Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existen...Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existence of aromatic structure,heteroatom structure and fat structure in coal.MS(materials studio)software was used to optimize and construct a 3D molecular structure model of coal.A method for establishing a coal molecular structure model was formed,which was“determination of key structures in coal,construction of planar molecular structure model,and optimization of three-dimensional molecular structure model”.The structural differences were compared and analyzed.The results show that with the increase of coal rank,the dehydrogenation of cycloalkanes in coal is continuously enhanced,and the content of heteroatoms in the aromatic ring decreases.The heteroatoms and branch chains in the coal are reduced,and the structure is more orderly and tight.The stability of the structure is determined by theπ-πinteraction between the aromatic rings in the nonbonding energy EN.Key Stretching Energy The size of EB determines how tight the structure is.The research results provide a method and reference for the study of the molecular structure of medium and high coal ranks.展开更多
Flash pyrolysis of MnTC( [Mn2(TNR)2(CHZ)2(H2O)4]·2H2O) and NiCT( [Ni(CHZ)3](TNR)·5H2O) is conducted by using T-jump/FTIR spectroscopy under 0.1 MPa Ar atmosphere. The mole fractions of the indi...Flash pyrolysis of MnTC( [Mn2(TNR)2(CHZ)2(H2O)4]·2H2O) and NiCT( [Ni(CHZ)3](TNR)·5H2O) is conducted by using T-jump/FTIR spectroscopy under 0.1 MPa Ar atmosphere. The mole fractions of the individual products in the pyrolysis gas mixture are described as a function of time. Results show that NiCT appears to produce more N2O, NH3 and HONO upon flash pyrolysis, thus secondary oxidation reduction reactions may take place to a certain extent during its thermal decomposition, which in turn leads to unsteady combustion and possibly to failure of the device. While H2O and CO2 are the major two gas products of flash pyrolysis of MnTC, it warrants further in-depth trials for the adoption in detonators as coo-friendly and chemically compatible primary explosive. The two compounds both liberate volatile metal carbonate, oxide and isocyanate compounds.展开更多
Abstract: In the present work, studies the effect uv-radiation dose (5 J/cm2 to 360 J/cm2 ) with power 15 W to LR-115 track detector thickness 100 μm. Absorbance-A was measured at wavelength 600 nm and 650 nm by u...Abstract: In the present work, studies the effect uv-radiation dose (5 J/cm2 to 360 J/cm2 ) with power 15 W to LR-115 track detector thickness 100 μm. Absorbance-A was measured at wavelength 600 nm and 650 nm by usinguv-visible spectroscopy and measure the transmission percent -- T% and deviation at the wavenumber-w2907 cm1 by using Fourier infrared -- FTIR spectroscopy. The relationship between the dose of radiation to the uv-radiation (J/cm2) and the absorbance-A at wavelength 600 nm and 650 nm and the wavenumber-w 2907 cm-1 was calculate as a polynomial relation .The present study show that there is a possibility to use the detector LR- 115 to assessment doses of exposure to uv-radiation in the medical and environmental fields.展开更多
[Objective] The aim was to indentify diseased leaves of broad bean by vibra- tional spectroscopy. [Method] In this paper, broad bean rust, fusarium rhizome rot, broad bean zonate spot, yellow leaf curl virus and norma...[Objective] The aim was to indentify diseased leaves of broad bean by vibra- tional spectroscopy. [Method] In this paper, broad bean rust, fusarium rhizome rot, broad bean zonate spot, yellow leaf curl virus and normal leaves were studied using Fourier transform infrared spectroscopy combined with chemometrics. [Result] The spectra of the samples were similar, only with minor differences in absorption inten- sity of several peaks. Second derivative analyses show that the significant difference of all samples was in the range of 1 200-700 cm2. The data in the range of 1 200- 700 cm' were selected to evaluate correlation coefficients, hierarchical cluster analy- sis (HCA) and principal component analysis (PCA). Results showed that the correla- tion coefficients are larger than 0.928 not only between the healthy leaves, but also between the same diseased leaves. The values between healthy and diseased leaves, and among diseased leaves, are all declined. HCA and PCA yielded about 73.3% and 82.2% accuracy, respectively. [Conclusion] This study demonstrated that FTIR techniques might be used to detect crop diseases.展开更多
Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made u...Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made up of the vibrational absorption bands of protein,lipid and polysaccharide.There were minor differences in-cluding the spectral peak position, peak shape and the absorption intensity in the range of 1 800-1 300 cm-1. There were obvious differences among their second derivative spectra in the range of 1 800-1 300 cm-1. After the procedure of the Fourier self-deconvolution and curve fitting of health bean leaves and broad bean diseased leaves in the range of 1 700-1 500 cm-1, three sub-peaks were obtained at 1 550 cm-1 (protein amide Ⅱ band), 1 605 cm-1 (lignin) and 1 650 cm-1 (protein amide I band).The ratios of relative areas of the bands of amide Ⅱ, lignin, and amide I were 38.86%, 28.68% and 32.47% in the spectra of healthy leaves, respec-tively. It was distinguished from the diseased leaves (chocolate spot leaf: 15.42%, 42.98% and 41.61%, ring spot leaf:32.39%, 35.63% and 31.98%, rust leaf: 13.97%, 46.40% and 39.65%, yel owing leaf curl disease leaf: 24.01%,36.55% and 39.44%). For sub-peak area ratios (A1 563/A1 605, A1 650/A1 605 and A1 563/A1 654), those of four kinds of diseased leaves were smal er than that of healthy leaves, and there were also differences among four kinds of diseased leaves. The results proved that FTIR combining with curve fitting might be a potential y useful tool for detecting different kinds of broad bean diseases.展开更多
Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) were prepared by the soluti...Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) were prepared by the solution method. Fourier Infrared (FTIR) spectroscopy was employed to study the H-bonds in these model polyurethanes. The model polyurethane hard segment prepared from HDI and 1,4-butanodiol (BDO) was used for comparison. It was found that the incorporation of the pendent carboxyl through DMBA into the model hard segments weakens the original NH…O = C H-bond but gives more H-bond patterns based on the two H-bond donors, urethane NH and carboxylic OH. The carboxylic dimer is one of the main H-bond types and is stronger than another main H-bond type NH…O=C. In addition, the H-bond in aromatic model hard segments is stronger than that of aliphatic hard segments. The appearance of the free C=O and the fact that almost all N—H is H-bonded suggest that there possibly exist either the third H-bond acceptor or the H-bond formed by one acceptor with two donors.展开更多
The crystallization of uniaxial hot drawn syndiotactic polystyrene/multi-walled carbon nanotube (sPS/MWCNT) nanocomposite films was studied by FTIR spectroscopy. The effects of MWCNT content, draw ratio and drawing ...The crystallization of uniaxial hot drawn syndiotactic polystyrene/multi-walled carbon nanotube (sPS/MWCNT) nanocomposite films was studied by FTIR spectroscopy. The effects of MWCNT content, draw ratio and drawing temperature on the sPS crystallinity were investigated. The sPS/MWCMT nanocomposite films show reduced crystallinities with the increase of MWCNT content. In addition, with the increase of draw ratio, both the pure sPS and the sPS/MWCNT nanocomposite drawn films exhibit increased crystallinity. The effect of drawing temperature on the sPS crystallization is complex. In a temperature range of 100―135 °C, the crystallinity decreases with drawing temperature, whereas it increases at 140 °C for both pure sPS and its nanocomposite films.展开更多
Infrared reflection-absorption spectra for primary, secondary and tertiary orthophosphate anions on a gold electrode in aqueous solution were studied by in situ FTIR spectroscopy. The spectra show that H2PO4- , HPO io...Infrared reflection-absorption spectra for primary, secondary and tertiary orthophosphate anions on a gold electrode in aqueous solution were studied by in situ FTIR spectroscopy. The spectra show that H2PO4- , HPO ions do not interact with the electrode surface as strong as PO do. According to the surface selection rule, we deduce the modes of adsorption of these anions on the electrode from these spectra. The experiment also confirms the affection to adsorption of ion on the electrode due to ion-migration into thin-layer cavity.展开更多
The level of chemical oxygen demand(COD)is an important index to evaluate whether sewage meets the discharge requirements,so corresponding tests should be carried out before discharge.Fourier transform infrared spectr...The level of chemical oxygen demand(COD)is an important index to evaluate whether sewage meets the discharge requirements,so corresponding tests should be carried out before discharge.Fourier transform infrared spectroscopy(FTIR)and attenuated total reflectance(ATR)can detect COD in sewage effectively,which has advantages over conventional chemical analysis methods.And the selection of characteristic bands was one of the key links in the application of FTIR/ATR spectroscopy.In this work,based on the moving window partial least-squares(MWPLS)regression to select a characteristic wavelength,a method of equivalent wavelength selection was proposed combining with paired t-test equivalent concept.The results showed that the prediction effect of the selected wavelength was very close to that of the MWPLS method,while the number of wavelength points was much smaller.SEPAve,RP,Ave,SEPStd,and RP,Std which characterized the modeling effect were 26.3 mg L^-1,0.969,3.49 mg L^-1,and 0.006,respectively.The validation effect V-SEP and V-RP were 28.64 mg L^-1 and 0.960,respectively.The selected waveband was between 1809 cm^-1 and 1568 cm^-1.The method was of more reference value for the design of FTIR/ATR spectral instrument for COD detection.展开更多
Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investig...Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared(FTIR)spectroscopy.In this study,FTIR-attenuated total reflectance(ATR)spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fungi of horticultural plants.Mixtures of mycelia and spores from 27fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements.The FTIR-ATR spectra ranging from 4 000to 400cm-1 were obtained.To classify the FTIRATR spectra,cluster analysis was compared with canonical vitiate analysis(CVA)in the spectral regions of3 050~2 800and 1 800~900cm-1.Results showed that the identification accuracies achieved 97.53%and99.18%for the cluster analysis and CVA analysis,respectively,demonstrating the high potential of this technique for fungal strain identification.展开更多
An insight into the interaction of collagen type I with apatite in bone tissue was performed by using differential scanning calorimetry, Fourier transform infrared spectroscopy, and molecular modeling. Scanning electr...An insight into the interaction of collagen type I with apatite in bone tissue was performed by using differential scanning calorimetry, Fourier transform infrared spectroscopy, and molecular modeling. Scanning electron microscopy shows that bone organic content incinerate gradually through the different temperatures studied. We suggest that the amide regions of the type I collagen molecule (mainly C=O groups of the peptide bonds) will be important in the control of the interactions with the apatite from bone. The amide I infrared bands of the collagen type I change when interacting to apatite, what might confirm our assumption. Bone tissue results in a loss of thermal stability compared to the collagen studied apart, as a consequence of the degradation and further combustion of the collagen in contact with the apatite microcrystals in bone. The thermal behavior of bone is very distinctive. Its main typical combustion temperature is at 360°C with a shoulder at 550°C compared to the thermal behavior of collagen, with the mean combustion peak at ca. 500°C. Our studies with molecular mechanics (MM+ force field) showed different interaction energies of the collagen-like molecule and different models of the apatite crystal planes. We used models of the apatite (100) and (001) planes;additional two planes (001) were explored with phosphate-rich and calcium-rich faces;an energetic preference was found in the latter case. We preliminary conclude that the peptide bond of collagen type I is modified when the molecule interacts with the apatite, producing a decrease in the main peak from ca. 500°C in collagen, up to 350°C in bone. The combustion might be related to collagen type I, as the ΔH energies present only small variations between mineralized and non-mineralized samples. The data obtained here give a molecular perspective into the structural properties of bone and the change in collagen properties caused by the interaction with the apatite. Our study can be useful to understand the biological synthesis of minerals as well as the organic-inorganic interaction and the synthesis of apatite implant materials.展开更多
Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such ...Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such as highly correlated initial values of the expression parameters,the need to pre-estimate the trend term shape,and poor fitting accuracy at low signal-to-noise ratios.In order to achieve real-time and robust trend term removal,a new trend term removal method using genetic programming(GP)in symbolic regression is constructed in this paper,and the FTIR simulation interference results and experimental measurement data for common volatile organic compounds(VOCs)gases are analyzed.The results show that the genetic programming algorithm can both reduce the initial value requirement and greatly improve the trend term accuracy by 20%-30% in three evaluation indicators,which is suitable for gas FTIR detection in complex scenarios.展开更多
The interaction by hydrogen bond formation of some primary alcohols ( l-heptanol, l-octanol and l-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar...The interaction by hydrogen bond formation of some primary alcohols ( l-heptanol, l-octanol and l-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar solvents viz., n-heptane, CC14 and benzene by means of FTIR spectroscopy. Formation constants and free energy changes of complex formation were determined. The dependence of the equilibrium constants and free energy changes of complex formation on the alkyl chain length of both the alcohols and esters are discussed. The solvent interaction between the solute and solvent. effect on the hydrogen bond formation is discussed in terms of specific展开更多
The UV-Vis and infrared(IR)absorption spectra of organophosphorus(OP)pesticides have been studied.A correlation in spectra was developed to optimize the OP pesticides in the environments.The spectroscopic(UV-Vis and I...The UV-Vis and infrared(IR)absorption spectra of organophosphorus(OP)pesticides have been studied.A correlation in spectra was developed to optimize the OP pesticides in the environments.The spectroscopic(UV-Vis and IR)spectrum of OP pesticides like methyl parathion,malathion and parathion has been interpreted in detail.A complete calculation of the normal frequencies and absolute intensities of UV-Vis and IR absorption bands are interpreted with the help of corresponding experimental data.In the colorimetric reactions,the bands appear at 2 077,1 637,1 455,1 015,655cm^(-1) for malathion;2 081,1 639,1 316,1 015,794,683cm^(-1) for parathion;2 078,1 632,1 032,794cm^(-1) for methyl parathion were used for quantitative or qualitative analysis.All these IR spectra were acquired by averaging 100 scans at a resolution of 4cm^(-1).It is determined experimentally in the region 200~450nm for UV-Vis absorption bands and in the region 400~4 000cm^(-1) for IR absorption bands.It is concluded that the mainly optically active groups(P—OH, C=O,P=O, C—O—C,P—O—C, P=S, —OH)present in pesticides which are responsible in change in significant data for quantitative and qualitative analysis.The various optical properties like wavelength,band energy,wave number,and frequency,also are calculated.展开更多
The monomolecular particle agglomerates of polystyrenes were obtained by freeze-drying of its very dilute solutions of 1.3 x 10(-5)-2.0 x 10(-5) g/mL in benzene:cylcohexane (100:1) solvents, and they were annealed at ...The monomolecular particle agglomerates of polystyrenes were obtained by freeze-drying of its very dilute solutions of 1.3 x 10(-5)-2.0 x 10(-5) g/mL in benzene:cylcohexane (100:1) solvents, and they were annealed at room temperature for hundred days before use. According to C-13-NMR measurement the polystyrenes should be practically atactic. The number average molecular weights of the samples are 2.80 x 10(3), 2.00 x 10(4), and 1.55 x 10(6), respectively. The freeze-dried aPS with a molecular weight higher than 10(4) show two new IR absorption bands at 1098 and 1261 cm(-1), which are absent in the normal aPS and freeze-dried styrene oligomer. It was also found that the low molecular weight samples can only form powders, whereas the freeze-dried aPS with higher molecular weight form a mixture of powders and fibrils, of which the longer fibrils show a much stronger 1261 cm(-1) band than the shorter fibrils and the powder. It seems that the 1261 cm(-1) band corresponds to the stacking behavior of monomolecular particles.展开更多
This work reports an FTIR study of the NO_x adsorption/desorption cycles on tin oxide nanosized particles under the operating conditions of real sensors (150℃,in presence of O_2).The chemical reactions are monitored...This work reports an FTIR study of the NO_x adsorption/desorption cycles on tin oxide nanosized particles under the operating conditions of real sensors (150℃,in presence of O_2).The chemical reactions are monitored in situ and correlated with the variations of the SnO_2 electrical conductivity.On the basis of the FTIR spectra,two contributing mechanisms for the NO_x detection are suggested.The first one presents the formation of bridged nitrate groups bound to the SnO_2 surface via oxygen vacancies acting as electron donor sites.The second mechanism also involves surface oxygen vacancies in the coordination of NO_x,but this time the formation of NO_x anionic species is considered.Both mechanisms lead to the decrease of the electrical conductivity under NO_x adsorption.However,the bridged nitrate groups are not reversible under gas desorption and thus irreversibly contaminate the surface after the first NO_x adsorption.On the contrary,the nitrosyl anionic species are reversible and,from the second NO_x adsorption/desorption cycle,ensure the reproducibility of the sensor response.展开更多
The sawdust reinforced Acrylonitrile Butadiene Styrene (ABS) composites were prepared by using hot press molding machine for five different wt% (0%, 5%, 10%, 15% and 20%) at 180<span style="white-space:nowrap;...The sawdust reinforced Acrylonitrile Butadiene Styrene (ABS) composites were prepared by using hot press molding machine for five different wt% (0%, 5%, 10%, 15% and 20%) at 180<span style="white-space:nowrap;">°</span>C temperature and 50 KN load. Sawdust was collected from local saw mill of Savar, Dhaka, Bangladesh and ABS polymer was collected from local market of Dhaka, Bangladesh. In this study, different properties of composites like physical (bulk density and water absorption), mechanical (tensile properties and hardness) and structural (Fourier Transform Infrared Spectroscopy) properties were studied. The bulk density of composites was not altered consistently and it gave greater value for 5% and 20% composites. The water absorption enhanced for all composites with the accumulation of fiber content and soaking time. The reduction of tensile strength and Leeb’s rebound hardness of the composites were observed with the increase of the fiber content in all compositions. Maximum (%) of elongation was found for 5% composite, and then it gradually decreased;however, elastic modulus increased with the increased of fiber content in composites. Fourier Transform Infrared (FTIR) spectroscopy study was done for structural characterization. It was found that there was a new bond (C≡C) stretching formed for 20% composite;moreover, C-H rocking for 0% composite was broken for all other composites after the addition of sawdust in ABS polymer matrix.展开更多
As state-of-the-art electrochemical energy conversion and storage(EECS)techniques,fuel cells and rechargeable batteries have achieved great success in the past decades.However,modern societies’ever-growing demand in ...As state-of-the-art electrochemical energy conversion and storage(EECS)techniques,fuel cells and rechargeable batteries have achieved great success in the past decades.However,modern societies’ever-growing demand in energy calls for EECS devices with high efficiency and enhanced performance,which mainly rely on the rational design of catalysts,electrode materials,and electrode/electrolyte interfaces in EESC,based on in-deep and comprehensive mechanistic understanding of the relevant electrochemical redox reactions.Such an understanding can be realized by monitoring the dynamic redox reaction processes under realistic operation conditions using in situ techniques,such as in situ Raman,Fourier transform infrared(FTIR),and X-ray diffraction(XRD)spectroscopy.These techniques can provide characteristic spectroscopic information of molecules and/or crystals,which are sensitive to structure/phase changes resulted from different electrochemical working conditions,hence allowing for intermediates identification and mechanisms understanding.This review described and summarized recent progress in the in situ studies of fuel cells and rechargeable batteries via Raman,FTIR,and XRD spectroscopy.The applications of these in situ techniques on typical electrocatalytic electrooxidation reaction and oxygen reduction reaction(ORR)in fuel cells,on representative high capacity and/or resource abundance cathodes and anodes,and on the solid electrolyte interface(SEI)in rechargeable batteries are discussed.We discuss how these techniques promote the development of novel EECS systems and highlight their critical importance in future EECS research.展开更多
基金supported by the National Natural Science Foundation of China(41872174 and 42072189)the Program for Innovative Research Team(in Science and Technology)in the Universities of Henan Province,China(21IRTSTHN007)the Program for Innovative Research Team(in Science and Technology)of Henan Polytechnic University(T2020-4)。
文摘Elemental analysis,nuclear magnetic resonance carbon spectroscopy(^(13)C-NMR),X-ray photoelectron spectroscopy(XPS)and Fourier transform infrared spectroscopy(FTIR)experiments were carried out to determine the existence of aromatic structure,heteroatom structure and fat structure in coal.MS(materials studio)software was used to optimize and construct a 3D molecular structure model of coal.A method for establishing a coal molecular structure model was formed,which was“determination of key structures in coal,construction of planar molecular structure model,and optimization of three-dimensional molecular structure model”.The structural differences were compared and analyzed.The results show that with the increase of coal rank,the dehydrogenation of cycloalkanes in coal is continuously enhanced,and the content of heteroatoms in the aromatic ring decreases.The heteroatoms and branch chains in the coal are reduced,and the structure is more orderly and tight.The stability of the structure is determined by theπ-πinteraction between the aromatic rings in the nonbonding energy EN.Key Stretching Energy The size of EB determines how tight the structure is.The research results provide a method and reference for the study of the molecular structure of medium and high coal ranks.
基金the National Natural Science Foundation of China (20471008)Basic Research Foundation of Beijing Institute of Technology (BIT-UBF-200502B4221)
文摘Flash pyrolysis of MnTC( [Mn2(TNR)2(CHZ)2(H2O)4]·2H2O) and NiCT( [Ni(CHZ)3](TNR)·5H2O) is conducted by using T-jump/FTIR spectroscopy under 0.1 MPa Ar atmosphere. The mole fractions of the individual products in the pyrolysis gas mixture are described as a function of time. Results show that NiCT appears to produce more N2O, NH3 and HONO upon flash pyrolysis, thus secondary oxidation reduction reactions may take place to a certain extent during its thermal decomposition, which in turn leads to unsteady combustion and possibly to failure of the device. While H2O and CO2 are the major two gas products of flash pyrolysis of MnTC, it warrants further in-depth trials for the adoption in detonators as coo-friendly and chemically compatible primary explosive. The two compounds both liberate volatile metal carbonate, oxide and isocyanate compounds.
文摘Abstract: In the present work, studies the effect uv-radiation dose (5 J/cm2 to 360 J/cm2 ) with power 15 W to LR-115 track detector thickness 100 μm. Absorbance-A was measured at wavelength 600 nm and 650 nm by usinguv-visible spectroscopy and measure the transmission percent -- T% and deviation at the wavenumber-w2907 cm1 by using Fourier infrared -- FTIR spectroscopy. The relationship between the dose of radiation to the uv-radiation (J/cm2) and the absorbance-A at wavelength 600 nm and 650 nm and the wavenumber-w 2907 cm-1 was calculate as a polynomial relation .The present study show that there is a possibility to use the detector LR- 115 to assessment doses of exposure to uv-radiation in the medical and environmental fields.
基金Supported by National Natural Science Foundation of China(30960179)Natural Science Foundation of Yunnan Province(2007A048M)~~
文摘[Objective] The aim was to indentify diseased leaves of broad bean by vibra- tional spectroscopy. [Method] In this paper, broad bean rust, fusarium rhizome rot, broad bean zonate spot, yellow leaf curl virus and normal leaves were studied using Fourier transform infrared spectroscopy combined with chemometrics. [Result] The spectra of the samples were similar, only with minor differences in absorption inten- sity of several peaks. Second derivative analyses show that the significant difference of all samples was in the range of 1 200-700 cm2. The data in the range of 1 200- 700 cm' were selected to evaluate correlation coefficients, hierarchical cluster analy- sis (HCA) and principal component analysis (PCA). Results showed that the correla- tion coefficients are larger than 0.928 not only between the healthy leaves, but also between the same diseased leaves. The values between healthy and diseased leaves, and among diseased leaves, are all declined. HCA and PCA yielded about 73.3% and 82.2% accuracy, respectively. [Conclusion] This study demonstrated that FTIR techniques might be used to detect crop diseases.
基金Supported by National Natural Science Foundation of China(30960179)Program for Innovative Research Team in Science and Technology in University of Yunnan Province~~
文摘Fourier transform infrared (FTIR) spectroscopy was used to study diseased leaves in broad bean. Results showed that the infrared spectra of different broad bean diseased leaves were similar, which were mainly made up of the vibrational absorption bands of protein,lipid and polysaccharide.There were minor differences in-cluding the spectral peak position, peak shape and the absorption intensity in the range of 1 800-1 300 cm-1. There were obvious differences among their second derivative spectra in the range of 1 800-1 300 cm-1. After the procedure of the Fourier self-deconvolution and curve fitting of health bean leaves and broad bean diseased leaves in the range of 1 700-1 500 cm-1, three sub-peaks were obtained at 1 550 cm-1 (protein amide Ⅱ band), 1 605 cm-1 (lignin) and 1 650 cm-1 (protein amide I band).The ratios of relative areas of the bands of amide Ⅱ, lignin, and amide I were 38.86%, 28.68% and 32.47% in the spectra of healthy leaves, respec-tively. It was distinguished from the diseased leaves (chocolate spot leaf: 15.42%, 42.98% and 41.61%, ring spot leaf:32.39%, 35.63% and 31.98%, rust leaf: 13.97%, 46.40% and 39.65%, yel owing leaf curl disease leaf: 24.01%,36.55% and 39.44%). For sub-peak area ratios (A1 563/A1 605, A1 650/A1 605 and A1 563/A1 654), those of four kinds of diseased leaves were smal er than that of healthy leaves, and there were also differences among four kinds of diseased leaves. The results proved that FTIR combining with curve fitting might be a potential y useful tool for detecting different kinds of broad bean diseases.
基金This work was supported by the Natural Science Foundation of Henan Province (004030600)
文摘Three model polyurethane hard segments based on dimethylol butanoic acid (DMBA) and 1,6-hexane diisocyanate (HDI), toluene diisocyanate (TDI) and 4,4'-diphenylmethane diisocyanate (MDI) were prepared by the solution method. Fourier Infrared (FTIR) spectroscopy was employed to study the H-bonds in these model polyurethanes. The model polyurethane hard segment prepared from HDI and 1,4-butanodiol (BDO) was used for comparison. It was found that the incorporation of the pendent carboxyl through DMBA into the model hard segments weakens the original NH…O = C H-bond but gives more H-bond patterns based on the two H-bond donors, urethane NH and carboxylic OH. The carboxylic dimer is one of the main H-bond types and is stronger than another main H-bond type NH…O=C. In addition, the H-bond in aromatic model hard segments is stronger than that of aliphatic hard segments. The appearance of the free C=O and the fact that almost all N—H is H-bonded suggest that there possibly exist either the third H-bond acceptor or the H-bond formed by one acceptor with two donors.
基金Supported by the National Natural Science Foundation of China(No.50873103)the K. C. Wong Education Foundation of Hong Kong, China
文摘The crystallization of uniaxial hot drawn syndiotactic polystyrene/multi-walled carbon nanotube (sPS/MWCNT) nanocomposite films was studied by FTIR spectroscopy. The effects of MWCNT content, draw ratio and drawing temperature on the sPS crystallinity were investigated. The sPS/MWCMT nanocomposite films show reduced crystallinities with the increase of MWCNT content. In addition, with the increase of draw ratio, both the pure sPS and the sPS/MWCNT nanocomposite drawn films exhibit increased crystallinity. The effect of drawing temperature on the sPS crystallization is complex. In a temperature range of 100―135 °C, the crystallinity decreases with drawing temperature, whereas it increases at 140 °C for both pure sPS and its nanocomposite films.
文摘Infrared reflection-absorption spectra for primary, secondary and tertiary orthophosphate anions on a gold electrode in aqueous solution were studied by in situ FTIR spectroscopy. The spectra show that H2PO4- , HPO ions do not interact with the electrode surface as strong as PO do. According to the surface selection rule, we deduce the modes of adsorption of these anions on the electrode from these spectra. The experiment also confirms the affection to adsorption of ion on the electrode due to ion-migration into thin-layer cavity.
基金This work was financially supported by the Natural Science Foundation of Hainan Province(417087)the Key Research and Development Program of Hainan Province(ZDYF2018007)Research Fund for Advanced Talents of Hainan University(No.kyqd1577).
文摘The level of chemical oxygen demand(COD)is an important index to evaluate whether sewage meets the discharge requirements,so corresponding tests should be carried out before discharge.Fourier transform infrared spectroscopy(FTIR)and attenuated total reflectance(ATR)can detect COD in sewage effectively,which has advantages over conventional chemical analysis methods.And the selection of characteristic bands was one of the key links in the application of FTIR/ATR spectroscopy.In this work,based on the moving window partial least-squares(MWPLS)regression to select a characteristic wavelength,a method of equivalent wavelength selection was proposed combining with paired t-test equivalent concept.The results showed that the prediction effect of the selected wavelength was very close to that of the MWPLS method,while the number of wavelength points was much smaller.SEPAve,RP,Ave,SEPStd,and RP,Std which characterized the modeling effect were 26.3 mg L^-1,0.969,3.49 mg L^-1,and 0.006,respectively.The validation effect V-SEP and V-RP were 28.64 mg L^-1 and 0.960,respectively.The selected waveband was between 1809 cm^-1 and 1568 cm^-1.The method was of more reference value for the design of FTIR/ATR spectral instrument for COD detection.
基金the National Natural Science Foundation of China(31201473)the Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-IVFCAAS)funded by the Key Laboratory of Biology and Genetic Improvement of Horticultural Crops,Ministry of Agriculture,P.R.China
文摘Identification of plant-pathogenic fungi is time-consuming due to cultivation and microscopic examination and can be influenced by the interpretation of the micro-morphological characters observed.The present investigation aimed to create a simple but sophisticated method for the identification of plant-pathogenic fungi by Fourier transform infrared(FTIR)spectroscopy.In this study,FTIR-attenuated total reflectance(ATR)spectroscopy was used in combination with chemometric analysis for identification of important pathogenic fungi of horticultural plants.Mixtures of mycelia and spores from 27fungal strains belonging to nine different families were collected from liquid PD or solid PDA media cultures and subjected to FTIR-ATR spectroscopy measurements.The FTIR-ATR spectra ranging from 4 000to 400cm-1 were obtained.To classify the FTIRATR spectra,cluster analysis was compared with canonical vitiate analysis(CVA)in the spectral regions of3 050~2 800and 1 800~900cm-1.Results showed that the identification accuracies achieved 97.53%and99.18%for the cluster analysis and CVA analysis,respectively,demonstrating the high potential of this technique for fungal strain identification.
基金the National Autonomous University of Mexico for financial support(grant DGAPA-IN100303)A.H.thanks the National Council of Science and Technology of Mexico(CONACyT)and DAAD for scholarships
文摘An insight into the interaction of collagen type I with apatite in bone tissue was performed by using differential scanning calorimetry, Fourier transform infrared spectroscopy, and molecular modeling. Scanning electron microscopy shows that bone organic content incinerate gradually through the different temperatures studied. We suggest that the amide regions of the type I collagen molecule (mainly C=O groups of the peptide bonds) will be important in the control of the interactions with the apatite from bone. The amide I infrared bands of the collagen type I change when interacting to apatite, what might confirm our assumption. Bone tissue results in a loss of thermal stability compared to the collagen studied apart, as a consequence of the degradation and further combustion of the collagen in contact with the apatite microcrystals in bone. The thermal behavior of bone is very distinctive. Its main typical combustion temperature is at 360°C with a shoulder at 550°C compared to the thermal behavior of collagen, with the mean combustion peak at ca. 500°C. Our studies with molecular mechanics (MM+ force field) showed different interaction energies of the collagen-like molecule and different models of the apatite crystal planes. We used models of the apatite (100) and (001) planes;additional two planes (001) were explored with phosphate-rich and calcium-rich faces;an energetic preference was found in the latter case. We preliminary conclude that the peptide bond of collagen type I is modified when the molecule interacts with the apatite, producing a decrease in the main peak from ca. 500°C in collagen, up to 350°C in bone. The combustion might be related to collagen type I, as the ΔH energies present only small variations between mineralized and non-mineralized samples. The data obtained here give a molecular perspective into the structural properties of bone and the change in collagen properties caused by the interaction with the apatite. Our study can be useful to understand the biological synthesis of minerals as well as the organic-inorganic interaction and the synthesis of apatite implant materials.
基金supported by JKW Program(No.M102-03)National Program(No.E0F80246).
文摘Trend term removal is a key step in Fourier transform infrared spectroscopy(FTIR)data pre-processing.The most commonly used least squares(LS)method,although satisfying the real-time requirement,has many problems such as highly correlated initial values of the expression parameters,the need to pre-estimate the trend term shape,and poor fitting accuracy at low signal-to-noise ratios.In order to achieve real-time and robust trend term removal,a new trend term removal method using genetic programming(GP)in symbolic regression is constructed in this paper,and the FTIR simulation interference results and experimental measurement data for common volatile organic compounds(VOCs)gases are analyzed.The results show that the genetic programming algorithm can both reduce the initial value requirement and greatly improve the trend term accuracy by 20%-30% in three evaluation indicators,which is suitable for gas FTIR detection in complex scenarios.
文摘The interaction by hydrogen bond formation of some primary alcohols ( l-heptanol, l-octanol and l-decanol) with esters (methyl methacrylate, ethyl methacrylate and butyl methacrylate) was investigated in non-polar solvents viz., n-heptane, CC14 and benzene by means of FTIR spectroscopy. Formation constants and free energy changes of complex formation were determined. The dependence of the equilibrium constants and free energy changes of complex formation on the alkyl chain length of both the alcohols and esters are discussed. The solvent interaction between the solute and solvent. effect on the hydrogen bond formation is discussed in terms of specific
基金worked in funding projects from DST,New Delhi for extensive research in the area of nano-bio molecular spectroscopy and sensor technology development
文摘The UV-Vis and infrared(IR)absorption spectra of organophosphorus(OP)pesticides have been studied.A correlation in spectra was developed to optimize the OP pesticides in the environments.The spectroscopic(UV-Vis and IR)spectrum of OP pesticides like methyl parathion,malathion and parathion has been interpreted in detail.A complete calculation of the normal frequencies and absolute intensities of UV-Vis and IR absorption bands are interpreted with the help of corresponding experimental data.In the colorimetric reactions,the bands appear at 2 077,1 637,1 455,1 015,655cm^(-1) for malathion;2 081,1 639,1 316,1 015,794,683cm^(-1) for parathion;2 078,1 632,1 032,794cm^(-1) for methyl parathion were used for quantitative or qualitative analysis.All these IR spectra were acquired by averaging 100 scans at a resolution of 4cm^(-1).It is determined experimentally in the region 200~450nm for UV-Vis absorption bands and in the region 400~4 000cm^(-1) for IR absorption bands.It is concluded that the mainly optically active groups(P—OH, C=O,P=O, C—O—C,P—O—C, P=S, —OH)present in pesticides which are responsible in change in significant data for quantitative and qualitative analysis.The various optical properties like wavelength,band energy,wave number,and frequency,also are calculated.
文摘The monomolecular particle agglomerates of polystyrenes were obtained by freeze-drying of its very dilute solutions of 1.3 x 10(-5)-2.0 x 10(-5) g/mL in benzene:cylcohexane (100:1) solvents, and they were annealed at room temperature for hundred days before use. According to C-13-NMR measurement the polystyrenes should be practically atactic. The number average molecular weights of the samples are 2.80 x 10(3), 2.00 x 10(4), and 1.55 x 10(6), respectively. The freeze-dried aPS with a molecular weight higher than 10(4) show two new IR absorption bands at 1098 and 1261 cm(-1), which are absent in the normal aPS and freeze-dried styrene oligomer. It was also found that the low molecular weight samples can only form powders, whereas the freeze-dried aPS with higher molecular weight form a mixture of powders and fibrils, of which the longer fibrils show a much stronger 1261 cm(-1) band than the shorter fibrils and the powder. It seems that the 1261 cm(-1) band corresponds to the stacking behavior of monomolecular particles.
文摘This work reports an FTIR study of the NO_x adsorption/desorption cycles on tin oxide nanosized particles under the operating conditions of real sensors (150℃,in presence of O_2).The chemical reactions are monitored in situ and correlated with the variations of the SnO_2 electrical conductivity.On the basis of the FTIR spectra,two contributing mechanisms for the NO_x detection are suggested.The first one presents the formation of bridged nitrate groups bound to the SnO_2 surface via oxygen vacancies acting as electron donor sites.The second mechanism also involves surface oxygen vacancies in the coordination of NO_x,but this time the formation of NO_x anionic species is considered.Both mechanisms lead to the decrease of the electrical conductivity under NO_x adsorption.However,the bridged nitrate groups are not reversible under gas desorption and thus irreversibly contaminate the surface after the first NO_x adsorption.On the contrary,the nitrosyl anionic species are reversible and,from the second NO_x adsorption/desorption cycle,ensure the reproducibility of the sensor response.
文摘The sawdust reinforced Acrylonitrile Butadiene Styrene (ABS) composites were prepared by using hot press molding machine for five different wt% (0%, 5%, 10%, 15% and 20%) at 180<span style="white-space:nowrap;">°</span>C temperature and 50 KN load. Sawdust was collected from local saw mill of Savar, Dhaka, Bangladesh and ABS polymer was collected from local market of Dhaka, Bangladesh. In this study, different properties of composites like physical (bulk density and water absorption), mechanical (tensile properties and hardness) and structural (Fourier Transform Infrared Spectroscopy) properties were studied. The bulk density of composites was not altered consistently and it gave greater value for 5% and 20% composites. The water absorption enhanced for all composites with the accumulation of fiber content and soaking time. The reduction of tensile strength and Leeb’s rebound hardness of the composites were observed with the increase of the fiber content in all compositions. Maximum (%) of elongation was found for 5% composite, and then it gradually decreased;however, elastic modulus increased with the increased of fiber content in composites. Fourier Transform Infrared (FTIR) spectroscopy study was done for structural characterization. It was found that there was a new bond (C≡C) stretching formed for 20% composite;moreover, C-H rocking for 0% composite was broken for all other composites after the addition of sawdust in ABS polymer matrix.
基金supported by the National Key Research and Development Program of China(Nos.2020YFB1505800 and 2019YFA0705400)the National Natural Science Foundation of China(NSFC)(Nos.201925404,21902137,22005130,and 22021001)+1 种基金the Fundamental Research Funds for the Central Universities(Nos.20720210069 and 20720210043)the Science and Technology Planning Project of Fujian Province(No.2019Y4001).
文摘As state-of-the-art electrochemical energy conversion and storage(EECS)techniques,fuel cells and rechargeable batteries have achieved great success in the past decades.However,modern societies’ever-growing demand in energy calls for EECS devices with high efficiency and enhanced performance,which mainly rely on the rational design of catalysts,electrode materials,and electrode/electrolyte interfaces in EESC,based on in-deep and comprehensive mechanistic understanding of the relevant electrochemical redox reactions.Such an understanding can be realized by monitoring the dynamic redox reaction processes under realistic operation conditions using in situ techniques,such as in situ Raman,Fourier transform infrared(FTIR),and X-ray diffraction(XRD)spectroscopy.These techniques can provide characteristic spectroscopic information of molecules and/or crystals,which are sensitive to structure/phase changes resulted from different electrochemical working conditions,hence allowing for intermediates identification and mechanisms understanding.This review described and summarized recent progress in the in situ studies of fuel cells and rechargeable batteries via Raman,FTIR,and XRD spectroscopy.The applications of these in situ techniques on typical electrocatalytic electrooxidation reaction and oxygen reduction reaction(ORR)in fuel cells,on representative high capacity and/or resource abundance cathodes and anodes,and on the solid electrolyte interface(SEI)in rechargeable batteries are discussed.We discuss how these techniques promote the development of novel EECS systems and highlight their critical importance in future EECS research.