Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.T...Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology.展开更多
To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were iden...To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were identified, i.e., short FR-4 cracks and complete FR-4 cracks at the printing circuit board (PCB) side, split between redistribution layer (RDL) and Cu under bump metallization (UBM), RDL fracture, bulk cracks and partial bulk and intermetallic compound (IMC) cracks at the chip side. For the outmost solder joints, complete FR-4 cracks tended to occur, due to large deformation of PCB and low strength of FR-4 dielectric layer. The formation of complete FR-4 cracks largely absorbed the impact energy, resulting in the absence of other failure modes. For the inner solder joints, the absorption of impact energy by the short FR-4 cracks was limited, resulting in other failure modes at the chip side.展开更多
The failure modes of rock and soil under compression are complex phenomena that have not been explained in a mechanical perspective. However, large amounts of studies indicate that the failure modes of rock and soil s...The failure modes of rock and soil under compression are complex phenomena that have not been explained in a mechanical perspective. However, large amounts of studies indicate that the failure modes of rock and soil samples can be categorized into eight types. In this work, the inner tensile stress and the dissipation and conversion of energy of rock and soil under compression are analyzed, then the effective conversion coefficient of energy is deduced, thus the tensile failure criterion of rock and soil under compression is established. Combined with the shear strength criterion of Mohr–Coulomb, a tensile joint shear strength criterion for rock and soil under compression is built. Therefore, a mechanical criterion model concerning the failure modes of rock and soil under compression is established and verified by tests. This model easily explains the test results in the existing literature and many natural phenomena, such as collapse.展开更多
To analysis the early failures of machining centers,the failure mode effect and criticality analysis( FMECA) method was used. Based on the failure data collected from production lines in test run,all the failure modes...To analysis the early failures of machining centers,the failure mode effect and criticality analysis( FMECA) method was used. Based on the failure data collected from production lines in test run,all the failure modes of machining centers were summarized and criticality of all subsystems is figured out. And the process of FMECA was improved. The most critical subsystem was manipulator subsystem. The most critical failure mode was impacted manipulator. Reasons and effect of some important failure modes were analyzed. And some suggestions to solve failures were given.展开更多
Data obtained from accelerated life testing (ALT) when there are two or more failure modes, which is commonly referred to as competing failure modes, are often incomplete. The incompleteness is mainly due to censori...Data obtained from accelerated life testing (ALT) when there are two or more failure modes, which is commonly referred to as competing failure modes, are often incomplete. The incompleteness is mainly due to censoring, as well as masking which might be the case that the failure time is observed, but its corresponding failure mode is not identified. Because the identification of the failure mode may be expensive, or very difficult to investigate due to lack of appropriate diagnostics. A method is proposed for analyzing incomplete data of constant stress ALT with competing failure modes. It is assumed that failure modes have s-independent latent lifetimes and the log lifetime of each failure mode can be written as a linear function of stress. The parameters of the model are estimated by using the expectation maximum (EM) algorithm with incomplete data. Simulation studies are performed to check'model validity and investigate the properties of estimates. For further validation, the method is also illustrated by an example, which shows the process of analyze incomplete data from ALT of some insulation system. Because of considering the incompleteness of data in modeling and making use of the EM algorithm in estimating, the method becomes more flexible in ALT analysis.展开更多
In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled ci...In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled circular pier specimens are conducted to evaluate the efficiency of the proposed repair techniques. For the purpose of rapid repair, the repair procedure for all the specimens is conducted within four days, and the behavior of the repaired specimens is evaluated and compared with the original ones. A finite element model is developed to predict the cyclic behavior of the repaired specimens and the numerical results are compared with the test data. It is found that all the repaired specimens exhibit similar or larger lateral strength and deformation capacity than the original ones. The initial lateral stiffness of all the repaired specimens is lower than that of the original ones, while they show a higher lateral stiffness at the later stage of the test. No noticeable difference is observed for the energy dissipation capacity between the original and repaired pier specimens. It is suggested that the repair technique using the early-strength concrete jacket confined by carbon fiber reinforced polymer (CFRP) sheets can be an optimal method for the rapid repair of severely earthquake-damaged circular bridge piers with flexural failure mode.展开更多
Two loosely coupled single degree of freedom (SDOF) systems were used to model the flexural and direct shear responses of one-way reinforced concrete slabs subjected to explosive loading. Blast test results show that ...Two loosely coupled single degree of freedom (SDOF) systems were used to model the flexural and direct shear responses of one-way reinforced concrete slabs subjected to explosive loading. Blast test results show that the SDOF systems are accurate in predicting the failure mode of the slab under blast loads by incorporating the effects of the strain rate effect caused by rapid load application. Based on different damage criteria, pressure-impulse (P-I) diagrams of the two failure modes were analyzed with the SDOF systems. The effects of span length, concrete strength, and reinforcement ratio of the slab on the P-I diagram were also investigated. Results indicate that a slab tends to fail in direct shear mode when it is of a smaller span length and tends to fail in flexure mode when it is of a larger span length. With the increase of the concrete strength or reinforced ratio, both the flexure and shear capacity increase. Based on numerical results, a simplified method and a semi analytical equation for deriving the P-I diagram are proposed for different failure modes and damage levels.展开更多
The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was show...The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa.m^1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.展开更多
Suction bucket foundations can be divided into four compartments by cruciform internal bulkheads,thereby yielding better capacity in certain conditions than those without internal bulkheads.As yet,no systematic study ...Suction bucket foundations can be divided into four compartments by cruciform internal bulkheads,thereby yielding better capacity in certain conditions than those without internal bulkheads.As yet,no systematic study has been conducted regarding the effects of cruciform internal bulkheads on the capacities of suction bucket foundations.In this study,we established a large number of finite element models of suction bucket foundations with and without cruciform internal bulkheads and of solid embedded circular foundations.We found the uniaxial capacities and failure modes of suction bucket foundations with various depth ratios to remain basically unaffected by internal bulkheads in uniform clays.However,in inhomogeneous clay with high strength heterogeneity,we observed the uniaxial moment and horizontal capacities and corresponding failure modes of suction bucket foundations with a low depth ratio to be obviously affected by internal bulkheads.In this case,the uniaxial moment capacities,in particular,as well as the horizontal capacities of suction bucket foundations with cruciform internal bulkheads become obviously greater than those without internal bulkheads.Under combined loading,we found the failure envelopes of suction bucket foundations with and without cruciform internal bulkheads and of solid circular foundation to also be basically consistent in uniform clays.However,in inhomogeneous clay with high strength heterogeneity,cruciform internal bulkheads can obviously change the shapes of the failure envelopes of bucket foundations with a small depth ratio.We conclude that when the acting vertical load or foundation depth is relatively small,suction bucket foundations with cruciform internal bulkheads can be subjected to larger moment and horizontal loads in soft clays with high strength heterogeneity.展开更多
The paper presents the theory of Hamilton variation principle which is the current method for impact problem, central difference method which is efficient solution of finite element (FE) method for impact problem and ...The paper presents the theory of Hamilton variation principle which is the current method for impact problem, central difference method which is efficient solution of finite element (FE) method for impact problem and adapts to solve non-linear dynamic problem. And it introduces the ANSYS/LS-DYNA which is the popular FE software for impact problem both at home and abroad. Then it gives solutions for one simple model by analytical method and ANSYS/LS-DYNA respec-tively to validate function of software, and they are consistent. Afterward, it gives model of single-layer Kiewitt reticulated dome with a span of 60 m, and the cylinder impactor, and introduces the contact interface arithmetic, especially the material model of steel (piecewise linear plasticity model) which takes stain rate into account and makes steel failure stress higher under impact loads. The vertical displacement, stress in main members, and the plastic deformation for dome under impact loads were obtained. Then four failure modes (no failure, moderate failure, global failure and slight failure) were summarized according to the rules of dynamic response. And the characteristics of dynamic response for each failure mode were shown.展开更多
A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visu...A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to r; while β falls in the range of 30°-70°, σc varies little. When φj〈β〈90° ( φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β〈 φj or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation.展开更多
A double-sided slope with high water content in sandy clay was considered under the action of seismic load. Its failure mode and dynamic response were investigated using a hydraulic servo shaking table test. The typic...A double-sided slope with high water content in sandy clay was considered under the action of seismic load. Its failure mode and dynamic response were investigated using a hydraulic servo shaking table test. The typical characteristic of failure mode and dynamic responses of the double-sided slope were analyzed. Experimental results show that slope failure undergoes a process of progressive deformation. The slope failure mode can be explained as creep sliding landslide. AFA(Amplification Factor of Acceleration) at the surface and inner parts of the slope shows an increasing trend with the increase of relative elevation. The relationship between AFA and EAA(Excitation Amplitude of Acceleration) is nonlinear. An empirical formula is proposed to describe preferably the relationship between AFA,relative elevation and dimensionless EAA. The AFA at the middle and upper parts of the slope increases apparently with increasing EFA(Excitation Frequency of Acceleration).展开更多
By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course...By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course of exploitation of resources in deep. One is under the conditions that the con-fining pressure is fixed and the axial pressure is changeable. The other is under the conditions that the confining pressure becomes and the axial pressure is fixed. It is found that samples break up evenly after impacting when axial static pressures are low, there is great disparity in size of fragments when axial static pressures are high, and the main bodies of samples after the tests under the combination of dy-namic and static loads frequently show the type of V or X. The samples are more close-grained at the elastic stage and impacts make many cracks be generated and developed, as makes samples more crackable. At the initial phase of damage stage, the static pressures make some cracks in the samples which are undeveloped and the impacts′ role is similar to that at the elastic stage. At the metaphase or anaphase of damage stage, these cracks in the samples develop adequately and the impacts mainly accelerate samples′ failure. The main bodies of samples show the type of V or X after impacting due to the confining pressures′ restraining samples′ lateral formation at the elastic stage or the initial phase of damage stage, the main bodies of samples have almost formed at the stage loading static pressures and the results after impacting usually are similar to those under the axial pressures tests.展开更多
BACKGROUND: Ensuring about the patient's safety is the f irst vital step in improving the quality of care and the emergency ward is known as a high-risk area in treatment health care. The present study was conduct...BACKGROUND: Ensuring about the patient's safety is the f irst vital step in improving the quality of care and the emergency ward is known as a high-risk area in treatment health care. The present study was conducted to evaluate the selected risk processes of emergency surgery department of a treatment-educational Qaem center in Mashhad by using analysis method of the conditions and failure effects in health care.METHODS: In this study, in combination(qualitative action research and quantitative crosssectional), failure modes and effects of 5 high-risk procedures of the emergency surgery department were identified and analyzed according to Healthcare Failure Mode and Effects Analysis(HFMEA). To classify the failure modes from the "nursing errors in clinical management model(NECM)", the classification of the effective causes of error from "Eindhoven model" and determination of the strategies to improve from the "theory of solving problem by an inventive method" were used. To analyze the quantitative data of descriptive statistics(total points) and to analyze the qualitative data, content analysis and agreement of comments of the members were used.RESULTS: In 5 selected processes by "voting method using rating", 23 steps, 61 sub-processes and 217 potential failure modes were identifi ed by HFMEA. 25(11.5%) failure modes as the high risk errors were detected and transferred to the decision tree. The most and the least failure modes were placed in the categories of care errors(54.7%) and knowledge and skill(9.5%), respectively. Also, 29.4% of preventive measures were in the category of human resource management strategy.CONCLUSION: "Revision and re-engineering of processes", "continuous monitoring of the works", "preparation and revision of operating procedures and policies", "developing the criteria for evaluating the performance of the personnel", "designing a suitable educational content for needs of employee", "training patients", "reducing the workload and power shortage", "improving team communication" and "preventive management of equipment's" were on the agenda as the guidelines.展开更多
Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical...Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and ~reater seismic safety.展开更多
BACKGROUND Craniocerebral injuries encompass brain injuries,skull fractures,cranial soft tissue injuries,and similar injuries.Recently,the incidence of craniocerebral injuries has increased dramatically due to the inc...BACKGROUND Craniocerebral injuries encompass brain injuries,skull fractures,cranial soft tissue injuries,and similar injuries.Recently,the incidence of craniocerebral injuries has increased dramatically due to the increased numbers of traffic accidents and aerial work injuries,threatening the physical and mental health of patients.AIM To investigate the impact of failure modes and effects analysis(FMEA)-based emergency management on craniocerebral injury treatment effectiveness.METHODS Eighty-four patients with craniocerebral injuries,treated at our hospital from November 2019 to March 2021,were selected and assigned,using the random number table method,to study(n=42)and control(n=42)groups.Patients in the control group received conventional management while those in the study group received FMEA theory-based emergency management,based on the control group.Pre-and post-interventions,details regarding the emergency situation;levels of inflammatory stress indicators[Interleukin-6(IL-6),C-reactive protein(CRP),and procalcitonin(PCT)];incidence of complications;prognoses;and satisfaction regarding patient care were evaluated for both groups.RESULTS For the study group,the assessed parameters[pre-hospital emergency response time(9.13±2.37 min),time to receive a consultation(2.39±0.44 min),time needed to report imaging findings(1.15±4.44 min),and test reporting time(32.19±6.23 min)]were shorter than those for the control group(12.78±4.06 min,3.58±0.71 min,33.49±5.51 min,50.41±11.45 min,respectively;P<0.05).Pre-intervention serum levels of IL-6(78.71±27.59 pg/mL),CRP(19.80±6.77 mg/L),and PCT(3.66±1.82 ng/mL)in the study group patients were not significantly different from those in the control group patients(81.31±32.11 pg/mL,21.29±8.02 mg/L,and 3.95±2.11 ng/mL respectively;P>0.05);post-intervention serum indicator levels were lower in both groups than pre-intervention levels.Further,serum levels of IL-6(17.35±5.33 pg/mL),CRP(2.27±0.56 mg/L),and PCT(0.22±0.07 ng/mL)were lower in the study group than in the control group(30.15±12.38 pg/mL,3.13±0.77 mg/L,0.38±0.12 ng/mL,respectively;P<0.05).The complication rate observed in the study group(9.52%)was lower than that in the control group(26.19%,P<0.05).The prognoses for the study group patients were better than those for the control patients(P<0.05).Patient care satisfaction was higher in the study group(95.24%)than in the control group(78.57%,P<0.05).CONCLUSION FMEA-based craniocerebral injury management effectively shortens the time spent on emergency care,reduces inflammatory stress and complication risk levels,and helps improve patient prognoses,while achieving high patient care satisfaction levels.展开更多
Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support ...Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support systems in tunnelling and mining operations. A review of has indicated that three systems of reinforcement devices have evolved as part of rock bolt and ground anchor while the rock is not generally thought of as being a component of the reinforcement system. A classification of rock bolting reinforcement systems is presented, followed by the fundamental theory of the load transfer mechanism. The failure mode of two phases of rock bolting system is formularised. The failure modes of cable bolting are discussed using a bond strength model as well as an iterative method. Finally, the interfacial shear stress model for ribbed bar is introduced and a closed form solution is obtained using a tri-line stress strain relationship.展开更多
Based on the results of conventional triaxial compression tests and triaxial compression creep tests on Xiangjiaba sandstone,the failure modes in short-term tests and creep tests,fractography of sandstone after creep ...Based on the results of conventional triaxial compression tests and triaxial compression creep tests on Xiangjiaba sandstone,the failure modes in short-term tests and creep tests,fractography of sandstone after creep failure,short-term and creep failure criterion are analyzed.In the short-term tests and creep tests,the sandstone samples fail in a mix mode consisting of shear failure in a single main plane and tensile failure.Confining pressure can restrict brittle failure and enhance the ductility of sandstone.In the creep tests,brittle fracture is reduced and plastic deformation can fully be developed compared to the condition of short-term tests.And the shear fracture surfaces are flat and they are covered by small particles as a result of friction.When confining pressure increases,particle size decreases while the degree of friction on shear plane increases.On the tensile failure plane,the tensile trace and direction of tearing could be clearly observed.There are obvious tearing steps on the tensile failure plane and tearing laminated structure on the front edge of tearing fracture.The same criterion can be used for the short-term and creep behavior,and the fitting effect using the MOGI criterion is better than the DRUCKER PRAGER criterion.The cohesion and friction angle calculated by the MOGI criterion are in good accordance with those calculated by the MOHR COULOMB criterion.展开更多
With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on...With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented.展开更多
The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Tran...The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Transform(HHT) marginal spectrum.The results show that variations in the peak values of marginal spectra can clearly indicate the process of dynamic damage development inside the model slope.The identification results of marginal spectra closely coincide with the monitoring results of slope face displacement in the test.When subjected to the earthquake excitation with 0.1 g and 0.2 g amplitudes,no seismic damage is observed in the model slope,while the peak values of marginal spectra increase linearly with increasing slope height.In the case of 0.3 g seismic excitation,dynamic damage occurs near the slope crest and some rock blocks fall off the slope crest.When the seismic excitation reaches 0.4 g,the dynamic damage inside the model slope extends to the part with relative height of 0.295-0.6,and minor horizontal cracks occur in the middle part of the model slope.When the seismic excitation reaches 0.6 g,the damage further extends to the slope toe,and the damage inside the model slope extends to the part with relative height below 0.295,and the upper part(near the relative height of 0.8) slides outwards.Longitudinal fissures appear in the slope face,which connect with horizontal cracks,the weak intercalated layers at middle slope height are extruded out and the slope crest breaks up.The marginal spectrum identification results demonstrate that the dynamic damage near the slope face is minor as compared with that inside the model slope.The dynamic failure mode of counter-bedding rock slope with weak intercalated layers is extrusion and sliding at the middle rock strata.The research results of this paper are meaningful for the further understanding of the dynamic failure mode of counter-bedding rock slope with weak intercalated layers.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.52011530037 and 51904019)。
文摘Structural instability in underground engineering,especially in coal-rock structures,poses significant safety risks.Thus,the development of an accurate monitoring method for the health of coal-rock bodies is crucial.The focus of this work is on understanding energy evolution patterns in coal-rock bodies under complex conditions by using shear,splitting,and uniaxial compression tests.We examine the changes in energy parameters during various loading stages and the effects of various failure modes,resulting in an innovative energy dissipation-based health evaluation technique for coal.Key results show that coal bodies go through transitions between strain hardening and softening mechanisms during loading,indicated by fluctuations in elastic energy and dissipation energy density.For tensile failure,the energy profile of coal shows a pattern of “high dissipation and low accumulation” before peak stress.On the other hand,shear failure is described by “high accumulation and low dissipation” in energy trends.Different failure modes correlate with an accelerated increase in the dissipation energy before destabilization,and a significant positive correlation is present between the energy dissipation rate and the stress state of the coal samples.A novel mathematical and statistical approach is developed,establishing a dissipation energy anomaly index,W,which categorizes the structural health of coal into different danger levels.This method provides a quantitative standard for early warning systems and is adaptable for monitoring structural health in complex underground engineering environments,contributing to the development of structural health monitoring technology.
基金Projects(51475072,51171036)supported by the National Natural Science Foundation of China
文摘To reveal the drop failure modes of the wafer level chip scale packages (WLCSPs) with Sn-3.0Ag-0.5Cu solder joints, board level drop tests were performed according to the JEDEC standard. Six failure modes were identified, i.e., short FR-4 cracks and complete FR-4 cracks at the printing circuit board (PCB) side, split between redistribution layer (RDL) and Cu under bump metallization (UBM), RDL fracture, bulk cracks and partial bulk and intermetallic compound (IMC) cracks at the chip side. For the outmost solder joints, complete FR-4 cracks tended to occur, due to large deformation of PCB and low strength of FR-4 dielectric layer. The formation of complete FR-4 cracks largely absorbed the impact energy, resulting in the absence of other failure modes. For the inner solder joints, the absorption of impact energy by the short FR-4 cracks was limited, resulting in other failure modes at the chip side.
基金Projects(41572277,41402239)supported by the National Natural Science Foundation of ChinaProject(2015A030313118)supported by the Natural Science Foundation of Guangdong Province,China+1 种基金Project(20120171110031)supported by the Specialized Research Fund for the Doctoral Program of Higher Education of ChinaProject(201607010023)supported by the Science and Technology Program of Guangzhou,China
文摘The failure modes of rock and soil under compression are complex phenomena that have not been explained in a mechanical perspective. However, large amounts of studies indicate that the failure modes of rock and soil samples can be categorized into eight types. In this work, the inner tensile stress and the dissipation and conversion of energy of rock and soil under compression are analyzed, then the effective conversion coefficient of energy is deduced, thus the tensile failure criterion of rock and soil under compression is established. Combined with the shear strength criterion of Mohr–Coulomb, a tensile joint shear strength criterion for rock and soil under compression is built. Therefore, a mechanical criterion model concerning the failure modes of rock and soil under compression is established and verified by tests. This model easily explains the test results in the existing literature and many natural phenomena, such as collapse.
基金National Science and Technology Major Project of China(No.2013ZX04012071)
文摘To analysis the early failures of machining centers,the failure mode effect and criticality analysis( FMECA) method was used. Based on the failure data collected from production lines in test run,all the failure modes of machining centers were summarized and criticality of all subsystems is figured out. And the process of FMECA was improved. The most critical subsystem was manipulator subsystem. The most critical failure mode was impacted manipulator. Reasons and effect of some important failure modes were analyzed. And some suggestions to solve failures were given.
基金supported by Sustentation Program of National Ministries and Commissions of China (Grant No. 203020102)
文摘Data obtained from accelerated life testing (ALT) when there are two or more failure modes, which is commonly referred to as competing failure modes, are often incomplete. The incompleteness is mainly due to censoring, as well as masking which might be the case that the failure time is observed, but its corresponding failure mode is not identified. Because the identification of the failure mode may be expensive, or very difficult to investigate due to lack of appropriate diagnostics. A method is proposed for analyzing incomplete data of constant stress ALT with competing failure modes. It is assumed that failure modes have s-independent latent lifetimes and the log lifetime of each failure mode can be written as a linear function of stress. The parameters of the model are estimated by using the expectation maximum (EM) algorithm with incomplete data. Simulation studies are performed to check'model validity and investigate the properties of estimates. For further validation, the method is also illustrated by an example, which shows the process of analyze incomplete data from ALT of some insulation system. Because of considering the incompleteness of data in modeling and making use of the EM algorithm in estimating, the method becomes more flexible in ALT analysis.
基金National Natural Science Foundation of China under Grant No.51678150Science for Earthquake Resilience under Grant No.XH17064Australian Research Council Discovery Early Career Researcher Award(DECRA)
文摘In this study, three rapid repair techniques are proposed to retrofit circular bridge piers that are severely damaged by the flexural failure mode in major earthquakes. The quasi-static tests on three 1:2.5 scaled circular pier specimens are conducted to evaluate the efficiency of the proposed repair techniques. For the purpose of rapid repair, the repair procedure for all the specimens is conducted within four days, and the behavior of the repaired specimens is evaluated and compared with the original ones. A finite element model is developed to predict the cyclic behavior of the repaired specimens and the numerical results are compared with the test data. It is found that all the repaired specimens exhibit similar or larger lateral strength and deformation capacity than the original ones. The initial lateral stiffness of all the repaired specimens is lower than that of the original ones, while they show a higher lateral stiffness at the later stage of the test. No noticeable difference is observed for the energy dissipation capacity between the original and repaired pier specimens. It is suggested that the repair technique using the early-strength concrete jacket confined by carbon fiber reinforced polymer (CFRP) sheets can be an optimal method for the rapid repair of severely earthquake-damaged circular bridge piers with flexural failure mode.
基金Project(JC11-02-18) supported by the Scientific Foundation of National University of Defense Technology, ChinaProject(11202236) supported by the National Natural Science Foundation of China
文摘Two loosely coupled single degree of freedom (SDOF) systems were used to model the flexural and direct shear responses of one-way reinforced concrete slabs subjected to explosive loading. Blast test results show that the SDOF systems are accurate in predicting the failure mode of the slab under blast loads by incorporating the effects of the strain rate effect caused by rapid load application. Based on different damage criteria, pressure-impulse (P-I) diagrams of the two failure modes were analyzed with the SDOF systems. The effects of span length, concrete strength, and reinforcement ratio of the slab on the P-I diagram were also investigated. Results indicate that a slab tends to fail in direct shear mode when it is of a smaller span length and tends to fail in flexure mode when it is of a larger span length. With the increase of the concrete strength or reinforced ratio, both the flexure and shear capacity increase. Based on numerical results, a simplified method and a semi analytical equation for deriving the P-I diagram are proposed for different failure modes and damage levels.
基金financially supported by the National Key Technologies Research and Development Program of China (No. 2007BAE51B05)
文摘The fatigue strength of a high V alloyed powder metallurgy tool steel with two different inclusion size levels, tempered at different temperatures, was investigated by a series of high cycle fatigue tests. It was shown that brittle inclusions with large sizes above 30μm prompted the occurrence of subsurface crack initiation and the reduction in fatigue strength. The fracture toughness and the stress amplitude both exerted a significant influence on the fish-eye size. A larger fish-eye area would form in the sample with a higher fracture toughness subjected to a lower stress amplitude. The stress intensity factor of the inclusion was found to lie above a typical value of the threshold stress intensity factor of 4 MPa.m^1/2. The fracture toughness of the sample with a hardness above HRC 56 could be estimated by the mean value of the stress intensity factor of the fish-eye. According to fractographic evaluation, the critical inclusion size can be calculated by linear fracture mechanics.
基金supported by the National Natural Science Foundation of China(Nos.51479133,51109157)the Elite Scholar Program of Tianjin University(2017XRG0040)
文摘Suction bucket foundations can be divided into four compartments by cruciform internal bulkheads,thereby yielding better capacity in certain conditions than those without internal bulkheads.As yet,no systematic study has been conducted regarding the effects of cruciform internal bulkheads on the capacities of suction bucket foundations.In this study,we established a large number of finite element models of suction bucket foundations with and without cruciform internal bulkheads and of solid embedded circular foundations.We found the uniaxial capacities and failure modes of suction bucket foundations with various depth ratios to remain basically unaffected by internal bulkheads in uniform clays.However,in inhomogeneous clay with high strength heterogeneity,we observed the uniaxial moment and horizontal capacities and corresponding failure modes of suction bucket foundations with a low depth ratio to be obviously affected by internal bulkheads.In this case,the uniaxial moment capacities,in particular,as well as the horizontal capacities of suction bucket foundations with cruciform internal bulkheads become obviously greater than those without internal bulkheads.Under combined loading,we found the failure envelopes of suction bucket foundations with and without cruciform internal bulkheads and of solid circular foundation to also be basically consistent in uniform clays.However,in inhomogeneous clay with high strength heterogeneity,cruciform internal bulkheads can obviously change the shapes of the failure envelopes of bucket foundations with a small depth ratio.We conclude that when the acting vertical load or foundation depth is relatively small,suction bucket foundations with cruciform internal bulkheads can be subjected to larger moment and horizontal loads in soft clays with high strength heterogeneity.
基金Supported by National Natural Science Foundation of China(No.90715034)
文摘The paper presents the theory of Hamilton variation principle which is the current method for impact problem, central difference method which is efficient solution of finite element (FE) method for impact problem and adapts to solve non-linear dynamic problem. And it introduces the ANSYS/LS-DYNA which is the popular FE software for impact problem both at home and abroad. Then it gives solutions for one simple model by analytical method and ANSYS/LS-DYNA respec-tively to validate function of software, and they are consistent. Afterward, it gives model of single-layer Kiewitt reticulated dome with a span of 60 m, and the cylinder impactor, and introduces the contact interface arithmetic, especially the material model of steel (piecewise linear plasticity model) which takes stain rate into account and makes steel failure stress higher under impact loads. The vertical displacement, stress in main members, and the plastic deformation for dome under impact loads were obtained. Then four failure modes (no failure, moderate failure, global failure and slight failure) were summarized according to the rules of dynamic response. And the characteristics of dynamic response for each failure mode were shown.
基金Project (50099620) supported by the National Natural Science Foundation of China
文摘A stratified rock mass model was founded by FLAC^3D. The failure mode and anisotropic characteristic of strength for stratified rock mass were analyzed. The analysis results show that the numerical simulation can visually reflect the failure modes of rock samples under different inclination angles β of structural plane. The stiffness of rock sample before peak strength changes in the compressive procedure. With the increase of β, the compressive strength σc of rock sample decreases firstly and then increases; when β is in the range of 20°-30° and 80°-90°, σc has the largest sensitivity to r; while β falls in the range of 30°-70°, σc varies little. When φj〈β〈90° ( φj is friction angle of structure plane), the results obtained from numerical simulation and theoretical analysis are in almost the same values; while β〈 φj or β=90°, they are in great different values. The results obtained from theoretical analysis are obvious larger than those from numerical simulation; and the results from numerical simulation can reflect the difference of compressive strength of rock samples for the two situations of β≥φj and β=90°, which is in more accordance with the real situation.
基金supported by National Natural Science Foundation of China (Grant No. 10902112)the Fundamental Research the CentralUniversities (2682017QY02)+1 种基金 the National Key R&D Program of China (2016YFC0802203)the Youth Innovation Promotion Association CAS
文摘A double-sided slope with high water content in sandy clay was considered under the action of seismic load. Its failure mode and dynamic response were investigated using a hydraulic servo shaking table test. The typical characteristic of failure mode and dynamic responses of the double-sided slope were analyzed. Experimental results show that slope failure undergoes a process of progressive deformation. The slope failure mode can be explained as creep sliding landslide. AFA(Amplification Factor of Acceleration) at the surface and inner parts of the slope shows an increasing trend with the increase of relative elevation. The relationship between AFA and EAA(Excitation Amplitude of Acceleration) is nonlinear. An empirical formula is proposed to describe preferably the relationship between AFA,relative elevation and dimensionless EAA. The AFA at the middle and upper parts of the slope increases apparently with increasing EFA(Excitation Frequency of Acceleration).
基金Supported by National Natural Science Foundation of China(No.10472134 and No.50490274)
文摘By means of the improved split Hopkionson pressure bar(SHPB) with axial pre-pressure and confined pressure, two series of experiments on sandstone are carried out to research the failure mode of rock during the course of exploitation of resources in deep. One is under the conditions that the con-fining pressure is fixed and the axial pressure is changeable. The other is under the conditions that the confining pressure becomes and the axial pressure is fixed. It is found that samples break up evenly after impacting when axial static pressures are low, there is great disparity in size of fragments when axial static pressures are high, and the main bodies of samples after the tests under the combination of dy-namic and static loads frequently show the type of V or X. The samples are more close-grained at the elastic stage and impacts make many cracks be generated and developed, as makes samples more crackable. At the initial phase of damage stage, the static pressures make some cracks in the samples which are undeveloped and the impacts′ role is similar to that at the elastic stage. At the metaphase or anaphase of damage stage, these cracks in the samples develop adequately and the impacts mainly accelerate samples′ failure. The main bodies of samples show the type of V or X after impacting due to the confining pressures′ restraining samples′ lateral formation at the elastic stage or the initial phase of damage stage, the main bodies of samples have almost formed at the stage loading static pressures and the results after impacting usually are similar to those under the axial pressures tests.
文摘BACKGROUND: Ensuring about the patient's safety is the f irst vital step in improving the quality of care and the emergency ward is known as a high-risk area in treatment health care. The present study was conducted to evaluate the selected risk processes of emergency surgery department of a treatment-educational Qaem center in Mashhad by using analysis method of the conditions and failure effects in health care.METHODS: In this study, in combination(qualitative action research and quantitative crosssectional), failure modes and effects of 5 high-risk procedures of the emergency surgery department were identified and analyzed according to Healthcare Failure Mode and Effects Analysis(HFMEA). To classify the failure modes from the "nursing errors in clinical management model(NECM)", the classification of the effective causes of error from "Eindhoven model" and determination of the strategies to improve from the "theory of solving problem by an inventive method" were used. To analyze the quantitative data of descriptive statistics(total points) and to analyze the qualitative data, content analysis and agreement of comments of the members were used.RESULTS: In 5 selected processes by "voting method using rating", 23 steps, 61 sub-processes and 217 potential failure modes were identifi ed by HFMEA. 25(11.5%) failure modes as the high risk errors were detected and transferred to the decision tree. The most and the least failure modes were placed in the categories of care errors(54.7%) and knowledge and skill(9.5%), respectively. Also, 29.4% of preventive measures were in the category of human resource management strategy.CONCLUSION: "Revision and re-engineering of processes", "continuous monitoring of the works", "preparation and revision of operating procedures and policies", "developing the criteria for evaluating the performance of the personnel", "designing a suitable educational content for needs of employee", "training patients", "reducing the workload and power shortage", "improving team communication" and "preventive management of equipment's" were on the agenda as the guidelines.
基金supported by the research program of the National Dam Safety Research Center (Grants No.2011NDS021 and NDSKFJJ1103)the open fund of the State Key Laboratory of Hydraulics and Mountain River Engineering of Sichuan University (Grant No. 0912)the China Postdoctoral Science Foundation (Grant No. 2012M511594)
文摘Based on microscopic damage theory and the finite element method, and using the Weibull distribution to characterize the random distribution of the mechanical properties of materials, the seismic response of a typical Hardfill dam was analyzed through numerical simulation during the earthquakes with intensities of 8 degrees and even greater. The seismic failure modes and failure mechanism of the dam were explored as well. Numerical results show that the Hardfill dam remains at a low stress level and undamaged or slightly damaged during an earthquake with an intensity of 8 degrees. During overload earthquakes, tensile cracks occur at the dam surfaces and extend to inside the dam body, and the upstream dam body experiences more serious damage than the downstream dam body. Therefore, under the seismic conditions, the failure pattern of the Hardfill dam is the tensile fracture of the upstream regions and the dam toe. Compared with traditional gravity dams, Hardfill dams have better seismic performance and ~reater seismic safety.
基金Supported by Basic Research on Medical and Health Application of the People's Livelihood Science and Technology Project of Suzhou Science and Technology Bureau,No.SYS2020102.
文摘BACKGROUND Craniocerebral injuries encompass brain injuries,skull fractures,cranial soft tissue injuries,and similar injuries.Recently,the incidence of craniocerebral injuries has increased dramatically due to the increased numbers of traffic accidents and aerial work injuries,threatening the physical and mental health of patients.AIM To investigate the impact of failure modes and effects analysis(FMEA)-based emergency management on craniocerebral injury treatment effectiveness.METHODS Eighty-four patients with craniocerebral injuries,treated at our hospital from November 2019 to March 2021,were selected and assigned,using the random number table method,to study(n=42)and control(n=42)groups.Patients in the control group received conventional management while those in the study group received FMEA theory-based emergency management,based on the control group.Pre-and post-interventions,details regarding the emergency situation;levels of inflammatory stress indicators[Interleukin-6(IL-6),C-reactive protein(CRP),and procalcitonin(PCT)];incidence of complications;prognoses;and satisfaction regarding patient care were evaluated for both groups.RESULTS For the study group,the assessed parameters[pre-hospital emergency response time(9.13±2.37 min),time to receive a consultation(2.39±0.44 min),time needed to report imaging findings(1.15±4.44 min),and test reporting time(32.19±6.23 min)]were shorter than those for the control group(12.78±4.06 min,3.58±0.71 min,33.49±5.51 min,50.41±11.45 min,respectively;P<0.05).Pre-intervention serum levels of IL-6(78.71±27.59 pg/mL),CRP(19.80±6.77 mg/L),and PCT(3.66±1.82 ng/mL)in the study group patients were not significantly different from those in the control group patients(81.31±32.11 pg/mL,21.29±8.02 mg/L,and 3.95±2.11 ng/mL respectively;P>0.05);post-intervention serum indicator levels were lower in both groups than pre-intervention levels.Further,serum levels of IL-6(17.35±5.33 pg/mL),CRP(2.27±0.56 mg/L),and PCT(0.22±0.07 ng/mL)were lower in the study group than in the control group(30.15±12.38 pg/mL,3.13±0.77 mg/L,0.38±0.12 ng/mL,respectively;P<0.05).The complication rate observed in the study group(9.52%)was lower than that in the control group(26.19%,P<0.05).The prognoses for the study group patients were better than those for the control patients(P<0.05).Patient care satisfaction was higher in the study group(95.24%)than in the control group(78.57%,P<0.05).CONCLUSION FMEA-based craniocerebral injury management effectively shortens the time spent on emergency care,reduces inflammatory stress and complication risk levels,and helps improve patient prognoses,while achieving high patient care satisfaction levels.
文摘Rock bolting has advanced rapidly during the past 4 decades due to a better understanding of load transfer mechanisms and advances made in the bolt system technology. Bolts are used as permanent and temporary support systems in tunnelling and mining operations. A review of has indicated that three systems of reinforcement devices have evolved as part of rock bolt and ground anchor while the rock is not generally thought of as being a component of the reinforcement system. A classification of rock bolting reinforcement systems is presented, followed by the fundamental theory of the load transfer mechanism. The failure mode of two phases of rock bolting system is formularised. The failure modes of cable bolting are discussed using a bond strength model as well as an iterative method. Finally, the interfacial shear stress model for ribbed bar is introduced and a closed form solution is obtained using a tri-line stress strain relationship.
基金Project(2011CB013504)supported by National Basic Research Program of ChinaProjects(51109069,11172090)supported by the National Natural Science Foundation of China+1 种基金Project(2009B14014)supported by the Fundamental Research Funds for the Central Universities of ChinaProject Financially supported by the Program for Changjiang Scholars and lnnovative Research Team in University,China
文摘Based on the results of conventional triaxial compression tests and triaxial compression creep tests on Xiangjiaba sandstone,the failure modes in short-term tests and creep tests,fractography of sandstone after creep failure,short-term and creep failure criterion are analyzed.In the short-term tests and creep tests,the sandstone samples fail in a mix mode consisting of shear failure in a single main plane and tensile failure.Confining pressure can restrict brittle failure and enhance the ductility of sandstone.In the creep tests,brittle fracture is reduced and plastic deformation can fully be developed compared to the condition of short-term tests.And the shear fracture surfaces are flat and they are covered by small particles as a result of friction.When confining pressure increases,particle size decreases while the degree of friction on shear plane increases.On the tensile failure plane,the tensile trace and direction of tearing could be clearly observed.There are obvious tearing steps on the tensile failure plane and tearing laminated structure on the front edge of tearing fracture.The same criterion can be used for the short-term and creep behavior,and the fitting effect using the MOGI criterion is better than the DRUCKER PRAGER criterion.The cohesion and friction angle calculated by the MOGI criterion are in good accordance with those calculated by the MOHR COULOMB criterion.
基金supported by Program for New Century Excellent Talents in University of China (Grant No.NCET-12-0941)the Fundamental Research Funds for the Central Universities of China (Grant No.A0920502051206-3)
文摘With the development of high-speed railway in China, composite foundation with rigid piles has become a stamdard solution of meeting the high requirements of stability and post-construction settlement of embankment on soft subgrade. Among several im- provement pattems, plain concrete piles have been extensively used to treat soft ground supported embankment. To investigate the deformation and failure modes of unimproved soft ground and soft ground reinforced by sub-embankment plain concrete piles, and to learn the influences of track and vehicle load, the effect of pile spacing, as well as the compression moduli of soil layers and upper load condition on the failure modes, a series of centrifuge model tests were performed. Test results indicate that the dis- placement of unimproved soft ground under the embankment increases continuously as embankment, track and train loading, and slip circle failure takes place. The deformation law of soft ground reinforced by sub-embankment plain concrete piles depends on pile spacing, compression modulus of the soft ground, and loading conditions. It was also found that plain concrete piles show displacement and failure patterns depending on its location, compression modulus of soft soil around the pile, and loading condi- tions. Furthermore, the evaluation of improved ground stability as well as the model test procedure is also presented.
基金financially supported by the National Basic Research Program (973 Program) of the Ministry of Science and Technology of the People's Republic of China (Grant No.2011CB013605)the Research Program of Ministry of Transport of the People's Republic of China (Grant No.2013318800020)
文摘The dynamic failure mode and energybased identification method for a counter-bedding rock slope with weak intercalated layers are discussed in this paper using large scale shaking table test and the Hilbert-Huang Transform(HHT) marginal spectrum.The results show that variations in the peak values of marginal spectra can clearly indicate the process of dynamic damage development inside the model slope.The identification results of marginal spectra closely coincide with the monitoring results of slope face displacement in the test.When subjected to the earthquake excitation with 0.1 g and 0.2 g amplitudes,no seismic damage is observed in the model slope,while the peak values of marginal spectra increase linearly with increasing slope height.In the case of 0.3 g seismic excitation,dynamic damage occurs near the slope crest and some rock blocks fall off the slope crest.When the seismic excitation reaches 0.4 g,the dynamic damage inside the model slope extends to the part with relative height of 0.295-0.6,and minor horizontal cracks occur in the middle part of the model slope.When the seismic excitation reaches 0.6 g,the damage further extends to the slope toe,and the damage inside the model slope extends to the part with relative height below 0.295,and the upper part(near the relative height of 0.8) slides outwards.Longitudinal fissures appear in the slope face,which connect with horizontal cracks,the weak intercalated layers at middle slope height are extruded out and the slope crest breaks up.The marginal spectrum identification results demonstrate that the dynamic damage near the slope face is minor as compared with that inside the model slope.The dynamic failure mode of counter-bedding rock slope with weak intercalated layers is extrusion and sliding at the middle rock strata.The research results of this paper are meaningful for the further understanding of the dynamic failure mode of counter-bedding rock slope with weak intercalated layers.