To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes ...To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.展开更多
A surface plasmon interference lithography assisted by a Fabry-Perot (F-P) cavity composed of subwavelength metal gratings and a thin metal fihn is proposed to fabricate high-quality nanopatterns. The calculated res...A surface plasmon interference lithography assisted by a Fabry-Perot (F-P) cavity composed of subwavelength metal gratings and a thin metal fihn is proposed to fabricate high-quality nanopatterns. The calculated results indicate that uniform straight interference fringes with high contrast and high electric-field intensity are formed in the resist under the F-P cavity. The analyses of spatial frequency spectra illuminate the physical mechanism of the formation for the interference fringes. The influence of the F-P cavity spacing is discussed in detail. Moreover, the error analyses reveal that all parameters except the metal grating period in this scheme can bear large tolerances for the device fabrication.展开更多
We demonstrate a fiber Fabry-Pérot cavity in the ultraviolet range, which covers the florescence wavelength for the <sup>2</sup>P to <sup>2</sup>S transition of Yb and is designed in the b...We demonstrate a fiber Fabry-Pérot cavity in the ultraviolet range, which covers the florescence wavelength for the <sup>2</sup>P to <sup>2</sup>S transition of Yb and is designed in the bad cavity limit for florescence collection. Benefiting from both the small cavity mode volume and the large atom dipole, a cavity with moderate finesse and high transmission still supports a good cooperativity, which is made and tested in experiment. Based on the measured experimental parameters, simulation performed on the cavity and ion shows a Purcell factor better than 2.5 and a single-mode fiber collection efficiency over 10%. This technology can support ultra-bright single photon sources based on trapped ions and can provide the possibility to link remote atoms as a quantum network.展开更多
The circular phased antenna array is commonly used for generating waves bearing Orbital Angular Momentum (OAM) in the radio frequency band, but it achieves a relatively low directivity. To overcome this drawback, we p...The circular phased antenna array is commonly used for generating waves bearing Orbital Angular Momentum (OAM) in the radio frequency band, but it achieves a relatively low directivity. To overcome this drawback, we present here a method to improve the directivity of an OAM circular phased antenna array by embedding it inside a Fabry-Perot cavity. The Fabry-Perot cavity contains three main parts: a partially reflecting surface (PRS), an air cavity and a ground plane. Simulation data show that the directivity of this new OAM antenna achieves an improvement of 8.2 dB over the original array. A prototype is realized and characterized. The simulated and measured characteristics are in good agreement.展开更多
BACKGROUND Fungal balls within the nasal cavity are an exceedingly rare clinical entity,typically presenting with nonspecific symptoms or being identified incidentally.CASE SUMMARY This report presents an incidental d...BACKGROUND Fungal balls within the nasal cavity are an exceedingly rare clinical entity,typically presenting with nonspecific symptoms or being identified incidentally.CASE SUMMARY This report presents an incidental discovery of a fungal ball in the nasal cavity during routine imaging,with no associated clinical symptoms.CONCLUSION This case underscores the importance of considering the possibility of asympto-matic presentations of nasal fungal balls,which may be detected incidentally during imaging evaluations.展开更多
A novel fiber magnetic sensor based on the fiber Bragg grating Fabry-Perot (FBG-FP) cavity ring-down technique with pulse laser injection is proposed and demonstrated theoretically. A general expression of the inten...A novel fiber magnetic sensor based on the fiber Bragg grating Fabry-Perot (FBG-FP) cavity ring-down technique with pulse laser injection is proposed and demonstrated theoretically. A general expression of the intensity of the output electric field is derived, and the effect of the external magnetic field on the ring-down time is discussed. The results show that the output light intensity and the ring-down time of the FBG-FP cavity are in the inverse proportion to the magnitude of the external magnetic field. Our results demonstrate the new concept of the fiber magnetic sensor with the FBG-FP cavity ring-down spectroscopy and the technical feasibility.展开更多
A 1.55μm Fabry-Perot (F-P) thermo-optical t unable filter is fabricated.The cavity is made of amorphous silicon (a-Si) layer grown by electron-beam evaporation technique.Due to the excellent thermo-optical property o...A 1.55μm Fabry-Perot (F-P) thermo-optical t unable filter is fabricated.The cavity is made of amorphous silicon (a-Si) layer grown by electron-beam evaporation technique.Due to the excellent thermo-optical property of a-Si,the refractive index of the F-P cavity will be changed by heating;the transmittance resonant peak will therefore shift substantially.The measured tuning rang is 12nm, FWHM (full-width-at-half-maximum) of the transmissi on peak is 9nm,and heating efficiency is 0.1K/mW.The large FWHM is mainly due to th e non-ideal coating deposition and mirror undulation.Possible improvements to increase the efficiency of heating are suggested.展开更多
Two-dimensional(2D)materials have attracted significant attention as a promising candidate for electronic and optoelectronic devices.However,low absorption impairs the performance of few-layer 2D material-based photod...Two-dimensional(2D)materials have attracted significant attention as a promising candidate for electronic and optoelectronic devices.However,low absorption impairs the performance of few-layer 2D material-based photodetectors(PDs).Herein,we purpose an asymmetric Fabry-Perot cavity consisting of a dielectric layer and metallic film to enhance the interactions between light and monolayer molybdenum disulfide(MoS_(2)).The external quantum efficiency of the monolayer MoS_(2)heterojunction PD is enhanced by more than two orders of magnitude via optimizing the thickness of the dielectric layer.The monolayer-MoS_(2)/nickel oxide heterojunction PD exhibits a large on/off ratio of 2×10^(5),a responsivity of 703 A W^(-1),and an ultrahigh detectivity of 1.31×10^(15)Jones.The detectivity is the best value ever reported for monolayer-MoS_(2)heterojunction PDs.Our results may pave the way for high-performance 2D materialbased PDs.展开更多
Ultra-stable optical cavities are widely used for laser frequency stabilization. In these experiments the laser performance relies on the length stability of the Fabry-Perot cavities. Vibration-induced deformation is ...Ultra-stable optical cavities are widely used for laser frequency stabilization. In these experiments the laser performance relies on the length stability of the Fabry-Perot cavities. Vibration-induced deformation is one of the dominant factors that affect the stability of ultra-stable optical cavities. We have quantitatively analysed the elastic deformation of Fabry-Perot cavities with various shapes and mounting configurations. Our numerical result facilitates a novel approach for the design of ultra-stable cavities that are insensitive to vibrational perturbations. This approach can be applied to many experiments such as laser frequency stabilization, high-precision laser spectroscopy, and optical frequency standards.展开更多
Fiber Bragg grating Fabry-Perot (FBG F-P) cavity is used as the sensing model to measure the refractive index of the liquid solution. The cladding of the fiber, which is used as the F-P cavity, is etched by HF solutio...Fiber Bragg grating Fabry-Perot (FBG F-P) cavity is used as the sensing model to measure the refractive index of the liquid solution. The cladding of the fiber, which is used as the F-P cavity, is etched by HF solution to enhance the sensitivity to the external refractive index. The experimental results show that with the concentration change of the external solution, the effective refractive index of etched fiber will change, thus the spectra of FBG F-P cavity will appear a spilt point. The relationship be...展开更多
The mode-spacing of the fiber Bragg grating Fabry-Perot (FBG F-P) cavity is calculated by using the effective cavity length which contains the effective length of the FBG. The expression of the effective length, def...The mode-spacing of the fiber Bragg grating Fabry-Perot (FBG F-P) cavity is calculated by using the effective cavity length which contains the effective length of the FBG. The expression of the effective length, defined by using the phase-time delay, is obtained and simplified as a function of the peak reflectivity at the Bragg wavelength, the band edges, and the first zero-reflectivity wavelength. The effective length is discussed from the energy penetration depth point of view. Three FBG F-P cavities are fabricated in order to validate the effective length approach. The experimental data fits well with the theoretical predictions. The limitation of this method is also pointed out and the improved approach is proposed.展开更多
One of the biggest obstacles to the application of orbital angular momentum(OAM)in the microwave field is its divergence problem.This paper presents a full analysis of generating and focusing OAM waves using original ...One of the biggest obstacles to the application of orbital angular momentum(OAM)in the microwave field is its divergence problem.This paper presents a full analysis of generating and focusing OAM waves using original and improved Fabry-Perot(F-P)cavities.Utilizing combination of microstrip antenna and original F-P cavity,the gain of the OAM antenna is enhanced from 4.0 dBi to 9.3 dBi and the corresponding divergence angle is decreased from 41to 24.To further improve the performance of the OAM antenna,the improved F-P cavity is introduced.The simulated results show that the gain is further enhanced to 12.0 dBi and the divergence angle is further decreased to be 15.展开更多
The monolithic integration of Fabry-Perot cavities has many applications,such as label-free sensing,high-finesse filters,semiconductor lasers,and frequency comb generation.However,the excess loss of integrated reflect...The monolithic integration of Fabry-Perot cavities has many applications,such as label-free sensing,high-finesse filters,semiconductor lasers,and frequency comb generation.However,the excess loss of integrated reflectors makes it challenging to realize integrated Fabry-Perot cavities working in the ultrahigh-Q regime(>10^(6)).Here,we propose and experimentally demonstrate what we believe is the first silicon integrated million-Q Fabry-Perot cavity.Inspired by free-space optics,a novel monolithically integrated retroreflector is utilized to obtain near-unity reflectance and negligible reflection losses.The corner scattering in the retroreflector is prevented by the use of the TE_(1) mode,taking advantage of its zero central field intensity.Losses incurred by other mechanisms are also meticulously engineered.The measurement results show resonances with an ultrahigh intrinsic Q factor of≈3.4×10^(6)spanning an 80-nm bandwidth.The measured loaded Q factor is≈2.1×10^(6).Ultralow reflection losses(≈0.05 dB)and propagation losses(≈0.18 dB/cm)are experimentally realized.展开更多
Ⅰ. INTRODUCTION In a Fabry-Perot cavity, there exist two electric fields, which propagate in the counter direction and interact with each other via the absorber, so that the theoretical analysis of the Fabry-Perot sy...Ⅰ. INTRODUCTION In a Fabry-Perot cavity, there exist two electric fields, which propagate in the counter direction and interact with each other via the absorber, so that the theoretical analysis of the Fabry-Perot system is very complicated. On account of this, many authors had focused their attention on the ring cavity, a considerably simple system. It was proposed as a展开更多
Background:Exotic parrots have established breeding populations in southeast Florida,including several species that nest in tree cavities.We aimed to determine the species identity,nest site requirements,relative nest...Background:Exotic parrots have established breeding populations in southeast Florida,including several species that nest in tree cavities.We aimed to determine the species identity,nest site requirements,relative nest abundance,geographic distribution,and interactions of parrots with native cavity-nesting bird species.Methods:We searched Miami-Dade County,Florida,and nearby areas for natural cavities and holes excavated by woodpeckers,recording attributes of potential nest trees.We inspected all cavities with an elevated video inspection system to determine occupancy by parrots or other birds.We mapped nearly 4000 citizen science observations of parrots in our study area corresponding to our study period,and used these to construct range maps,comparing them to our nesting observations.Results:Not all parrots reported or observed in our study area were actively breeding.Some parrots were observed at tree cavities,which previous studies have suggested is evidence of reproduction,but our inspections with an elevated video inspection system suggest they never initiated nesting attempts.Several parrot species did successfully nest in tree cavities,Red-masked Parakeets(Psittacara erythrogenys)and Orange-winged Parrots(Amazona amazonica)being the most common(n=7 and 6 nests,respectively).These two parrots had similar nesting requirements,but Orange-winged Parrots use nests with larger entrance holes,which they often enlarge.Geographic analysis of nests combined with citizen science data indicate that parrots are limited to developed areas.The most common parrots were less abundant cavity nesters than the native birds which persist in Miami’s urban areas,and far less abundant than the invasive European Starling(Sturnus vulgaris).Conclusions:Exotic parrots breeding elsewhere in the world have harmed native cavity-nesting birds through interference competition,but competitive interference in southeast Florida is minimized by the urban affinities of parrots in this region.The relative abundance and geographic distribution suggest that these parrots are unlikely to invade adjacent wilderness areas.展开更多
Atmospheric O_(x)(nitrogen dioxide(NO_(2))+ozone(O_(3)))can better reflect the local and regional change character-istics of oxidants compared to O_(3)alone,so obtaining O_(x)accurately and rapidly is the basis for ev...Atmospheric O_(x)(nitrogen dioxide(NO_(2))+ozone(O_(3)))can better reflect the local and regional change character-istics of oxidants compared to O_(3)alone,so obtaining O_(x)accurately and rapidly is the basis for evaluating the O_(3)production rate.Furthermore,O_(x)has proved to be a more representative indicator and can serve as a reflection of pollution prevention efficacy.A portable instrument for measuring atmospheric O_(x)and NO_(2)based on cavity ring-down spectroscopy(O_(x)/NO_(2)-CRDS)was developed in this work.The NO_(2)concentration is accurately mea-sured according to its absorption characteristic at 407.86 nm.Ambient O_(3)is converted into NO_(2)by chemical titration of high concentrations of nitrogen oxide(NO),and the O_(3)conversion efficiencies obtained are nearly 99%.The detection limit of the O_(x)/NO_(2)-CRDS system for O_(x)is 0.024 ppbv(0.1 s),and the overall uncertainty of the instrument is±6%.Moreover,the Kalman filtering technique was applied to improve the measurement accuracy of O_(x)/NO_(2)-CRDS.The system was applied in a comprehensive field observation campaign at Hefei Sci-ence Island from 26 to 30 September 2022,and the time concentration series and change characteristics of O_(x)and NO_(2)were obtained for five days.The measured O_(x)concentrations were compared with those of two com-mercial instruments,and the consistency was good(R^(2)=0.98),indicating that this system can be deployed to accurately and rapidly obtain the concentrations of atmospheric O_(x)and NO_(2).It will be a useful tool for assessing the atmospheric oxidation capacity and controlling O_(3)pollution.展开更多
By embedding a nanocavity adjacent to one or both of slits in a subwavelength double-slit structure,frequency selective propagation through the slits is demonstrated.When the incident light wavelength corresponds to t...By embedding a nanocavity adjacent to one or both of slits in a subwavelength double-slit structure,frequency selective propagation through the slits is demonstrated.When the incident light wavelength corresponds to the cavity resonance mode,the electromagnetic wave passing through the slit will be trapped within the nanocavity.Therefore,the double slit operates as a single slit and light propagation is solely allowed through the partner slit.These wavelengths are determined by applying the Fabry Perot resonance condition for the nanocavities.Various geometrical structures result in different effective refractive indexes.Thus,the effective refractive index and consequently the attenuation wavelength can be adjusted by choosing the appropriate parameters of the nanocavity.Our theoretical predictions are in good agreement with 2D finite-difference time-domain simulation.展开更多
Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas...Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.展开更多
We propose a scheme for transferring of a two-mode entanglement of zero- or one-photon entangled states between two cavities via atom-cavity field resonant interaction. In our proposal, in order to transfer the entang...We propose a scheme for transferring of a two-mode entanglement of zero- or one-photon entangled states between two cavities via atom-cavity field resonant interaction. In our proposal, in order to transfer the entangled state, we only need two identical two-level atoms and a two-mode cavity for receiving the teleported state. This scheme does not require Bell-state measurement and performing any transformations to reconstruct the initial state. And the transfer can occur with 100% success probability in a simple manner. And a network for transferring of a two-mode entangled state between cavities is suggested. This scheme can also be extended to transfer N-mode entangled state of cavity.展开更多
High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching...High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.展开更多
基金supported by Natural Science Foundation of Gansu Province(No.22JR5RA320).
文摘To achieve high quality factor and high-sensitivity refractive index sensor,a slot micro-ring resonator(MRR)based on asymmetric Fabry-Perot(FP)cavity was proposed.The structure consisted of a pair of elliptical holes to form an FP cavity and a microring resonator.The two different optical modes generated by the micro-ring resonator were destructively interfered to form a Fano line shape,which improved the system sensitivity while obtaining a higher quality factor and extinction ratio.The transmission principle of the structure was analyzed by the transfer matrix method.The transmission spectrum and mode field distribution of the proposed structure were simulated by the finite difference time domain(FDTD)method,and the key structural parameters affecting the Fano line shape in the device were optimized.The simulation results show that the quality factor of the device reached 22037.1,and the extinction ratio was 23.9 dB.By analyzing the refractive index sensing characteristics,the sensitivity of the structure was 354 nm·RIU−1,and the detection limit of the sensitivity was 2×10−4 RIU.Thus,the proposed compact asymmetric FP cavity slot micro-ring resonator has obvious advantages in sensing applications owing to its excellent performance.
基金Supported by the Natural Science Foundation of Hebei Province under Grant Nos A2013402069 and A2013402081
文摘A surface plasmon interference lithography assisted by a Fabry-Perot (F-P) cavity composed of subwavelength metal gratings and a thin metal fihn is proposed to fabricate high-quality nanopatterns. The calculated results indicate that uniform straight interference fringes with high contrast and high electric-field intensity are formed in the resist under the F-P cavity. The analyses of spatial frequency spectra illuminate the physical mechanism of the formation for the interference fringes. The influence of the F-P cavity spacing is discussed in detail. Moreover, the error analyses reveal that all parameters except the metal grating period in this scheme can bear large tolerances for the device fabrication.
基金Supported by the National Natural Science Foundation of China under Grant Nos 11274289,11325419,11474267,11404319,61327901,61225025 and 1147426the Fundamental Research Funds for the Central Universities under Grant Nos WK2470000018 and WK2030020019+2 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences under Grant No XDB01030300the National Youth Top Talent Support Program of National High-level Personnel of Special Support Program under Grant No BB2470000005the Anhui Provincial Natural Science Foundation under Grant No 1608085QA22
文摘We demonstrate a fiber Fabry-Pérot cavity in the ultraviolet range, which covers the florescence wavelength for the <sup>2</sup>P to <sup>2</sup>S transition of Yb and is designed in the bad cavity limit for florescence collection. Benefiting from both the small cavity mode volume and the large atom dipole, a cavity with moderate finesse and high transmission still supports a good cooperativity, which is made and tested in experiment. Based on the measured experimental parameters, simulation performed on the cavity and ion shows a Purcell factor better than 2.5 and a single-mode fiber collection efficiency over 10%. This technology can support ultra-bright single photon sources based on trapped ions and can provide the possibility to link remote atoms as a quantum network.
文摘The circular phased antenna array is commonly used for generating waves bearing Orbital Angular Momentum (OAM) in the radio frequency band, but it achieves a relatively low directivity. To overcome this drawback, we present here a method to improve the directivity of an OAM circular phased antenna array by embedding it inside a Fabry-Perot cavity. The Fabry-Perot cavity contains three main parts: a partially reflecting surface (PRS), an air cavity and a ground plane. Simulation data show that the directivity of this new OAM antenna achieves an improvement of 8.2 dB over the original array. A prototype is realized and characterized. The simulated and measured characteristics are in good agreement.
文摘BACKGROUND Fungal balls within the nasal cavity are an exceedingly rare clinical entity,typically presenting with nonspecific symptoms or being identified incidentally.CASE SUMMARY This report presents an incidental discovery of a fungal ball in the nasal cavity during routine imaging,with no associated clinical symptoms.CONCLUSION This case underscores the importance of considering the possibility of asympto-matic presentations of nasal fungal balls,which may be detected incidentally during imaging evaluations.
文摘A novel fiber magnetic sensor based on the fiber Bragg grating Fabry-Perot (FBG-FP) cavity ring-down technique with pulse laser injection is proposed and demonstrated theoretically. A general expression of the intensity of the output electric field is derived, and the effect of the external magnetic field on the ring-down time is discussed. The results show that the output light intensity and the ring-down time of the FBG-FP cavity are in the inverse proportion to the magnitude of the external magnetic field. Our results demonstrate the new concept of the fiber magnetic sensor with the FBG-FP cavity ring-down spectroscopy and the technical feasibility.
文摘A 1.55μm Fabry-Perot (F-P) thermo-optical t unable filter is fabricated.The cavity is made of amorphous silicon (a-Si) layer grown by electron-beam evaporation technique.Due to the excellent thermo-optical property of a-Si,the refractive index of the F-P cavity will be changed by heating;the transmittance resonant peak will therefore shift substantially.The measured tuning rang is 12nm, FWHM (full-width-at-half-maximum) of the transmissi on peak is 9nm,and heating efficiency is 0.1K/mW.The large FWHM is mainly due to th e non-ideal coating deposition and mirror undulation.Possible improvements to increase the efficiency of heating are suggested.
基金supported by the National Natural Science Foundation of China(11674290,U1704138,61804136,U1804155 and 11974317)Henan Science Fund for Distinguished Young Scholars(212300410020)+1 种基金the Key Project of Henan Higher Education(21A140001)Zhengzhou University Physics Discipline Improvement Program and China Postdoctoral Science Foundation(2018M630829 and 2019T120630)。
文摘Two-dimensional(2D)materials have attracted significant attention as a promising candidate for electronic and optoelectronic devices.However,low absorption impairs the performance of few-layer 2D material-based photodetectors(PDs).Herein,we purpose an asymmetric Fabry-Perot cavity consisting of a dielectric layer and metallic film to enhance the interactions between light and monolayer molybdenum disulfide(MoS_(2)).The external quantum efficiency of the monolayer MoS_(2)heterojunction PD is enhanced by more than two orders of magnitude via optimizing the thickness of the dielectric layer.The monolayer-MoS_(2)/nickel oxide heterojunction PD exhibits a large on/off ratio of 2×10^(5),a responsivity of 703 A W^(-1),and an ultrahigh detectivity of 1.31×10^(15)Jones.The detectivity is the best value ever reported for monolayer-MoS_(2)heterojunction PDs.Our results may pave the way for high-performance 2D materialbased PDs.
文摘Ultra-stable optical cavities are widely used for laser frequency stabilization. In these experiments the laser performance relies on the length stability of the Fabry-Perot cavities. Vibration-induced deformation is one of the dominant factors that affect the stability of ultra-stable optical cavities. We have quantitatively analysed the elastic deformation of Fabry-Perot cavities with various shapes and mounting configurations. Our numerical result facilitates a novel approach for the design of ultra-stable cavities that are insensitive to vibrational perturbations. This approach can be applied to many experiments such as laser frequency stabilization, high-precision laser spectroscopy, and optical frequency standards.
基金supported by the National Nature Scien- ce Foundation of China (Grant No.60672015).
文摘Fiber Bragg grating Fabry-Perot (FBG F-P) cavity is used as the sensing model to measure the refractive index of the liquid solution. The cladding of the fiber, which is used as the F-P cavity, is etched by HF solution to enhance the sensitivity to the external refractive index. The experimental results show that with the concentration change of the external solution, the effective refractive index of etched fiber will change, thus the spectra of FBG F-P cavity will appear a spilt point. The relationship be...
基金supported by the National Natursl Science Foundation of China(Nos.60607001,60707007,and 60837002)the Innovation Foundation of Science and Technology for Excellent Doctorial Candidates of Beijing Jiaotong University(No.141045522).
文摘The mode-spacing of the fiber Bragg grating Fabry-Perot (FBG F-P) cavity is calculated by using the effective cavity length which contains the effective length of the FBG. The expression of the effective length, defined by using the phase-time delay, is obtained and simplified as a function of the peak reflectivity at the Bragg wavelength, the band edges, and the first zero-reflectivity wavelength. The effective length is discussed from the energy penetration depth point of view. Three FBG F-P cavities are fabricated in order to validate the effective length approach. The experimental data fits well with the theoretical predictions. The limitation of this method is also pointed out and the improved approach is proposed.
基金This work was supported by the National Natural Science Foundation(Grant Nos.61571298,61671416 and 61571289)the Natural Science Foundation of Shanghai(Grant No.17ZR1414300).
文摘One of the biggest obstacles to the application of orbital angular momentum(OAM)in the microwave field is its divergence problem.This paper presents a full analysis of generating and focusing OAM waves using original and improved Fabry-Perot(F-P)cavities.Utilizing combination of microstrip antenna and original F-P cavity,the gain of the OAM antenna is enhanced from 4.0 dBi to 9.3 dBi and the corresponding divergence angle is decreased from 41to 24.To further improve the performance of the OAM antenna,the improved F-P cavity is introduced.The simulated results show that the gain is further enhanced to 12.0 dBi and the divergence angle is further decreased to be 15.
基金Research Grants Council,University Grants Committee,General Research Fund(14203620)。
文摘The monolithic integration of Fabry-Perot cavities has many applications,such as label-free sensing,high-finesse filters,semiconductor lasers,and frequency comb generation.However,the excess loss of integrated reflectors makes it challenging to realize integrated Fabry-Perot cavities working in the ultrahigh-Q regime(>10^(6)).Here,we propose and experimentally demonstrate what we believe is the first silicon integrated million-Q Fabry-Perot cavity.Inspired by free-space optics,a novel monolithically integrated retroreflector is utilized to obtain near-unity reflectance and negligible reflection losses.The corner scattering in the retroreflector is prevented by the use of the TE_(1) mode,taking advantage of its zero central field intensity.Losses incurred by other mechanisms are also meticulously engineered.The measurement results show resonances with an ultrahigh intrinsic Q factor of≈3.4×10^(6)spanning an 80-nm bandwidth.The measured loaded Q factor is≈2.1×10^(6).Ultralow reflection losses(≈0.05 dB)and propagation losses(≈0.18 dB/cm)are experimentally realized.
文摘Ⅰ. INTRODUCTION In a Fabry-Perot cavity, there exist two electric fields, which propagate in the counter direction and interact with each other via the absorber, so that the theoretical analysis of the Fabry-Perot system is very complicated. On account of this, many authors had focused their attention on the ring cavity, a considerably simple system. It was proposed as a
基金provided by the Florida International University Tropics Programthe Susan S.Levine Trust
文摘Background:Exotic parrots have established breeding populations in southeast Florida,including several species that nest in tree cavities.We aimed to determine the species identity,nest site requirements,relative nest abundance,geographic distribution,and interactions of parrots with native cavity-nesting bird species.Methods:We searched Miami-Dade County,Florida,and nearby areas for natural cavities and holes excavated by woodpeckers,recording attributes of potential nest trees.We inspected all cavities with an elevated video inspection system to determine occupancy by parrots or other birds.We mapped nearly 4000 citizen science observations of parrots in our study area corresponding to our study period,and used these to construct range maps,comparing them to our nesting observations.Results:Not all parrots reported or observed in our study area were actively breeding.Some parrots were observed at tree cavities,which previous studies have suggested is evidence of reproduction,but our inspections with an elevated video inspection system suggest they never initiated nesting attempts.Several parrot species did successfully nest in tree cavities,Red-masked Parakeets(Psittacara erythrogenys)and Orange-winged Parrots(Amazona amazonica)being the most common(n=7 and 6 nests,respectively).These two parrots had similar nesting requirements,but Orange-winged Parrots use nests with larger entrance holes,which they often enlarge.Geographic analysis of nests combined with citizen science data indicate that parrots are limited to developed areas.The most common parrots were less abundant cavity nesters than the native birds which persist in Miami’s urban areas,and far less abundant than the invasive European Starling(Sturnus vulgaris).Conclusions:Exotic parrots breeding elsewhere in the world have harmed native cavity-nesting birds through interference competition,but competitive interference in southeast Florida is minimized by the urban affinities of parrots in this region.The relative abundance and geographic distribution suggest that these parrots are unlikely to invade adjacent wilderness areas.
基金supported by the National Natural Science Foundation of China[grant number 62275250]the Natural Science Foundation of Anhui Province[grant number 2008085J20]+1 种基金the National Key R&D Program of China[grant number 2022YFC3700301]the Anhui Provincial Key R&D Program[grant number 2022l07020022]。
文摘Atmospheric O_(x)(nitrogen dioxide(NO_(2))+ozone(O_(3)))can better reflect the local and regional change character-istics of oxidants compared to O_(3)alone,so obtaining O_(x)accurately and rapidly is the basis for evaluating the O_(3)production rate.Furthermore,O_(x)has proved to be a more representative indicator and can serve as a reflection of pollution prevention efficacy.A portable instrument for measuring atmospheric O_(x)and NO_(2)based on cavity ring-down spectroscopy(O_(x)/NO_(2)-CRDS)was developed in this work.The NO_(2)concentration is accurately mea-sured according to its absorption characteristic at 407.86 nm.Ambient O_(3)is converted into NO_(2)by chemical titration of high concentrations of nitrogen oxide(NO),and the O_(3)conversion efficiencies obtained are nearly 99%.The detection limit of the O_(x)/NO_(2)-CRDS system for O_(x)is 0.024 ppbv(0.1 s),and the overall uncertainty of the instrument is±6%.Moreover,the Kalman filtering technique was applied to improve the measurement accuracy of O_(x)/NO_(2)-CRDS.The system was applied in a comprehensive field observation campaign at Hefei Sci-ence Island from 26 to 30 September 2022,and the time concentration series and change characteristics of O_(x)and NO_(2)were obtained for five days.The measured O_(x)concentrations were compared with those of two com-mercial instruments,and the consistency was good(R^(2)=0.98),indicating that this system can be deployed to accurately and rapidly obtain the concentrations of atmospheric O_(x)and NO_(2).It will be a useful tool for assessing the atmospheric oxidation capacity and controlling O_(3)pollution.
文摘By embedding a nanocavity adjacent to one or both of slits in a subwavelength double-slit structure,frequency selective propagation through the slits is demonstrated.When the incident light wavelength corresponds to the cavity resonance mode,the electromagnetic wave passing through the slit will be trapped within the nanocavity.Therefore,the double slit operates as a single slit and light propagation is solely allowed through the partner slit.These wavelengths are determined by applying the Fabry Perot resonance condition for the nanocavities.Various geometrical structures result in different effective refractive indexes.Thus,the effective refractive index and consequently the attenuation wavelength can be adjusted by choosing the appropriate parameters of the nanocavity.Our theoretical predictions are in good agreement with 2D finite-difference time-domain simulation.
基金the National Natural Science Foundation of China and the Natural Science Foundation of Jiangsu Province.It was also supported in part by Young Elite Scientists Sponsorship Program by CAST.
文摘Large cavity structures are widely employed in aerospace engineering, such as thin-walled cylinders, blades andwings. Enhancing performance of aerial vehicles while reducing manufacturing costs and fuel consumptionhas become a focal point for contemporary researchers. Therefore, this paper aims to investigate the topologyoptimization of large cavity structures as a means to enhance their performance, safety, and efficiency. By usingthe variable density method, lightweight design is achieved without compromising structural strength. Theoptimization model considers both concentrated and distributed loads, and utilizes techniques like sensitivityfiltering and projection to obtain a robust optimized configuration. The mechanical properties are checked bycomparing the stress distribution and displacement of the unoptimized and optimized structures under the sameload. The results confirm that the optimized structures exhibit improved mechanical properties, thus offering keyinsights for engineering lightweight, high-strength large cavity structures.
基金* The project supported by National Natural Science Foundation of China under Grant No. 10574001, the Innovation Funds of the Chinese Academy of Sciences, the Educational Developing Project Facing the Twenty-first Century, the Program of the Education Department of Anhui Province under GrantNo. 2004kj029, and the Youth Program of Fu Yang Teachers College under Grant No. 2005LQ04
文摘We propose a scheme for transferring of a two-mode entanglement of zero- or one-photon entangled states between two cavities via atom-cavity field resonant interaction. In our proposal, in order to transfer the entangled state, we only need two identical two-level atoms and a two-mode cavity for receiving the teleported state. This scheme does not require Bell-state measurement and performing any transformations to reconstruct the initial state. And the transfer can occur with 100% success probability in a simple manner. And a network for transferring of a two-mode entangled state between cavities is suggested. This scheme can also be extended to transfer N-mode entangled state of cavity.
基金support from the National Key Research and Development Program of China (2020YFA0714504,2019YFA0709100).
文摘High-resolution multi-color printing relies upon pixelated optical nanostructures,which is crucial to promote color display by producing nonbleaching colors,yet requires simplicity in fabrication and dynamic switching.Antimony trisulfide(Sb_(2)S_(3))is a newly rising chalcogenide material that possesses prompt and significant transition of its optical characteristics in the visible region between amorphous and crystalline phases,which holds the key to color-varying devices.Herein,we proposed a dynamically switchable color printing method using Sb_(2)S_(3)-based stepwise pixelated Fabry-Pérot(FP)cavities with various cavity lengths.The device was fabricated by employing a direct laser patterning that is a less timeconsuming,more approachable,and low-cost technique.As switching the state of Sb_(2)S_(3) between amorphous and crystalline,the multi-color of stepwise pixelated FP cavities can be actively changed.The color variation is due to the profound change in the refractive index of Sb_(2)S_(3) over the visible spectrum during its phase transition.Moreover,we directly fabricated sub-50 nm nano-grating on ultrathin Sb_(2)S_(3) laminate via microsphere 800-nm femtosecond laser irradiation in far field.The minimum feature size can be further decreased down to~45 nm(λ/17)by varying the thickness of Sb_(2)S_(3) film.Ultrafast switchable Sb_(2)S_(3) photonic devices can take one step toward the next generation of inkless erasable papers or displays and enable information encryption,camouflaging surfaces,anticounterfeiting,etc.Importantly,our work explores the prospects of rapid and rewritable fabrication of periodic structures with nano-scale resolution and can serve as a guideline for further development of chalcogenide-based photonics components.