对已有的Z变换时域有限差分法(Z-transformation Finite Difference Time Domain,Z-FDTD)在电磁波与非均匀磁化等离子体中的传输特性分析的计算误差问题进行了研究,并探讨了一种修正计算误差的Z变换时域有限差分方法(Modified Z-transfo...对已有的Z变换时域有限差分法(Z-transformation Finite Difference Time Domain,Z-FDTD)在电磁波与非均匀磁化等离子体中的传输特性分析的计算误差问题进行了研究,并探讨了一种修正计算误差的Z变换时域有限差分方法(Modified Z-transform Finite Difference Time Domain,MZ-FDTD),以提升Z-FDTD方法对非均匀磁化等离子体的适用性。对MZ-FDTD和Z-FDTD之间的计算误差问题,通过严格的公式推导求得该误差的计算公式,并引入误差分析因子,对比分析了该误差受空间步长和非均匀磁化等离子体的物理特性的影响特征,在充分的误差分析与网格参数对比后,以电磁波在非均匀磁化等离子体中的传输特性为分析目标,举例说明了MZ-FDTD的优越性。研究结果表明,相比于经典Z-FDTD,通过MZ-FDTD方法计算得到的数值结果具有更高的计算准确度,较低的运行时间和较少的运行内存占用。此外,对电磁波在非均匀等离子体中传输特性分析的举例说明也证明了相比于Z-FDTD,优化的Z-FDTD方法无论是在较低频段还是较高频段都保持较好的稳定性。在今后的工作中,使用MZ-FDTD方法研究非均匀磁化等离子体问题将会获得更好的计算结果,这项工作中的误差分析方法也将对某些计算电磁学在等离子体中的应用与优化工作起到一定的帮助作用。展开更多
文摘对已有的Z变换时域有限差分法(Z-transformation Finite Difference Time Domain,Z-FDTD)在电磁波与非均匀磁化等离子体中的传输特性分析的计算误差问题进行了研究,并探讨了一种修正计算误差的Z变换时域有限差分方法(Modified Z-transform Finite Difference Time Domain,MZ-FDTD),以提升Z-FDTD方法对非均匀磁化等离子体的适用性。对MZ-FDTD和Z-FDTD之间的计算误差问题,通过严格的公式推导求得该误差的计算公式,并引入误差分析因子,对比分析了该误差受空间步长和非均匀磁化等离子体的物理特性的影响特征,在充分的误差分析与网格参数对比后,以电磁波在非均匀磁化等离子体中的传输特性为分析目标,举例说明了MZ-FDTD的优越性。研究结果表明,相比于经典Z-FDTD,通过MZ-FDTD方法计算得到的数值结果具有更高的计算准确度,较低的运行时间和较少的运行内存占用。此外,对电磁波在非均匀等离子体中传输特性分析的举例说明也证明了相比于Z-FDTD,优化的Z-FDTD方法无论是在较低频段还是较高频段都保持较好的稳定性。在今后的工作中,使用MZ-FDTD方法研究非均匀磁化等离子体问题将会获得更好的计算结果,这项工作中的误差分析方法也将对某些计算电磁学在等离子体中的应用与优化工作起到一定的帮助作用。
文摘提出一种新的节省计算空间的FDTD-PWS混合算法,并应用于透镜天线的焦面场分析.首先采用FDTD(Finite-Difference Time-Domain)求解得到聚焦透镜天线的口面场的幅度和相位分布,再通过PWS(Plane Wave Spectrum)外推至焦平面,求解得出焦面场分布.根据天线场分布的对称性,将PEC(Perfect Electric Conductor)和PMC(Perfect Magnetic Conduc-tor)边界应用于FDTD的仿真过程,使仿真模型缩减为原模型的1/4,进一步节省了计算空间.应用于毫米波聚焦透镜天线的焦面场仿真分析,并对其焦面场进行平面近场扫描测试,将仿真结果进行探头补偿后与实验数据作比较,证明该方法是精确和高效的.