One-dimensional(1D, wire-and fiber-shaped)supercapacitors have recently attracted interest due to their roll-up, micrometer size and potential applications in portable or wearable electronics. Herein, a 1D wireshaped ...One-dimensional(1D, wire-and fiber-shaped)supercapacitors have recently attracted interest due to their roll-up, micrometer size and potential applications in portable or wearable electronics. Herein, a 1D wireshaped electrode was developed based on Fe_3O_4 nanosheet arrays connected on the Fe wire, which was prepared via oxidation of Fe wire in 0.1 M KCl solution(pH 3) with O2-rich environment under 70 °C. The obtained Fe_3O_4 nanosheet arrays displayed a high specific capacitance(20.8 m F cm^(-1) at 10 mV s^(-1)) and long cycling lifespan(91.7% retention after 2500 cycles). Theexcellent performance may attribute to the connected nanosheet structure with abundant open spaces and the intimate contact between the Fe_3O_4 and iron substrate. In addition, a wire-shaped asymmetric supercapacitor was fabricated and had excellent capacitive properties with a high energy density(9 l Wh cm^(-2)) at power density of 532.7 l W cm^(-2) and remarkable long-term cycling performance(99% capacitance retention after 2000 cycles).Considering low cost and earth-abundant electrode material, as well as outstanding electrochemical properties, the assembled supercapacitor will possess enormous potential for practical applications in portable electronic device.展开更多
基金supported by Zhujiang New Stars of Science and Technology (2014J2200061)
文摘One-dimensional(1D, wire-and fiber-shaped)supercapacitors have recently attracted interest due to their roll-up, micrometer size and potential applications in portable or wearable electronics. Herein, a 1D wireshaped electrode was developed based on Fe_3O_4 nanosheet arrays connected on the Fe wire, which was prepared via oxidation of Fe wire in 0.1 M KCl solution(pH 3) with O2-rich environment under 70 °C. The obtained Fe_3O_4 nanosheet arrays displayed a high specific capacitance(20.8 m F cm^(-1) at 10 mV s^(-1)) and long cycling lifespan(91.7% retention after 2500 cycles). Theexcellent performance may attribute to the connected nanosheet structure with abundant open spaces and the intimate contact between the Fe_3O_4 and iron substrate. In addition, a wire-shaped asymmetric supercapacitor was fabricated and had excellent capacitive properties with a high energy density(9 l Wh cm^(-2)) at power density of 532.7 l W cm^(-2) and remarkable long-term cycling performance(99% capacitance retention after 2000 cycles).Considering low cost and earth-abundant electrode material, as well as outstanding electrochemical properties, the assembled supercapacitor will possess enormous potential for practical applications in portable electronic device.