southern YHRV. As a result, the strongest and most frequently RYEPEs events, about 16-21 cases with average rainfall above 100 mm, occurred in the southern YHRV, particularly in the Nanjing metropolitan area. There have been 14 cases of flood-inducing RYEPEs since 1979, with the submerged area exceeding 120 km2 as simulated by the FloodArea hydraulic model, comprising six HM-RYEPEs, five YM- RYEPEs, two TC-RYEPEs, and one SWNE-RYEPE. The combination of evolving RYEPEs and rapid expansion of urban agglomeration is most likely to change the flood risk distribution over the Nanjing metropolitan area in the future. In the RCP6.0 (RCPS.5) scenario, the built-up area increases at a rate of about 10.41 km2 (10 yr)-t(24.67 km2 (10 yr)-1) from 2010 to 2100, and the area of high flood risk correspondingly increases from 3.86 km2(3.86 km2) to 9.00 kin2(13.51 km2). Areas of high flood risk are mainly located at Chishan Lake in Jurong, Lukou International Airport in Nanjing, Dongshan in Jiangning District, Lishui District and other low-lying areas. The accurate simulation of flood scenarios can help reduce losses due to torrential flooding and improve early warnings, evacuation planning and risk analysis. More attention should be paid to the projected high flood risk because of the concentrated population, industrial zones and social wealth throughout the Nanjing metropolitan area.
基金funded by open funding of Guizhou Provincial Key Laboratory of Public Big Data(Guizhou University, Grant No.2017BDKFJJ021)Special Science and Technology Funding of Guizhou Province Water Resources Department (KT201707)+1 种基金Guizhou Province Science and Technology Joint Founding (LH [2017]7617)China Postdoctoral Science Foundation (Grant No.2016M5 92671)
文摘Sichuan Basin is located in southwestern China and affected by a complex water vapor (WV) sources. Here, the spatial and temporal patterns of precipitation and extreme events are investigated by six indices of World Meteorology Organization Commission, including annual precipitation total (AP), maximum daily precipitation (Maxld), intensity of rainfall over 1 mm/d (IR1), maximum and mean consecutive dry days (Max CDD, Mean CDD) and coefficient of variance. Based on 24 daily precipitation time series from 1951 to 2o11, Mann-Kendall test is employed to quantify the significant level of these indices, from which the classification of precipitation change and its spatial patterns are obtained. Meanwhile, the probability distributions of these indices are identified by L-moment analysis and the Goodness-of-fit test, and the corresponding values are calculated by theoretical model at different return periods. The results reveal that the western basin displays normal drought: less AP and precipitation intensity while longer drought. The southern basin shows normal increase: larger AP and precipitation intensity but shorter CDD. However, in hilly region of the central basin and the transition zone between basin and mountains, precipitation changes abnormally: increasing both drought (one or both of Mean CDD and MaxCDD) and precipitation intensity (one or both of Maxld and trend of AP is. Probability IR1) no matter what the distribution models also demonstrate the complex patterns: a negative correlation between Maxld and Max CDD in the west (R2≥0.61) while a positive correlation in the east (R2≥0.41) at all return periods. These patterns are induced by the changes in WV sources and the layout of local terrain. The increase of WV in summer and decrease in spring leads to the heavier rainfall and longer drought respectively. The large heat island effect of the basin contributes to a lower temperature in transition zones and more precipitation in the downwind area. These results are helpful in reevaluating the risk regionally and making better decisions on water resources management and disaster prevention.
基金supported by the Ministry of Water Resource of China(GYHY200801001)National Key Technologies R&D Program(2007BAC29B02 and 2007BAC29B05)+2 种基金National Basic Research Program (2010CB428401)Ministry of Science and Technology of China(2010DFA21340)and China Meteorological Administration(540000G010C01)
文摘A new available dataset of daily observational precipitation is used to study the temporal and spatial variability of extreme precipitation events for 1956-2008 in the ten large river basins of China. The maximum daily rainfall and heavy precipitation days (≥50 mm d^-1) are analyzed for the basins of the Songhua River, Liaohe River, Haihe River, Yellow River, Northwest China Rivers, Huaihe River, Yangtze River, Pearl River, Southeast China Rivers, and Southwest China Rivers. The results indicate that the maximum daily rainfall was increasing in southern river basins, while it was decreasing in northern river basins, which leads to no discernible increasing or decreasing trend in the maximum daily rainfall of whole China,especially 2001. The national averaged heavy precipitation days shows an insignificant increase. However, a rise in heavy precipitation days of southern river basins and a decline of northern river basins are observed.
基金Funded by the Nanjing Institute of Geography and Limnology, CAS, No.S260018 The Chinese Meteoro-logical Administration, No.ccsf2006-31
文摘The total precipitation of the highest 1 day, 3 day, 5 day and 7 day precipitation amount (R1 D, R3D, R5D and R7D) in the Yangtze River basin was analyzed with the help of linear trend analysis and continuous wavelet transform method. The research results indicated that: 1) Spatial distribution of RID is similar in comparison with that of R3D, R5D and R7D. The Jialingjiang and Hanjiang river basins are dominated by decreasing trend, which is significant at 〉95% confidence level in Jialingjiang River basin and insignificant at 〉95% confidence level in Hanjiang River basin. The southern part of the Yangtze River basin and the western part of the upper Yangtze River basin are dominated by significant increasing trend of RID extreme precipitation at 〉95% confidence level. 2) As for the R3D, R5D and R7D, the western part of the upper Yangtze River basin is dominated by significant increasing trend at 〉95% confidence level. The eastern part of the upper Yangtze River basin is dominated by decreasing trend, but is insignificant at 〉95% confidence level. The middle and lower Yangtze River basin is dominated by increasing trend, but insignificant at 〉95% confidence level. 3) The frequency and intensity of extreme precipitation events are intensified over time. Precipitation anomalies indicated that the southeastern part, southern part and southwestern part of the Yangtze River basin are dominated by positive extreme precipitation anomalies between 1993-2002 and 1961-1992. The research results of this text indicate that the occurrence probability of flash flood is higher in the western part of the upper Yangtze River basin and the middle and lower Yangtze River basin, esp. in the southwestern and southeastern parts of the Yangtze River basin.
基金"Variations of Extremely Heavy Precipitation and Their Response to Global Climate Change",a project in Research Fund for the Science of Tropical Marine and Meteorology(200804)"On the Regional Extremely Heavy Rain in South China Under the Background of Climate Warming,a project in Special China Meteorological Administration Program for Climate Change(CCSF-09-03)Assessment Report on the Climate Change in the South China Region(CCSF-09-11)
文摘This paper comprehensively studies the spatio-temporal characteristics of the frequency of extremely heavy precipitation events over South China by using the daily precipitation data of 110 stations during 1961 to 2008 and the extremely heavy precipitation thresholds determined for different stations by REOF, trend coefficients, linear trend, Mann-Kendall test and variance analysis. The results are shown as follows. The frequency distribution of extremely heavy precipitation is high in the middle of South China and low in the Guangdong coast and western Guangxi. There are three spatial distribution types of extremely heavy precipitation in South China. The consistent anomaly distribution is the main type. Distribution reversed between the east and the west and between the south and the north is also an important type. Extremely heavy precipitation events in South China mainly occurred in the summer-half of the year. Their frequency during this time accounts for 83.7% of the total frequency. In the 1960 s and 1980 s, extremely heavy precipitation events were less frequent while having an increasing trend from the late 1980 s. Their climatological tendency rates decrease in the central and rise in the other areas of South China, and on average the mean series also shows an upward but insignificant trend at all of the stations. South China's frequency of extremely heavy precipitation events can be divided into six major areas and each of them shows a different inter-annual trend and three of the representative stations experience abrupt changes by showing remarkable increases in terms of Mann-Kendall tests.
基金supported by China Meteorological Administration (CMA) Specific Research on ClimateChange (No. CCSF-10-06)the National Key Scientific Research Program of Global Change (No. 2010CB951001)
文摘By using the observation data from 89 weather stations in Xinjiang during 1961-2010, this paper analyzed the basic climatic elements including temperature, precipitation, wind speed, sunshine duration, water vapor pressure, and dust storm in the entire Xinjiang and the subareas: North Xinjiang, Tianshan Mountains, and South Xinjiang. The results indicate that from 1961 to 2010 the annual and seasonal mean temperatures in the entire Xinjiang show an increasing trend with the increasing rate rising from south to north. The increasing rate of annual mean minimum temperature is over twice more than that of the annual mean maximum temperature, contributing much to the increase in the annual averages. The magnitude of the decrease rate of low-temperature days is larger than the increase rate of high-temperature days. The increase of warm days and warm nights and the decrease of cold days and cold nights further reveal that the temperature increasing in Xinjiang is higher. In addition, annual and seasonal rainfalls have been increasing. South Xinjiang experiences higher increase in rainfall amounts than North Xinjiang and Tianshan Mountains. Annual rainy days, longest consecutive rainy days, the daily maximum precipitation and extreme precipitation events, annual torrential rain days and amount, annual blizzard days and amount, all show an increasing trend, corresponding to the increasing in annual mean water vapor pressure. This result shows that the humidity has increased with temperature increasing in the past 50 years. The decrease in annual mean wind speed and gale days lessen the impact of dust storm, sandstorm, and floating dust events. The increase in annual rainy days is the cause of the decrease in annual sunshine duration, while the increase in spring sunshine duration corresponds with the decrease in dust weather. Therefore, the increase in precipitation indicators, the decrease in gales and dust weather, and the increasing in sunshine duration in spring will be beneficial to crops growth.
基金This work was supported by the National Natural Science Foundation of China under Grant No. 40575015.
文摘Persistent heavy rainfall events (PHR events) comprise one category of weather- and climate- related extreme events. Based on daily rainfall data measured in China during the period of 1951-2004, several quantitative criteria were developed to define PHR events by means of their precipitation intensity, temporal duration, spatial extent and persistence. Then a semi-objective classification based on these criteria was applied to summer daily rainfall data to identify all PHR events. A total of 197 events were observed during the study period. All events were further classified into 5 categories according to their comprehensive intensity; into 3 types according to their circulation regime; and into 8 groups according to the geographic locations of their rainbands. Based on these different classifications, finally, the behaviors of 130 PHR events identified as the most severe, severe and moderate categories since the year of 1951, including characteristics of the spatial and temporal distributions of their frequencies, intensities, and rainbands, were investigated in order to present a comprehensive description of the PHR events. The results will be helpful to the future study of revealing and understanding the processes that govern the production of the PHR events and to the improvement of the forecasts of the PHR events.
基金supported by the National Natural Science Foundation of China[grant number 41405144]the National Key Research and Development Program of China[grant number2017YFC0210100],[grant number 2016YFD0800302],[grant number 2016YFC0201802]the Science and Technology Service Network Initiative of the Chinese Academy of Sciences[STS Plan,grant number KFJ-SW-STS-168]
文摘Atmospheric wet deposition plays an important role in the supply of nutrients and toxic substances to terrestrial and aquatic environments. Although long-term(e.g. annual, multi-year) wet deposition is recorded well, pronounced and short-term changes in precipitation chemistry are less well investigated. In the present study, the precipitation chemistry and scavenging ratio of air pollutants were observed during an extreme torrential rain event(325.6 mm at the observation site) that occurred over 19–21 July 2016 in the North China Plain(NCP). The scavenging ratio of particles showed a similar spatial distribution to that of the precipitation amount in the NCP, indicating the efficient removal of particulate matter due to the large amount and precipitation intensity of the storm. In addition, the scavenging ratio of water soluble ions was larger than that of organics and gaseous pollutants such as SO_2 and NO_2, likely due to their differences in water solubility.Consequently, raindrops incorporated more aerosol sulfate than gaseous compounds. Due to the heavy precipitation amount, almost all species in rainwater during this storm showed their lowest concentration but the highest flux compared with other rain events, indicating an important role played by this storm in terms of the substances received by the terrestrial and marine ecosystems of the region. However, the contribution of this storm to the annual chemical flux was lower than that of precipitation amount, indicating that the atmospheric compounds were scavenged below-cloud first and were then diluted by the cloud/rainwater. Future studies are needed in the context of the occurrence of extreme rainfall events in the NCP from the perspective of climate variability.
基金supported by the China Special Fund for Meteorological Research in the Public Interest(Grant No.GYHY201306011)the Research on Key Prediction Technology of Warm Sector Rainstorm(Grant No.YBGJXM(2017)1A-01)the National Natural Science Foundation of China(Grant No.41475041)
文摘Based on daily precipitation data of more than 2000 Chinese stations and more than 50 yr, we constructed time series of extreme precipitation based on six different indices for each station: annual and summer maximum(top-1) precipitation,accumulated amount of 10 precipitation maxima(annual, summer; top-10), and total annual and summer precipitation.Furthermore, we constructed the time series of the total number of stations based on the total number of stations with top-1 and top-10 annual extreme precipitation for the whole data period, the whole country, and six subregions, respectively. Analysis of these time series indicate three regions with distinct trends of extreme precipitation:(1) a positive trend region in Southeast China,(2) a positive trend region in Northwest China, and(3) a negative trend region in North China. Increasing(decreasing)ratios of 10–30% or even >30% were observed in these three regions. The national total number of stations with top-1 and top-10 precipitation extremes increased respectively by 2.4 and 15 stations per decade on average but with great inter-annual variations.There have been three periods with highly frequent precipitation extremes since 1960:(1) early 1960 s,(2) middle and late 1990 s,and(3) early 21 st century. There are significant regional differences in trends of regional total number of stations with top-1 and top-10 precipitation. The most significant increase was observed over Northwest China. During the same period, there are significant changes in the atmospheric variables that favor the decrease of extreme precipitation over North China: an increase in the geopotential height over North China and its upstream regions, a decrease in the low-level meridional wind from South China coast to North China, and the corresponding low moisture content in North China. The extreme precipitation values with a50-year empirical return period are 400–600 mm at the South China coastal regions and gradually decrease to less than 50 mm in Northwest China. The mean increase rate in comparison with 20-year empirical return levels is 6.8%. The historical maximum precipitation is more than twice the 50-year return levels.
基金Supported by the National Natural Science Foundation of China(41330425)China Meteorological Administration Special Public Welfare Research Fund(GYHY201406024)
文摘The variations of regional mean daily precipitation extreme (RMDPE) events in central China and associated circulation anomalies during June, July, and August (JJA) of 1961-2010 are investigated by using daily in-situ precipitation observations and the NCEP/NCAR reanalysis data. The precipitation data were collected at 239 state-level stations distributed throughout the provinces of Henan, Hubei, and Hunan. During 1961-2010, the 99th percentile threshold for RMDPE is 23.585 mm day-1. The number of RMDPE events varies on both interannual and interdecadal timescales, and increases significantly after the mid 1980s. The RMDPE events happen most frequently between late June and mid July, and are generally associated with anomalous baroclinic tropospheric circulations. The supply of moisture to the southern part of central China comes in a stepping way from the outer-region of an abnormal anticyclone over the Bay of Bengal and the South China Sea. Fluxes of wave activity generated over the northeastern Tibetan Plateau converge over central China, which favors the genesis and maintenance of wave disturbances over the region. RMDPE events typically occur in tandem with a strong heating gradient formed by net heating in central China and the large-scale net cooling in the surrounding area. The occurrence of RMDPE events over central China is tied to anomalous local cyclonic circulations, topographic forcing over the northeast Tibetan Plateau, and anomalous gradients of diabatic heating between central China and the surrounding areas.
基金Supported by the National Key Research and Development Program of China (2016YFE0201900-02 and 2019YFC1510304)National Natural Science Foundation of China (41575037)。
文摘This study investigated the cloud microphysical processes and atmospheric water budget during the extreme precipitation event on 20 July 2021 in Zhengzhou of Henan Province,China,based on observations,reanalysis data,and the results from the high-resolution large-eddy simulation nested in the Weather Research and Forecasting(WRF)model with assimilation of satellite and radar observations.The results show that the abundant and persistent southeasterly supply of water vapor,induced by Typhoons In-Fa and Cempaka,under a particular synoptic pattern featured with abnormal northwestward displacement of the western Pacific subtropical high,was conducive to warm rain processes through a high vapor condensation rate of cloud water and an efficient collision–coalescence process of cloud water to rainwater.Such conditions were favorable for the formation and maintenance of the quasi-stationary warmsector heavy rainfall.Precipitation formation through the collision–coalescence process of cloud water to rainwater accounted for approximately 70%of the total,while the melting of snow and graupel accounted for only approximately 30%,indicating that warm cloud processes played a dominant role in this extreme rainfall event.However,enhancement of cold cloud processes promoted by latent heat release also exerted positive effect on rainfall during the period of most intense hourly rainfall.It was also found that rainwater advection from outside of Zhengzhou City played an important role in maintaining the extreme precipitation event.
基金supported by the National Key R&D Project(Grant No.2021YFC3000903)the National Natural Science Foundation of China(Grant Nos.42275013,42030611,42075002)+2 种基金the CMA Innovation Foundation(Grant No.CXFZ2023J001)the Open Grants of the State Key Laboratory of Severe Weather(Grant No.2023LASW-B05)the Key Foundation of Zhejiang Provincial Department of Science and Technology(Grant No.2022C03150)。
文摘As a natural disaster,extreme precipitation is among the most destructive and influential,but predicting its occurrence and evolution accurately is very challenging because of its rarity and uniqueness.Taking the example of the“21·7”extreme precipitation event(17–21 July 2021)in Henan Province,this study explores the potential of using physics-guided machine learning to improve the accuracy of forecasting the intensity and location of extreme precipitation.Three physics-guided ways of embedding physical features,fusing physical model forecasts and revised loss function are used,i.e.,(1)analyzing the anomalous circulation and thermodynamical factors,(2)analyzing the multi-model forecast bias and the associated underlying reasons for it,and(3)using professional forecasting knowledge to design the loss function,and the corresponding results are used as input for machine learning to improve the forecasting accuracy.The results indicate that by learning the relationship between anomalous physical features and heavy precipitation,the forecasting of precipitation intensity is improved significantly,but the location is rarely adjusted and more false alarms appear.Possible reasons for this are as follows.The anomalous features used here mainly contain information about large-scale systems and factors which are consistent with the model precipitation deviation;moreover,the samples of extreme precipitation are sparse and so the algorithm used here is simple.However,by combining“good and different”multi models with machine learning,the advantages of each model are extracted and then the location of the precipitation center in the forecast is improved significantly.Therefore,by combining the appropriate anomalous features with multi-model fusion,an integrated improvement of the forecast of the rainfall intensity and location is achieved.Overall,this study is a novel exploration to improve the refined forecasting of heavy precipitation with extreme intensity and high variability,and provides a reference for the deep fusion of physics and artificial intelligence methods to improve intense rain forecast.