Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To addr...Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics soft-ware FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.展开更多
The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is ...The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is extremely important for determining the spatial distribution of biodeposition.Theoretically,biodeposition in cage culture areas without specific emission rules can be simplified as point source pollution.Fluent is a fluid simulation software that can simulate the dispersion of particulate matter simply and efficiently.Based on the simplification of pollution sources and bays,the settling flux of biodeposition can be easily and effectively simulated by Fluent fluid software.In the present work,the feasibility of this method was evaluated by simulation of the settling flux of biodeposition in Maniao Bay,Hainan Province,China,and 20 sampling sites were selected for determining the settling fluxes.At sampling sites P1,P2,P3,P4,P5,Z1,Z2,Z3,Z4,A1,A2,A3,A4,B1,B2,C1,C2,C3 and C4,the measured settling fluxes of biodeposition were 26.02,15.78,10.77,58.16,6.57,72.17,12.37,12.11,106.64,150.96,22.59,11.41,18.03,7.90,19.23,7.06,11.84,5.19 and 2.57 g d^(−1)m^(−2),respectively.The simulated settling fluxes of biodeposition at the corresponding sites were 16.03,23.98,8.87,46.90,4.52,104.77,16.03,8.35,180.83,213.06,39.10,17.47,20.98,9.78,23.25,7.84,15.90,6.06 and 1.65 g d^(−1)m^(−2),respectively.There was a positive correlation between the simulated settling fluxes and measured ones(R=0.94,P=2.22×10^(−9)<0.05),which implies that the spatial differentiation of biodeposition flux was well simulated.Moreover,the posterior difference ratio of the simulation was 0.38,and the small error probability was 0.94,which means that the simulated results reached an acceptable level from the perspective of relative error.Thus,if nonpoint source pollution is simplified to point source pollution and open waters are simplified based on similarity theory,the setting flux of biodeposition in the open waters can be simply and effectively simulated by the fluid simulation software Fluent.展开更多
Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution betwee...Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution between horizontal pipes is established using Fluent software,the rule of transitions of the flow pattern between pipes is studied,critical Reynolds numbers of flow pattern transitions are obtained,and the accuracy of the model is verified by experiments.The mass transfer synergy angle and heat transfer synergy angle are respectively used as evaluation criteria for the mass transfer synergy and heat transfer synergy,and distribution laws of the synergy angles for droplet,droplet columnar and curtain flow patterns are obtained.Simulation results show that the mass transfer synergy angles corresponding to droplet,droplet columnar and curtain flow patterns all rise to a plateau with time.The mean mass-transfer synergy angle is 98°for the droplet flow pattern,higher than 96.5°for the droplet columnar flow pattern and 95°for the curtain flow pattern.The results show that the mass transfer synergy of the droplet flow pattern is better than that of the droplet columnar flow pattern and that of the curtain flow pattern.展开更多
In this study,numerical simulations were used to explore the effects of roadside green belt,urban street spatial layout,and wind speed on vehicle exhaust emission diffusion in street canyon.The diffusion of different ...In this study,numerical simulations were used to explore the effects of roadside green belt,urban street spatial layout,and wind speed on vehicle exhaust emission diffusion in street canyon.The diffusion of different sized particles in the street canyon and the influence of wind speed were investigated.The individual daily average pollutant intake was used to evaluate the exposure level in a street canyon microenvironment.The central and leeward green belts of the road were the most conducive to the diffusion of pollutants,while the positioning of the green belts both sides of a road was least conducive to the diffusion of pollutants.Pollutant levels increased with increasing canopy height,canopy width,and decreasing tree spacing,with optimal values of 12 m,7 m,and 0.4 H,respectively.This provides protection from pollution for low-rise residents and pedestrians.The results presented here can be used to improve the air quality of the street microenvironment and provide a basis for the renovation of old street buildings.展开更多
This paper investigates the thermal performance of prefabricated exterior walls using the Computational Fluid Dynamics method to reduce energy consumption.The thermal performance of the prefabricated exterior wall was...This paper investigates the thermal performance of prefabricated exterior walls using the Computational Fluid Dynamics method to reduce energy consumption.The thermal performance of the prefabricated exterior wall was numerically simulated using the software ANSYS Fluent.The composite wall containing the cavity is taken as the research object in this paper after analysis.The simulation suggests that when the cavity thickness is 20 mm and 30 mm,the heat transfer coefficient of the air-sandwich wall is 1.3 and 1.29,respectively.Therefore,the optimal width of the cavity is 20 mm,and the most suitable material is the aerated concrete block.In addition,a comparative analysis is conducted on the cavity temperature in the wall under different conditions.It is proven that an intelligent environment control system can significantly improve thermal efficiency and provide a solid theoretical basis for further research in the external insulation of prefabricated buildings.展开更多
文摘Testing centrifugal fan flow field by physical laboratory is difficult because the testing system is complex and the workload is heavy, and the results observed by naked-eye deviates far from the actual value. To address this problem, the computational fluid dynamics software FLUENT was applied to establish three-dimensional model of the centrifugal fan. The numeral model was verified by comparing simulation data to experimental data. The pressure centrifugal fan and the speed changes in distribution in centrifugal fan was simulated by computational fluid dynamics soft-ware FLUENT. The simulation results show that the gas flow velocity in the impeller increases with impeller radius increase. Static pressure gradually increases when gas from the fan access is imported through fan impeller leaving fans.
基金support from the National Key Research and Development Program of China(No.2018YFD0900704)the National Natural Science Foundation of China(No.31972796).
文摘The settling flux of biodeposition affects the environmental quality of cage culture areas and determines their environmental carrying capacity.Simple and effective simulation of the settling flux of biodeposition is extremely important for determining the spatial distribution of biodeposition.Theoretically,biodeposition in cage culture areas without specific emission rules can be simplified as point source pollution.Fluent is a fluid simulation software that can simulate the dispersion of particulate matter simply and efficiently.Based on the simplification of pollution sources and bays,the settling flux of biodeposition can be easily and effectively simulated by Fluent fluid software.In the present work,the feasibility of this method was evaluated by simulation of the settling flux of biodeposition in Maniao Bay,Hainan Province,China,and 20 sampling sites were selected for determining the settling fluxes.At sampling sites P1,P2,P3,P4,P5,Z1,Z2,Z3,Z4,A1,A2,A3,A4,B1,B2,C1,C2,C3 and C4,the measured settling fluxes of biodeposition were 26.02,15.78,10.77,58.16,6.57,72.17,12.37,12.11,106.64,150.96,22.59,11.41,18.03,7.90,19.23,7.06,11.84,5.19 and 2.57 g d^(−1)m^(−2),respectively.The simulated settling fluxes of biodeposition at the corresponding sites were 16.03,23.98,8.87,46.90,4.52,104.77,16.03,8.35,180.83,213.06,39.10,17.47,20.98,9.78,23.25,7.84,15.90,6.06 and 1.65 g d^(−1)m^(−2),respectively.There was a positive correlation between the simulated settling fluxes and measured ones(R=0.94,P=2.22×10^(−9)<0.05),which implies that the spatial differentiation of biodeposition flux was well simulated.Moreover,the posterior difference ratio of the simulation was 0.38,and the small error probability was 0.94,which means that the simulated results reached an acceptable level from the perspective of relative error.Thus,if nonpoint source pollution is simplified to point source pollution and open waters are simplified based on similarity theory,the setting flux of biodeposition in the open waters can be simply and effectively simulated by the fluid simulation software Fluent.
基金Project(2016YFC0700100)supported by the National Key R&D Program of ChinaProject(JDJQ20160103)supported by the Promotion of the Connotation Development Quota Project of Colleges and Universities-Outstanding Youth of Architectural University,China。
文摘Effects of the flow pattern of intertubular liquid film on mass and heat transfer synergies in a falling-film dehumidification system with horizontal pipes are studied.A flow model of the dehumidifying solution between horizontal pipes is established using Fluent software,the rule of transitions of the flow pattern between pipes is studied,critical Reynolds numbers of flow pattern transitions are obtained,and the accuracy of the model is verified by experiments.The mass transfer synergy angle and heat transfer synergy angle are respectively used as evaluation criteria for the mass transfer synergy and heat transfer synergy,and distribution laws of the synergy angles for droplet,droplet columnar and curtain flow patterns are obtained.Simulation results show that the mass transfer synergy angles corresponding to droplet,droplet columnar and curtain flow patterns all rise to a plateau with time.The mean mass-transfer synergy angle is 98°for the droplet flow pattern,higher than 96.5°for the droplet columnar flow pattern and 95°for the curtain flow pattern.The results show that the mass transfer synergy of the droplet flow pattern is better than that of the droplet columnar flow pattern and that of the curtain flow pattern.
基金funded by the National Natural Science Foundation of China[Grant No.11372166]“Double First-Class”Foundation for the Talents of Shandong University[No.31380089963090].
文摘In this study,numerical simulations were used to explore the effects of roadside green belt,urban street spatial layout,and wind speed on vehicle exhaust emission diffusion in street canyon.The diffusion of different sized particles in the street canyon and the influence of wind speed were investigated.The individual daily average pollutant intake was used to evaluate the exposure level in a street canyon microenvironment.The central and leeward green belts of the road were the most conducive to the diffusion of pollutants,while the positioning of the green belts both sides of a road was least conducive to the diffusion of pollutants.Pollutant levels increased with increasing canopy height,canopy width,and decreasing tree spacing,with optimal values of 12 m,7 m,and 0.4 H,respectively.This provides protection from pollution for low-rise residents and pedestrians.The results presented here can be used to improve the air quality of the street microenvironment and provide a basis for the renovation of old street buildings.
基金This study was sponsored by the“Civil Engineering,Brand Major Construction Site of Private Universities of Education Department of Henan Province 2017”(Henan Finance and Education:[2016]119).
文摘This paper investigates the thermal performance of prefabricated exterior walls using the Computational Fluid Dynamics method to reduce energy consumption.The thermal performance of the prefabricated exterior wall was numerically simulated using the software ANSYS Fluent.The composite wall containing the cavity is taken as the research object in this paper after analysis.The simulation suggests that when the cavity thickness is 20 mm and 30 mm,the heat transfer coefficient of the air-sandwich wall is 1.3 and 1.29,respectively.Therefore,the optimal width of the cavity is 20 mm,and the most suitable material is the aerated concrete block.In addition,a comparative analysis is conducted on the cavity temperature in the wall under different conditions.It is proven that an intelligent environment control system can significantly improve thermal efficiency and provide a solid theoretical basis for further research in the external insulation of prefabricated buildings.