期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Reducing Dataset Specificity for Deepfakes Using Ensemble Learning
1
作者 Qaiser Abbas Turki Alghamdi +4 位作者 Yazed Alsaawy Tahir Alyas Ali Alzahrani Khawar Iqbal Malik Saira Bibi 《Computers, Materials & Continua》 SCIE EI 2023年第2期4261-4276,共16页
The emergence of deep fake videos in recent years has made image falsification a real danger.A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employi... The emergence of deep fake videos in recent years has made image falsification a real danger.A person’s face and emotions are deep-faked in a video or speech and are substituted with a different face or voice employing deep learning to analyze speech or emotional content.Because of how clever these videos are frequently,Manipulation is challenging to spot.Social media are the most frequent and dangerous targets since they are weak outlets that are open to extortion or slander a human.In earlier times,it was not so easy to alter the videos,which required expertise in the domain and time.Nowadays,the generation of fake videos has become easier and with a high level of realism in the video.Deepfakes are forgeries and altered visual data that appear in still photos or video footage.Numerous automatic identification systems have been developed to solve this issue,however they are constrained to certain datasets and performpoorly when applied to different datasets.This study aims to develop an ensemble learning model utilizing a convolutional neural network(CNN)to handle deepfakes or Face2Face.We employed ensemble learning,a technique combining many classifiers to achieve higher prediction performance than a single classifier,boosting themodel’s accuracy.The performance of the generated model is evaluated on Face Forensics.This work is about building a new powerful model for automatically identifying deep fake videos with the DeepFake-Detection-Challenges(DFDC)dataset.We test our model using the DFDC,one of the most difficult datasets and get an accuracy of 96%. 展开更多
关键词 Deep machine learning deep fake CNN DFDC ensemble learning
下载PDF
Deepfakes Detection Techniques Using Deep Learning: A Survey 被引量:1
2
作者 Abdulqader M. Almars 《Journal of Computer and Communications》 2021年第5期20-35,共16页
Deep learning is an effective and useful technique that has been widely applied in a variety of fields, including computer vision, machine vision, and natural language processing. Deepfakes uses deep learning technolo... Deep learning is an effective and useful technique that has been widely applied in a variety of fields, including computer vision, machine vision, and natural language processing. Deepfakes uses deep learning technology to manipulate images and videos of a person that humans cannot differentiate them from the real one. In recent years, many studies have been conducted to understand how deepfakes work and many approaches based on deep learning have been introduced to detect deepfakes videos or images. In this paper, we conduct a comprehensive review of deepfakes creation and detection technologies using deep learning approaches. In addition, we give a thorough analysis of various technologies and their application in deepfakes detection. Our study will be beneficial for researchers in this field as it will cover the recent state-of-art methods that discover deepfakes videos or images in social contents. In addition, it will help comparison with the existing works because of the detailed description of the latest methods and dataset used in this domain. 展开更多
关键词 Deepfakes Deep Learning Fake Detection Social Media Machine Learning
下载PDF
The First to Attack"Language Fakes
3
作者 LIZUOMING 《China Today》 1999年第8期27-29,共3页
关键词 In The First to Attack"Language fakes
下载PDF
Explainable Deep Fake Framework for Images Creation and Classification
4
作者 Majed M. Alwateer 《Journal of Computer and Communications》 2024年第5期86-101,共16页
Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the rea... Deep learning is a practical and efficient technique that has been used extensively in many domains. Using deep learning technology, deepfakes create fake images of a person that people cannot distinguish from the real one. Recently, many researchers have focused on understanding how deepkakes work and detecting using deep learning approaches. This paper introduces an explainable deepfake framework for images creation and classification. The framework consists of three main parts: the first approach is called Instant ID which is used to create deepfacke images from the original one;the second approach called Xception classifies the real and deepfake images;the third approach called Local Interpretable Model (LIME) provides a method for interpreting the predictions of any machine learning model in a local and interpretable manner. Our study proposes deepfake approach that achieves 100% precision and 100% accuracy for deepfake creation and classification. Furthermore, the results highlight the superior performance of the proposed model in deep fake creation and classification. 展开更多
关键词 Deepfakes Machine Learning Deep Learning Fake Detection Social Media LIME Technique
下载PDF
Multimodal Social Media Fake News Detection Based on Similarity Inference and Adversarial Networks 被引量:1
5
作者 Fangfang Shan Huifang Sun Mengyi Wang 《Computers, Materials & Continua》 SCIE EI 2024年第4期581-605,共25页
As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocrea... As social networks become increasingly complex, contemporary fake news often includes textual descriptionsof events accompanied by corresponding images or videos. Fake news in multiple modalities is more likely tocreate a misleading perception among users. While early research primarily focused on text-based features forfake news detection mechanisms, there has been relatively limited exploration of learning shared representationsin multimodal (text and visual) contexts. To address these limitations, this paper introduces a multimodal modelfor detecting fake news, which relies on similarity reasoning and adversarial networks. The model employsBidirectional Encoder Representation from Transformers (BERT) and Text Convolutional Neural Network (Text-CNN) for extracting textual features while utilizing the pre-trained Visual Geometry Group 19-layer (VGG-19) toextract visual features. Subsequently, the model establishes similarity representations between the textual featuresextracted by Text-CNN and visual features through similarity learning and reasoning. Finally, these features arefused to enhance the accuracy of fake news detection, and adversarial networks have been employed to investigatethe relationship between fake news and events. This paper validates the proposed model using publicly availablemultimodal datasets from Weibo and Twitter. Experimental results demonstrate that our proposed approachachieves superior performance on Twitter, with an accuracy of 86%, surpassing traditional unimodalmodalmodelsand existing multimodal models. In contrast, the overall better performance of our model on the Weibo datasetsurpasses the benchmark models across multiple metrics. The application of similarity reasoning and adversarialnetworks in multimodal fake news detection significantly enhances detection effectiveness in this paper. However,current research is limited to the fusion of only text and image modalities. Future research directions should aimto further integrate features fromadditionalmodalities to comprehensively represent themultifaceted informationof fake news. 展开更多
关键词 Fake news detection attention mechanism image-text similarity multimodal feature fusion
下载PDF
Customized Convolutional Neural Network for Accurate Detection of Deep Fake Images in Video Collections 被引量:1
6
作者 Dmitry Gura Bo Dong +1 位作者 Duaa Mehiar Nidal Al Said 《Computers, Materials & Continua》 SCIE EI 2024年第5期1995-2014,共20页
The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method in... The motivation for this study is that the quality of deep fakes is constantly improving,which leads to the need to develop new methods for their detection.The proposed Customized Convolutional Neural Network method involves extracting structured data from video frames using facial landmark detection,which is then used as input to the CNN.The customized Convolutional Neural Network method is the date augmented-based CNN model to generate‘fake data’or‘fake images’.This study was carried out using Python and its libraries.We used 242 films from the dataset gathered by the Deep Fake Detection Challenge,of which 199 were made up and the remaining 53 were real.Ten seconds were allotted for each video.There were 318 videos used in all,199 of which were fake and 119 of which were real.Our proposedmethod achieved a testing accuracy of 91.47%,loss of 0.342,and AUC score of 0.92,outperforming two alternative approaches,CNN and MLP-CNN.Furthermore,our method succeeded in greater accuracy than contemporary models such as XceptionNet,Meso-4,EfficientNet-BO,MesoInception-4,VGG-16,and DST-Net.The novelty of this investigation is the development of a new Convolutional Neural Network(CNN)learning model that can accurately detect deep fake face photos. 展开更多
关键词 Deep fake detection video analysis convolutional neural network machine learning video dataset collection facial landmark prediction accuracy models
下载PDF
An Online Fake Review Detection Approach Using Famous Machine Learning Algorithms
7
作者 Asma Hassan Alshehri 《Computers, Materials & Continua》 SCIE EI 2024年第2期2767-2786,共20页
Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,... Online review platforms are becoming increasingly popular,encouraging dishonest merchants and service providers to deceive customers by creating fake reviews for their goods or services.Using Sybil accounts,bot farms,and real account purchases,immoral actors demonize rivals and advertise their goods.Most academic and industry efforts have been aimed at detecting fake/fraudulent product or service evaluations for years.The primary hurdle to identifying fraudulent reviews is the lack of a reliable means to distinguish fraudulent reviews from real ones.This paper adopts a semi-supervised machine learning method to detect fake reviews on any website,among other things.Online reviews are classified using a semi-supervised approach(PU-learning)since there is a shortage of labeled data,and they are dynamic.Then,classification is performed using the machine learning techniques Support Vector Machine(SVM)and Nave Bayes.The performance of the suggested system has been compared with standard works,and experimental findings are assessed using several assessment metrics. 展开更多
关键词 SECURITY fake review semi-supervised learning ML algorithms review detection
下载PDF
A Model for Detecting Fake News by Integrating Domain-Specific Emotional and Semantic Features
8
作者 Wen Jiang Mingshu Zhang +4 位作者 Xu’an Wang Wei Bin Xiong Zhang Kelan Ren Facheng Yan 《Computers, Materials & Continua》 SCIE EI 2024年第8期2161-2179,共19页
With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature t... With the rapid spread of Internet information and the spread of fake news,the detection of fake news becomes more and more important.Traditional detection methods often rely on a single emotional or semantic feature to identify fake news,but these methods have limitations when dealing with news in specific domains.In order to solve the problem of weak feature correlation between data from different domains,a model for detecting fake news by integrating domain-specific emotional and semantic features is proposed.This method makes full use of the attention mechanism,grasps the correlation between different features,and effectively improves the effect of feature fusion.The algorithm first extracts the semantic features of news text through the Bi-LSTM(Bidirectional Long Short-Term Memory)layer to capture the contextual relevance of news text.Senta-BiLSTM is then used to extract emotional features and predict the probability of positive and negative emotions in the text.It then uses domain features as an enhancement feature and attention mechanism to fully capture more fine-grained emotional features associated with that domain.Finally,the fusion features are taken as the input of the fake news detection classifier,combined with the multi-task representation of information,and the MLP and Softmax functions are used for classification.The experimental results show that on the Chinese dataset Weibo21,the F1 value of this model is 0.958,4.9% higher than that of the sub-optimal model;on the English dataset FakeNewsNet,the F1 value of the detection result of this model is 0.845,1.8% higher than that of the sub-optimal model,which is advanced and feasible. 展开更多
关键词 Fake news detection domain-related emotional features semantic features feature fusion
下载PDF
Fake News Detection Based on Text-Modal Dominance and Fusing Multiple Multi-Model Clues
9
作者 Li fang Fu Huanxin Peng +1 位作者 Changjin Ma Yuhan Liu 《Computers, Materials & Continua》 SCIE EI 2024年第3期4399-4416,共18页
In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure in... In recent years,how to efficiently and accurately identify multi-model fake news has become more challenging.First,multi-model data provides more evidence but not all are equally important.Secondly,social structure information has proven to be effective in fake news detection and how to combine it while reducing the noise information is critical.Unfortunately,existing approaches fail to handle these problems.This paper proposes a multi-model fake news detection framework based on Tex-modal Dominance and fusing Multiple Multi-model Cues(TD-MMC),which utilizes three valuable multi-model clues:text-model importance,text-image complementary,and text-image inconsistency.TD-MMC is dominated by textural content and assisted by image information while using social network information to enhance text representation.To reduce the irrelevant social structure’s information interference,we use a unidirectional cross-modal attention mechanism to selectively learn the social structure’s features.A cross-modal attention mechanism is adopted to obtain text-image cross-modal features while retaining textual features to reduce the loss of important information.In addition,TD-MMC employs a new multi-model loss to improve the model’s generalization ability.Extensive experiments have been conducted on two public real-world English and Chinese datasets,and the results show that our proposed model outperforms the state-of-the-art methods on classification evaluation metrics. 展开更多
关键词 Fake news detection cross-modal attention mechanism multi-modal fusion social network transfer learning
下载PDF
Fake News Detection Based on Cross-Modal Message Aggregation and Gated Fusion Network
10
作者 Fangfang Shan Mengyao Liu +1 位作者 Menghan Zhang Zhenyu Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期1521-1542,共22页
Social media has become increasingly significant in modern society,but it has also turned into a breeding ground for the propagation of misleading information,potentially causing a detrimental impact on public opinion... Social media has become increasingly significant in modern society,but it has also turned into a breeding ground for the propagation of misleading information,potentially causing a detrimental impact on public opinion and daily life.Compared to pure text content,multmodal content significantly increases the visibility and share ability of posts.This has made the search for efficient modality representations and cross-modal information interaction methods a key focus in the field of multimodal fake news detection.To effectively address the critical challenge of accurately detecting fake news on social media,this paper proposes a fake news detection model based on crossmodal message aggregation and a gated fusion network(MAGF).MAGF first uses BERT to extract cumulative textual feature representations and word-level features,applies Faster Region-based ConvolutionalNeuralNetwork(Faster R-CNN)to obtain image objects,and leverages ResNet-50 and Visual Geometry Group-19(VGG-19)to obtain image region features and global features.The image region features and word-level text features are then projected into a low-dimensional space to calculate a text-image affinity matrix for cross-modal message aggregation.The gated fusion network combines text and image region features to obtain adaptively aggregated features.The interaction matrix is derived through an attention mechanism and further integrated with global image features using a co-attention mechanism to producemultimodal representations.Finally,these fused features are fed into a classifier for news categorization.Experiments were conducted on two public datasets,Twitter and Weibo.Results show that the proposed model achieves accuracy rates of 91.8%and 88.7%on the two datasets,respectively,significantly outperforming traditional unimodal and existing multimodal models. 展开更多
关键词 Fake news detection cross-modalmessage aggregation gate fusion network co-attention mechanism multi-modal representation
下载PDF
Dealing With Fakes
11
作者 ASHLEY BROWN 《Beijing Review》 2006年第43期56-,共1页
Imagine my surprise on buying a copy of Pink Floyd's album The Wall when I entered China six weeks ago, to find that the song name Comfortably Numb had somehow been translated into Come Partably Numb. And my amuse... Imagine my surprise on buying a copy of Pink Floyd's album The Wall when I entered China six weeks ago, to find that the song name Comfortably Numb had somehow been translated into Come Partably Numb. And my amusement turned to despair once I discovered that only one of the two discs actually worked. Twelve yuan not so well spent. This was my introduction to the cheap but dubious world of China's CD pirates. Since arriving here, the problem of ille- 展开更多
关键词 CD Dealing With fakes
原文传递
Hunter Prey Optimization with Hybrid Deep Learning for Fake News Detection on Arabic Corpus 被引量:2
12
作者 Hala J.Alshahrani Abdulkhaleq Q.A.Hassan +5 位作者 Khaled Tarmissi Amal S.Mehanna Abdelwahed Motwakel Ishfaq Yaseen Amgad Atta Abdelmageed Mohamed I.Eldesouki 《Computers, Materials & Continua》 SCIE EI 2023年第5期4255-4272,共18页
Nowadays,the usage of socialmedia platforms is rapidly increasing,and rumours or false information are also rising,especially among Arab nations.This false information is harmful to society and individuals.Blocking an... Nowadays,the usage of socialmedia platforms is rapidly increasing,and rumours or false information are also rising,especially among Arab nations.This false information is harmful to society and individuals.Blocking and detecting the spread of fake news in Arabic becomes critical.Several artificial intelligence(AI)methods,including contemporary transformer techniques,BERT,were used to detect fake news.Thus,fake news in Arabic is identified by utilizing AI approaches.This article develops a new hunterprey optimization with hybrid deep learning-based fake news detection(HPOHDL-FND)model on the Arabic corpus.The HPOHDL-FND technique undergoes extensive data pre-processing steps to transform the input data into a useful format.Besides,the HPOHDL-FND technique utilizes long-term memory with a recurrent neural network(LSTM-RNN)model for fake news detection and classification.Finally,hunter prey optimization(HPO)algorithm is exploited for optimal modification of the hyperparameters related to the LSTM-RNN model.The performance validation of the HPOHDL-FND technique is tested using two Arabic datasets.The outcomes exemplified better performance over the other existing techniques with maximum accuracy of 96.57%and 93.53%on Covid19Fakes and satirical datasets,respectively. 展开更多
关键词 Arabic corpus fake news detection deep learning hunter prey optimizer classification model
下载PDF
Fake News Detection Based on Multimodal Inputs 被引量:1
13
作者 Zhiping Liang 《Computers, Materials & Continua》 SCIE EI 2023年第5期4519-4534,共16页
In view of the various adverse effects,fake news detection has become an extremely important task.So far,many detection methods have been proposed,but these methods still have some limitations.For example,only two ind... In view of the various adverse effects,fake news detection has become an extremely important task.So far,many detection methods have been proposed,but these methods still have some limitations.For example,only two independently encoded unimodal information are concatenated together,but not integrated with multimodal information to complete the complementary information,and to obtain the correlated information in the news content.This simple fusion approach may lead to the omission of some information and bring some interference to the model.To solve the above problems,this paper proposes the FakeNewsDetectionmodel based on BLIP(FNDB).First,the XLNet and VGG-19 based feature extractors are used to extract textual and visual feature representation respectively,and BLIP based multimodal feature extractor to obtain multimodal feature representation in news content.Then,the feature fusion layer will fuse these features with the help of the cross-modal attention module to promote various modal feature representations for information complementation.The fake news detector uses these fused features to identify the input content,and finally complete fake news detection.Based on this design,FNDB can extract as much information as possible from the news content and fuse the information between multiple modalities effectively.The fake news detector in the FNDB can also learn more information to achieve better performance.The verification experiments on Weibo and Gossipcop,two widely used real-world datasets,show that FNDB is 4.4%and 0.6%higher in accuracy than the state-of-theart fake news detection methods,respectively. 展开更多
关键词 Natural language processing fake news detection machine learning text classification
下载PDF
Fake News Encoder Classifier (FNEC) for Online Published News Related to COVID-19 Vaccines 被引量:1
14
作者 Asma Qaiser Saman Hina +2 位作者 Abdul Karim Kazi Saad Ahmed Raheela Asif 《Intelligent Automation & Soft Computing》 SCIE 2023年第7期73-90,共18页
In the past few years,social media and online news platforms have played an essential role in distributing news content rapidly.Consequently.verification of the authenticity of news has become a major challenge.During... In the past few years,social media and online news platforms have played an essential role in distributing news content rapidly.Consequently.verification of the authenticity of news has become a major challenge.During the COVID-19 outbreak,misinformation and fake news were major sources of confusion and insecurity among the general public.In the first quarter of the year 2020,around 800 people died due to fake news relevant to COVID-19.The major goal of this research was to discover the best learning model for achieving high accuracy and performance.A novel case study of the Fake News Classification using ELECTRA model,which achieved 85.11%accuracy score,is thus reported in this manuscript.In addition to that,a new novel dataset called COVAX-Reality containing COVID-19 vaccine-related news has been contributed.Using the COVAX-Reality dataset,the performance of FNEC is compared to several traditional learning models i.e.,Support Vector Machine(SVM),Naive Bayes(NB),Passive Aggressive Classifier(PAC),Long Short-Term Memory(LSTM),Bi-directional LSTM(Bi-LSTM)and Bi-directional Encoder Representations from Transformers(BERT).For the evaluation of FNEC,standard metrics(Precision,Recall,Accuracy,and F1-Score)were utilized. 展开更多
关键词 Deep learning fake news detection machine learning transformer model classification
下载PDF
Predicting abnormal trading behavior from internet rumor propagation:a machine learning approach
15
作者 Li‑Chen Cheng Wei‑Ting Lu Benjamin Yeo 《Financial Innovation》 2023年第1期56-78,共23页
In 2021,the abnormal short-term price fluctuations of GameStop,which were triggered by internet stock discussions,drew the attention of academics,financial analysts,and stock trading commissions alike,prompting calls ... In 2021,the abnormal short-term price fluctuations of GameStop,which were triggered by internet stock discussions,drew the attention of academics,financial analysts,and stock trading commissions alike,prompting calls to address such events and maintain market stability.However,the impact of stock discussions on volatile trading behavior has received comparatively less attention than traditional fundamentals.Furthermore,data mining methods are less often used to predict stock trading despite their higher accuracy.This study adopts an innovative approach using social media data to obtain stock rumors,and then trains three decision trees to demonstrate the impact of rumor propagation on stock trading behavior.Our findings show that rumor propagation outperforms traditional fundamentals in predicting abnormal trading behavior.The study serves as an impetus for further research using data mining as a method of inquiry. 展开更多
关键词 Fake news RUMORS Data mining Social media Classification Machine learning GameStop Reddit
下载PDF
Classifying Misinformation of User Credibility in Social Media Using Supervised Learning
16
作者 Muhammad Asfand-e-Yar Qadeer Hashir +1 位作者 Syed Hassan Tanvir Wajeeha Khalil 《Computers, Materials & Continua》 SCIE EI 2023年第5期2921-2938,共18页
The growth of the internet and technology has had a significant effect on social interactions.False information has become an important research topic due to the massive amount of misinformed content on social network... The growth of the internet and technology has had a significant effect on social interactions.False information has become an important research topic due to the massive amount of misinformed content on social networks.It is very easy for any user to spread misinformation through the media.Therefore,misinformation is a problem for professionals,organizers,and societies.Hence,it is essential to observe the credibility and validity of the News articles being shared on social media.The core challenge is to distinguish the difference between accurate and false information.Recent studies focus on News article content,such as News titles and descriptions,which has limited their achievements.However,there are two ordinarily agreed-upon features of misinformation:first,the title and text of an article,and second,the user engagement.In the case of the News context,we extracted different user engagements with articles,for example,tweets,i.e.,read-only,user retweets,likes,and shares.We calculate user credibility and combine it with article content with the user’s context.After combining both features,we used three Natural language processing(NLP)feature extraction techniques,i.e.,Term Frequency-Inverse Document Frequency(TF-IDF),Count-Vectorizer(CV),and Hashing-Vectorizer(HV).Then,we applied different machine learning classifiers to classify misinformation as real or fake.Therefore,we used a Support Vector Machine(SVM),Naive Byes(NB),Random Forest(RF),Decision Tree(DT),Gradient Boosting(GB),and K-Nearest Neighbors(KNN).The proposed method has been tested on a real-world dataset,i.e.,“fakenewsnet”.We refine the fakenewsnet dataset repository according to our required features.The dataset contains 23000+articles with millions of user engagements.The highest accuracy score is 93.4%.The proposed model achieves its highest accuracy using count vector features and a random forest classifier.Our discoveries confirmed that the proposed classifier would effectively classify misinformation in social networks. 展开更多
关键词 MISINFORMATION user credibility fake news machine learning
下载PDF
Fake News Detection Using Machine Learning and Deep Learning Methods
17
作者 Ammar Saeed Eesa Al Solami 《Computers, Materials & Continua》 SCIE EI 2023年第11期2079-2096,共18页
The evolution of the internet and its accessibility in the twenty-first century has resulted in a tremendous increase in the use of social media platforms.Some social media sources contribute to the propagation of fak... The evolution of the internet and its accessibility in the twenty-first century has resulted in a tremendous increase in the use of social media platforms.Some social media sources contribute to the propagation of fake news that has no real validity,but they accumulate over time and begin to appear in the feed of every consumer producing even more ambiguity.To sustain the value of social media,such stories must be distinguished from the true ones.As a result,an automated system is required to save time and money.The classification of fake news and misinformation from social media data corpora is the subject of this research.Several preprocessing and data improvement procedures are used to gather and preprocess two fake news datasets.Deep text features are extracted using word embedding models Word2vec and Global Vectors for Word representation while textual features are extracted using n-gram approaches named Term Frequency-Inverse Document Frequency and Bag of Words from both datasets individually.Bidirectional Encoder Representations from Transformers(BERT)is also employed to derive embedded representations from the input data.Finally,three Machine Learning(ML)and two Deep Learning(DL)algorithms are utilized for fake news classification.BERT also carries out the classification of embedded outcomes generated by it in parallel with the ML and DL models.In terms of overall performance,the DL-based Convolutional Neural Network stands out in the case of the first while BERT performs better in the case of the second dataset. 展开更多
关键词 Machine learning deep learning fake news feature extraction
下载PDF
Optimal Weighted Extreme Learning Machine for Cybersecurity Fake News Classification
18
作者 Ashit Kumar Dutta Basit Qureshi +3 位作者 Yasser Albagory Majed Alsanea Manal Al Faraj Abdul Rahaman Wahab Sait 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2395-2409,共15页
Fake news and its significance carried the significance of affecting diverse aspects of diverse entities,ranging from a city lifestyle to a country global relativity,various methods are available to collect and determ... Fake news and its significance carried the significance of affecting diverse aspects of diverse entities,ranging from a city lifestyle to a country global relativity,various methods are available to collect and determine fake news.The recently developed machine learning(ML)models can be employed for the detection and classification of fake news.This study designs a novel Chaotic Ant Swarm with Weighted Extreme Learning Machine(CAS-WELM)for Cybersecurity Fake News Detection and Classification.The goal of the CAS-WELM technique is to discriminate news into fake and real.The CAS-WELM technique initially pre-processes the input data and Glove technique is used for word embed-ding process.Then,N-gram based feature extraction technique is derived to gen-erate feature vectors.Lastly,WELM model is applied for the detection and classification of fake news,in which the weight value of the WELM model can be optimally adjusted by the use of CAS algorithm.The performance validation of the CAS-WELM technique is carried out using the benchmark dataset and the results are inspected under several dimensions.The experimental results reported the enhanced outcomes of the CAS-WELM technique over the recent approaches. 展开更多
关键词 CYBERSECURITY CYBERCRIME fake news data classification machine learning metaheuristics
下载PDF
Deep Neural Network for Detecting Fake Profiles in Social Networks
19
作者 Daniyal Amankeldin Lyailya Kurmangaziyeva +3 位作者 Ayman Mailybayeva Natalya Glazyrina Ainur Zhumadillayeva Nurzhamal Karasheva 《Computer Systems Science & Engineering》 SCIE EI 2023年第10期1091-1108,共18页
This paper proposes a deep neural network(DNN)approach for detecting fake profiles in social networks.The DNN model is trained on a large dataset of real and fake profiles and is designed to learn complex features and... This paper proposes a deep neural network(DNN)approach for detecting fake profiles in social networks.The DNN model is trained on a large dataset of real and fake profiles and is designed to learn complex features and patterns that distinguish between the two types of profiles.In addition,the present research aims to determine the minimum set of profile data required for recognizing fake profiles on Facebook and propose the deep convolutional neural network method for fake accounts detection on social networks,which has been developed using 16 features based on content-based and profilebased features.The results demonstrated that the proposed method could detect fake profiles with an accuracy of 99.4%,equivalent to the achieved findings based on bigger data sets and more extensive profile information.The results were obtained with the minimum available profile data.In addition,in comparison with the other methods that use the same amount and kind of data,the proposed deep neural network gives an increase in accuracy of roughly 14%.The proposed model outperforms existing methods,achieving high accuracy and F1 score in identifying fake profiles.The associated findings indicate that the proposed model attained an average accuracy of 99%while considering two distinct scenarios:one with a single theme and another with a miscellaneous one.The results demonstrate the potential of DNNs in addressing the challenging problem of detecting fake profiles,which has significant implications for maintaining the authenticity and trustworthiness of online social networks. 展开更多
关键词 Fake profiles social networks deep learning CNN CLASSIFICATION
下载PDF
NDN Content Poisoning Mitigation Using Bird Swarm Optimization and Trust Value
20
作者 S.V.Vijaya Karthik J.Arputha Vijaya Selvi 《Intelligent Automation & Soft Computing》 SCIE 2023年第4期833-847,共15页
Information-Centric Networking(ICN)is considered a viable strategy for regulating Internet consumption using the Internet’s underlying architecture.Although Named Data Networking(NDN)and its reference-based implement... Information-Centric Networking(ICN)is considered a viable strategy for regulating Internet consumption using the Internet’s underlying architecture.Although Named Data Networking(NDN)and its reference-based implementa-tion,the NDN Forwarding Daemon(NFD),are the most established ICN solu-tions,their vulnerability to the Content Poisoning Attack(CPA)is regarded as a severe threat that might dramatically impact this architecture.Content Poisoning can significantly minimize the impact of NDN’s universal data caching.Using verification signatures to protect against content poisoning attacks may be imprac-tical due to the associated costs and the volume of messages sent across the net-work,resulting in high computational costs.Therefore,in this research,we designed a method in NDN called Bird Swarm Optimization Algorithm-Based Content Poisoning Mitigation(BSO-Content Poisoning Mitigation Scheme).By aggregating the security information of entire routers along the full path,this sys-tem introduces the BSO to explore the secure transmission path and alter the con-tent retrieval procedure.Meanwhile,based on the determined trustworthy value of each node,the BSO-Content Poisoning Mitigation Scheme can bypass malicious routers,preventing them from disseminating illicit content in the future.Addition-ally,the suggested technique can minimize content poisoning utilizing removing erroneous Data packets from the cache-store during the pathfinding process.The proposed method has been subjected to extensive analysis compared with the ROM scheme and improved performance justified in several metrics.BSO-Con-tent Poisoning Mitigation Scheme is more efficient and faster than the ROM tech-nique in obtaining valid Data packets and resulting in a higher good cache hit ratio in a comparatively less amount of time. 展开更多
关键词 Named data network content poisoning bird swarm optimization content validation fake content
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部