Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central ...Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.展开更多
Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extra...Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extracellular matrix proteins,mainly collagen in the cardiac interstitium.Many experimental studies have demonstrated that fibrotic injury in the heart is reversible;therefore,it is vital to understand differ-ent molecular mechanisms that are involved in the initiation,progression,and resolu-tion of cardiac fibrosis to enable the development of antifibrotic agents.Of the many experimental models,one of the recent models that has gained renewed interest is isoproterenol(ISP)-induced cardiac fibrosis.ISP is a synthetic catecholamine,sympa-thomimetic,and nonselectiveβ-adrenergic receptor agonist.The overstimulated and sustained activation ofβ-adrenergic receptors has been reported to induce biochemi-cal and physiological alterations and ultimately result in cardiac remodeling.ISP has been used for decades to induce acute myocardial infarction.However,the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis;this practice has increased in recent years.Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy.The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is consid-ered the initiating mechanism of myocardial fibrosis.ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals.In recent years,numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis.The present review exclusively provides a comprehensive summary of the pathological biochemical,histological,and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy.It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as syn-thetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.展开更多
This article discusses the recent study written by Koizumi et al.Alcohol-associated liver disease(ALD)is a major cause of liver-related morbidity and mortality,which is driven by complex mechanisms,including lipid acc...This article discusses the recent study written by Koizumi et al.Alcohol-associated liver disease(ALD)is a major cause of liver-related morbidity and mortality,which is driven by complex mechanisms,including lipid accumulation,apoptosis,and inflammatory responses exacerbated by gut barrier dysfunction.The study explored the therapeutic potential of elafibranor,a dual peroxisome proliferatoractivated receptor alpha/delta agonist.In clinical trials,elafibranor has shown promise for the treatment of other liver conditions;however,its effects on ALD remain unclear.The authors’findings indicate that elafibranor significantly reduced liver fibrosis and enhanced gut barrier integrity in patients with ALD.These positive effects of elafibranor are mediated through multiple pathways.Elafibranor promotes lipid metabolism,reduces oxidative stress,and inhibits inflammatory responses by restoring gut barrier function.Specifically,it improves hepatocyte function by enhancing autophagic and antioxidant capacity,and it mitigates inflammation by suppressing the lipopolysaccharide/toll-like receptor 4/nuclear factor kappa B signaling pathway.These findings indicate that elafibranor has promising clinical applications.In addition,the study highlights elafibranor’s potential as a therapeutic agent for liver diseases,particularly ALD.This article underscores the importance of understanding the mechanistic pathways underlying ALD and suggests directions for future research aimed at elucidating the benefits and limitations of elafibranor.展开更多
BACKGROUND Neonatal screening(NS)is a public health policy to identify genetic pathologies such as cystic fibrosis(CF),sickle cell disease,and other diseases.Sickle cell disea-se is the comprehensive term for a group ...BACKGROUND Neonatal screening(NS)is a public health policy to identify genetic pathologies such as cystic fibrosis(CF),sickle cell disease,and other diseases.Sickle cell disea-se is the comprehensive term for a group of hemoglobinopathies characterized by the presence of hemoglobin S.CF is an autosomal recessive multisystemic disease with pathophysiology involving deleterious mutations in the transmembrane re-gulatory gene that encodes a protein that regulates the activity of chloride and sodium channels in the cell surface epithelium.NS is crucial for early diagnosis and management,which ensures a better quality of life.AIM To report a case of the coexistence of sickle cell anemia(SCA)and CF and perform an integrative literature review.METHODS This is an observational study and a review of the literature focusing on two rare genetic pathologies identified simultaneously in NS from the perspective of a clinical case.The authors identified only 5 cases of SCA associated with CF.No clinical trials or review articles were identified considering the rarity of the coexistence of these two pathologies.RESULTS Herein,the authors reported the case of a girl who after undergoing NS on day 8 of life was diagnosed with SCA with an alteration in the dosage of immunoreactive trypsin.The diagnosis of CF was confirmed by the Coulometry Sweat Test.The rarity of the co-occurrence of these two severe genetic pathologies(CF and SCA)is a challenge for medical science.CONCLUSION This study adds to the few case reports present in the literature that highlight the identification of two severe diseases via NS.展开更多
Background:The emerging incidence of pathogenic liver conditions is turning into a major concern for global health.Induction of pyroptosis in hepatocytes instigates cel-lular disintegration,which in turn liberates sub...Background:The emerging incidence of pathogenic liver conditions is turning into a major concern for global health.Induction of pyroptosis in hepatocytes instigates cel-lular disintegration,which in turn liberates substantial quantities of pro-inflammatory intracellular substances,thereby accelerating the advancement of liver fibrosis.Consequently,directing therapeutic efforts towards inhibiting pyroptosis could po-tentially serve as an innovative approach in managing inflammation related chronic hepatic disorders.Methods:GSDMD-NT^(ki/wt)mice and Alb-cre^(ki/wt)mice were generated using CRISPR/Cas9 technology.After crossing the two strains together,we induced conditional cell death by doxycycline to construct a mouse model of liver fibrosis.We analyzed differ-entially expressed genes by RNA sequencing and explored their biological functions.The efficacy of obeticholic acid(OCA)in the treatment of liver fibrosis was assessed.Results:Doxycycline-treated GSDMD-NT^(ki/wt)×Alb-cre^(ki/wt)mice showed severe liver damage,vacuolation of hepatocytes,increased collagen fibers,and accumulation of lipid droplets.The expression of liver fibrosis related genes was greatly increased in the doxycycline-treated mouse liver compared with untreated mouse liver.RNA-sequencing showed that upregulated differentially expressed genes were involved in inflammatory responses,cell activation,and metabolic processes.Treatment with OCA alleviated the liver fibrosis,with reduced ALT and AST levels seen in the GSDMD-NT^(ki/wt)×Alb-cre^(ki/wt)mice.Conclusions:We successfully constructed a novel mouse model for liver fibrosis.This GSDMD-NT-induced fibrosis may be mediated by abnormal lipid metabolism.Our re-sults demonstrated that we successfully constructed a mouse model of liver fibrosis,and GSDMD-NT induced fibrosis by mediating lipid metabolism.展开更多
BACKGROUND Liver fibrosis and cirrhosis are global medical challenges that require safe and effective treatments.In the past two decades,there has been a surge in research on stem cell therapy for liver fibrosis and c...BACKGROUND Liver fibrosis and cirrhosis are global medical challenges that require safe and effective treatments.In the past two decades,there has been a surge in research on stem cell therapy for liver fibrosis and cirrhosis.This study aimed to conduct a comprehensive analysis of the research hotspots and trends in this field through bibliometrics.sters was conducted.RESULTS As of September 20,2024,a total of 1935 documents were retrieved dating from 2004 to 2024,with 1186 strongly relevant publications obtained after screening.China,the United States,and Japan were the major contributors in this field.Cairo University,Zhejiang University and Yamaguchi University were the major institution in this field.The journal Stem Cell Research&Therapy published the most papers.There were 686 authors,with Shuji Terai,Isao Sakaida,Soon Koo Baik,and Lanjuan Li publishing the most papers.The research focused on alcoholic cirrhosis and nonalcoholic fatty liver disease.The emerging areas of interest were extracellular vesicles,exosomes,and their enriched microRNAs.The field is experiencing rapid growth due to the changing research trends and increasing literature.CONCLUSION These findings provide a thorough overview of stem cell therapy in the field of liver fibrosis and cirrhosis.展开更多
Idiopathic pulmonary fibrosis(IPF)has a poor prognosis if left untreated;therefore,early treatment with pirfenidone is crucial.Lei et al conducted a retrospective analysis to evaluate the effectiveness of early pirfen...Idiopathic pulmonary fibrosis(IPF)has a poor prognosis if left untreated;therefore,early treatment with pirfenidone is crucial.Lei et al conducted a retrospective analysis to evaluate the effectiveness of early pirfenidone treatment on lung function in 113 patients with IPF.In addition to other research,pirfeni-done has demonstrated efficacy in patients at all stages of IPF once correct diagnosis has been made.In advanced IPF,we include the requirement for pirfenidone.Therefore,it is essential to choose an appropriate method of adminis-tration method,such as inhalation.This may circumvent the drawbacks of the high cost and possible adverse effects of this drug.展开更多
BACKGROUND The pathophysiology of diabetic kidney disease(DKD)is complex.Interfering with the processes of pyroptosis and fibrosis is an effective strategy for slowing DKD progression.Previous studies have revealed th...BACKGROUND The pathophysiology of diabetic kidney disease(DKD)is complex.Interfering with the processes of pyroptosis and fibrosis is an effective strategy for slowing DKD progression.Previous studies have revealed that nuclear receptor subfamily 4 group A member 1(NR4A1)may serve as a novel pathogenic element in DKD;however,the specific mechanism by which it contributes to pyroptosis and fibrosis in DKD is unknown.AIM To investigate the role of NR4A1 in renal pyroptosis and fibrosis in DKD and possible molecular mechanisms.METHODS Streptozotocin 60 mg/kg was injected intraperitoneally to establish a rat model of DKD.Typically,45 mmol/L glucose[high glucose(HG)]was used to activate HK-2 cells to mimic the DKD model in vitro.HK-2 cells were transfected with NR4A1 siRNA to silence NR4A1.RESULTS NR4A1 was elevated in renal tissues of DKD rats and HG-stimulated HK-2 cells.Concurrently,NOD-like receptor protein 3(NLRP3)and phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)pathways were triggered,and pyroptosis and expression of fibrosis-linked elements was increased in vivo and in vitro.These alterations were significantly reversed via NR4A1 silencing.CONCLUSION Inhibition of NR4A1 mitigated pyroptosis and fibrosis via suppressing NLRP3 activation and the PI3K/AKT pathway in HG-activated HK-2 cells.展开更多
Pulmonary fibrosis significantly contributes to the pathogenesis of acute respiratory distress syndrome(ARDS),markedly increasing patient mortality.Despite the established anti-fibrotic effects of mesenchymal stem cel...Pulmonary fibrosis significantly contributes to the pathogenesis of acute respiratory distress syndrome(ARDS),markedly increasing patient mortality.Despite the established anti-fibrotic effects of mesenchymal stem cells(MSCs),numerous challenges hinder their clinical application.A recent study demon-strated that microvesicles(MVs)from MSCs(MSC-MVs)could attenuate ARDS-related pulmonary fibrosis and enhance lung function via hepatocyte growth factor mRNA transcription.This discovery presents a promising strategy for managing ARDS-associated pulmonary fibrosis.This article initially examines the safety and efficacy of MSCs from both basic science and clinical perspectives,subsequently exploring the potential and obstacles of employing MSC-MVs as a novel therapeutic approach.Additionally,it provides perspectives on future research into the application of MSC-MVs in ARDS-associated pulmonary fi-brosis.展开更多
BACKGROUND Alpha-1 antitrypsin deficiency(AATD)is a codominant autosomal hereditary condition that predisposes patients to the development of lung and/or liver disease,and Pi*Z allele is the most clinically relevant m...BACKGROUND Alpha-1 antitrypsin deficiency(AATD)is a codominant autosomal hereditary condition that predisposes patients to the development of lung and/or liver disease,and Pi*Z allele is the most clinically relevant mutation.AIM To evaluate the impact of clinical parameters and AATD phenotypes,particularly the Pi*Z allele,in liver fibrosis.METHODS Cross-sectional cohort study including consecutive patients with AATD followed in Pulmonology or Hepatology consultation.RESULTS Included 69 patients,49.3%had Pi*MZ phenotype and 10.1%Pi*ZZ.An age≥55 years,age at diagnosis≥41 years and AAT at diagnosis<77 mg/dL predicted a nonalcoholic fatty liver disease fibrosis score(NFS)not excluding advanced fibrosis[area under the curve(AUC)=0.840,P<0.001;AUC=0.836,P<0.001;AUC=0.681,P=0.025].An age≥50 years and age at diagnosis≥41 years predicted a fibrosis-4 index of moderate to advanced fibrosis(AUC=0.831,P<0.001;AUC=0.795,P<0.001).Patients with hypertension,type 2 diabetes mellitus(DM),dyslipidaemia,metabolic syndrome,and regular alcohol consumption were more likely to have a NFS not excluding advanced fibrosis(P<0.001,P=0.002,P=0.008,P<0.001,P=0.033).Patients with at least one Pi*Z allele and type 2 DM were 8 times more likely to have liver stiffness measurement≥7.1 kPa(P=0.040).CONCLUSION Risk factors for liver disease in AATD included an age≥50 years,age at diagnosis≥41 years,metabolic risk factors,regular alcohol consumption,at least one Pi*Z allele,and AAT value at diagnosis<77 mg/dL.We created an algorithm for liver disease screening in AATD patients to use in primary care,selecting those to be referred to Hepatology consultation.展开更多
BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diff...BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diffusion models for liver fibrosis in one cohort.AIM To evaluate the clinical potential of six diffusion-weighted models in liver fibrosis staging and compare their diagnostic performances.METHODS This prospective study enrolled 59 patients suspected of liver disease and scheduled for liver biopsy and 17 healthy participants.All participants underwent multi-b value DWI.The main DWI-derived parameters included Mono-apparent diffusion coefficient(ADC)from mono-exponential DWI,intravoxel incoherent motion model-derived true diffusion coefficient(IVIM-D),diffusion kurtosis imaging-derived apparent diffusivity(DKI-MD),stretched exponential model-derived distributed diffusion coefficient(SEM-DDC),fractional order calculus(FROC)model-derived diffusion coefficient(FROC-D)and FROC model-derived microstructural quantity(FROC-μ),and continuous-time random-walk(CTRW)model-derived anomalous diffusion coefficient(CTRW-D)and CTRW model-derived temporal diffusion heterogeneity index(CTRW-α).The correlations between DWI-derived parameters and fibrosis stages and the parameters’diagnostic efficacy in detecting significant fibrosis(SF)were assessed and compared.RESULTS CTRW-D(r=-0.356),CTRW-α(r=-0.297),DKI-MD(r=-0.297),FROC-D(r=-0.350),FROC-μ(r=-0.321),IVIM-D(r=-0.251),Mono-ADC(r=-0.362),and SEM-DDC(r=-0.263)were significantly correlated with fibrosis stages.The areas under the ROC curves(AUCs)of the combined index of the six models for distinguishing SF(0.697-0.747)were higher than each of the parameters alone(0.524-0.719).The DWI models’ability to detect SF was similar.The combined index of CTRW model parameters had the highest AUC(0.747).CONCLUSION The DWI models were similarly valuable in distinguishing SF in patients with liver disease.The combined index of CTRW parameters had the highest AUC.展开更多
Renal fibrosis is the common pathological basis for the progressive development of chronic kidney disease(CKD)caused by various etiologies.It is characterized by the persistent deposition of extracellular matrix,leadi...Renal fibrosis is the common pathological basis for the progressive development of chronic kidney disease(CKD)caused by various etiologies.It is characterized by the persistent deposition of extracellular matrix,leading to renal tissue damage and impaired renal function,and ultimately progressing to kidney failure.Current clinical treatments for CKD mainly focus on managing the primary diseases,with no specific drugs targeting renal fibrosis.The pathogenesis of renal fibrosis is complex,and there are currently no drugs available to reverse it.A comprehensive overview of the pathogenesis of renal fibrosis,alongside a summary of current anti-fibrotic therapies,including some that are already used clinically to slow renal function progression,new drugs in clinical trials,and emerging targeted therapies,could provide new theoretical foundations and perspectives for the treatment of renal fibrosis.展开更多
BACKGROUND Both tenofovir alafenamide(TAF)and tenofovir disoproxil fumarate(TDF)are the first-line treatments for chronic hepatitis B(CHB).We have showed switching from TDF to TAF for 96 weeks resulted in further alan...BACKGROUND Both tenofovir alafenamide(TAF)and tenofovir disoproxil fumarate(TDF)are the first-line treatments for chronic hepatitis B(CHB).We have showed switching from TDF to TAF for 96 weeks resulted in further alanine aminotransferase(ALT)improvement,but data remain lacking on the long-term benefits of TDF switching to TAF on hepatic fibrosis.AIM To assess the benefits of TDF switching to TAF for 3 years on ALT,aspartate aminotransferase(AST),and hepatic fibrosis improvement in patients with CHB.METHODS A single center retrospective study on 53 patients with CHB who were initially treated with TDF,then switched to TAF to determine dynamic patterns of ALT,AST,AST to platelet ratio index(APRI),fibrosis-4(FIB-4)scores,and shear wave elastography(SWE)reading improvement at switching week 144,and the associated factors.RESULTS The mean age was 55(28-80);45.3%,males;15.1%,clinical cirrhosis;mean baseline ALT,24.8;AST,25.7 U/L;APRI,0.37;and FIB-4,1.66.After 144 weeks TDF switching to TAF,mean ALT and AST were reduced to 19.7 and 21,respectively.From baseline to switching week 144,the rates of ALT and AST<35(male)/25(female)and<30(male)/19(female)were persistently increased;hepatic fibrosis was also improved by APRI<0.5,from 79.2%to 96.2%;FIB-4<1.45,from 52.8%to 58.5%,respectively;mean APRI was reduced to 0.27;FIB-4,to 1.38;and mean SWE reading,from 7.05 to 6.30 kPa after a mean of 109 weeks switching.The renal function was stable and the frequency of patients with glomerular filtration rate>60 mL/min was increased from 86.5%at baseline to 88.2%at switching week 144.CONCLUSION Our data confirmed that switching from TDF to TAF for 3 years results in not only persistent ALT/AST improvement,but also hepatic fibrosis improvement by APRI,FIB-4 scores,as well as SWE reading,the important clinical benefits of long-term hepatitis B virus antiviral treatment with TAF.展开更多
BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome prolifer...BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome proliferator activated receptor(PPAR)α and δ play a key role in lipid metabolism and intestinal barrier homeostasis,which are major contributors to the pathological progression of ALD.Meanwhile,elafibranor(EFN),which is a dual PPARαand PPARδagonist,has reached a phase III clinical trial for the treatment of metabolic dysfunctionassociated steatotic liver disease and primary biliary cholangitis.However,the benefits of EFN for ALD treatment is unknown.AIM To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model.METHODS ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol(EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly(1 mL/kg)for 8 weeks.EFN(3 and 10 mg/kg/day)was orally administered during the experimental period.Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis,fibrosis,and intestinal barrier integrity.The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays.RESULTS The hepatic steatosis,apoptosis,and fibrosis in the ALD mice model were significantly attenuated by EFN treatment.EFN promoted lipolysis and β-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells,primarily through PPARαactivation.Moreover,EFN inhibited the Kupffer cell-mediated inflammatory response,with blunted hepatic exposure to lipopolysaccharide(LPS)and toll like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)signaling.EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses.The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation.CONCLUSION EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis,enhancing hepatocyte autophagic and antioxidant capacities,and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function.展开更多
BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations...BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations observed in renal tissue.Never-theless,the precise molecular mechanism through which myricetin influences the progression of DN remains uncertain.AIM To investigate the effects of myricetin on DN and explore its potential therapeutic mechanism.METHODS Db/db mice were administered myricetin intragastrically on a daily basis at doses of 50 mg/kg or 100 mg/kg for a duration of 12 wk.Subsequently,blood and urine indexes were assessed,along with examination of renal tissue pathology.Kidney morphology and fibrosis were evaluated using various staining techniques including hematoxylin and eosin,periodic acid–Schiff,Masson’s trichrome,and Sirius-red.Additionally,high-glucose culturing was conducted on the RAW 264.7 cell line,treated with 25 mM myricetin or co-administered with the PI3K/Akt inhibitor LY294002 for a period of 24 h.In both in vivo and in vitro settings,quantification of inflammation factor levels was conducted using western blotting,real-time qPCR and ELISA.RESULTS In db/db mice,administration of myricetin led to a mitigating effect on DN-induced renal dysfunction and fibrosis.Notably,we observed a significant reduction in expressions of the kidney injury markers kidney injury molecule-1 and neutrophil gelatinase associated lipocalin,along with a decrease in expressions of inflammatory cytokine-related factors.Furthermore,myricetin treatment effectively inhibited the up-regulation of tumor necrosis factor-alpha,interleukin-6,and interluekin-1βinduced by high glucose in RAW 264.7 cells.Additionally,myricetin modulated the M1-type polarization of the RAW 264.7 cells.Molecular docking and bioinformatic analyses revealed Akt as the target of myricetin.The protective effect of myricetin was nullified upon blocking the polarization of RAW 264.7 via inhibition of PI3K/Akt activation using LY294002.CONCLUSION This study demonstrated that myricetin effectively mitigates kidney injury in DN mice through the regulation of macrophage polarization via the PI3K/Akt signaling pathway.展开更多
The present letter to the editor is related to the study titled‘Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells’.Angiotensin-converting enzyme 2 can ...The present letter to the editor is related to the study titled‘Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells’.Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.展开更多
BACKGROUND Idiopathic pulmonary fibrosis(IPF)is classified under fibrotic interstitial pneumonia,characterized by a chronic and progressive course.The predominant clinical features of IPF include dyspnea and pulmonary...BACKGROUND Idiopathic pulmonary fibrosis(IPF)is classified under fibrotic interstitial pneumonia,characterized by a chronic and progressive course.The predominant clinical features of IPF include dyspnea and pulmonary dysfunction.AIM To assess the effects of pirfenidone in the early treatment of IPF on lung function in patients.METHODS A retrospective analysis was performed on 113 patients with IPF who were treated in our hospital from November 2017 to January 2023.These patients were divided into two groups:control group(n=53)and observation group(n=60).In the control group,patients received routine therapy in combination with methylprednisolone tablets,while those in the observation group received routine therapy together with pirfenidone.After applying these distinct treatment approaches to the two groups,we assessed several parameters,including the overall effectiveness of clinical therapy,the occurrence of adverse reactions(e.g.,nausea,vomiting,and anorexia),symptom severity scores,pulmonary function index levels,inflammatory marker levels,and the 6-min walk distance before and after treatment in both groups.RESULTS The observation group exhibited significantly higher rates than the control group after therapy,with a clear distinction(P<0.05).After treatment,the observation group experienced significantly fewer adverse reactions than the control group,with a noticeable difference(P<0.05).When analyzing the symptom severity scores between the two groups of patients after treatment,the observation group had significantly lower scores than the control group,with a distinct difference(P<0.05).When comparing the pulmonary function index levels between the two groups of patients after therapy,the observation group displayed significantly higher levels than the control group,with a noticeable difference(P<0.05).Evaluating the inflammatory marker data(C-reactive protein,interleukin-2[IL-2],and IL-8)between the two groups of patients after therapy,the observation group exhibited significantly lower levels than the control group,with significant disparities(P<0.05).Comparison of the 6-min walking distance data between the two groups of patients after treatment showed that the observation group achieved significantly greater distances than the control group,with a marked difference(P<0.05).CONCLUSION Prompt initiation of pirfenidone treatment in individuals diagnosed with IPF can enhance pulmonary function,elevate inflammatory factor levels,and increase the distance covered in the 6-min walk test.This intervention is conducive to effectively decreasing the occurrence of adverse reactions in patients.展开更多
Primary sclerosing cholangitis(PSC)is an autoimmune cholangiopathy characterized by chronic inflammation of the biliary epithelium and periductal fibrosis,with no curative treatment available,and liver transplantation...Primary sclerosing cholangitis(PSC)is an autoimmune cholangiopathy characterized by chronic inflammation of the biliary epithelium and periductal fibrosis,with no curative treatment available,and liver transplantation is inevitable for end-stage patients.Human placentalmesenchymal stem cell(hpMSC)-derived exosomes have demonstrated the ability to prevent fibrosis,inhibit collagen production and possess immunomodulatory properties in autoimmune liver disease.Here,we prepared hpMSC-derived exosomes(Exo^(MSC))and further investigated the anti-fibrotic effects and detailed mechanism on PSC based on Mdr2^(−/−)mice and multicellular organoids established from PSC patients.The results showed that Exo^(MSC) ameliorated liver fibrosis in Mdr2^(−/−)mice with significant collagen reduction in the preductal area where Th17 differentiation was inhibited as demonstrated by RNAseq analysis,and the percentage of CD4+IL-17A+T cells was reduced both in Exo^(MSC)-treated Mdr2^(−/−)mice(Mdr2^(−/−)-Exo)in vivo and Exo^(MSC)-treated Th17 differentiation progressed in vitro.Furthermore,Exo^(MSC) improved the hypersecretory phenotype and intercellular interactions in the hepatic Th17 microenvironment by regulating PERK/CHOP signaling as supported by multicellular organoids.Thus,our data demonstrate the antifibrosis effect of Exo^(MSC) in PSC disease by inhibiting Th17 differentiation,and ameliorating the Th17-induced microenvironment,indicating the promising potential therapeutic role of Exo^(MSC) in liver fibrosis of PSC or Th17-related diseases.展开更多
Pulmonary fibrosis (PF) is a chronic progressive end-stage lung disease. However, the mechanisms underlying the progression of this disease remain elusive. Presently, clinically employed drugs are scarce for the treat...Pulmonary fibrosis (PF) is a chronic progressive end-stage lung disease. However, the mechanisms underlying the progression of this disease remain elusive. Presently, clinically employed drugs are scarce for the treatment of PF. Hence, there is an urgent need for developing novel drugs to address such diseases. Our study found for the first time that a natural source of Prismatomeris connata Y. Z. Ruan (Huang Gen, HG) ethyl acetate extract (HG-2) had a significant anti-PF effect by inhibiting the expression of the transforming growth factor beta 1/suppressor of mothers against decapentaplegic (TGF-β1/Smad) pathway. Network pharmacological analysis suggested that HG-2 had effects on tyrosine kinase phosphorylation, cellular response to reactive oxygen species, and extracellular matrix (ECM) disassembly. Moreover, mass spectrometry imaging (MSI) was used to visualize the heterogeneous distribution of endogenous metabolites in lung tissue and reveal the anti-PF metabolic mechanism of HG-2, which was related to arginine biosynthesis and alanine, asparate and glutamate metabolism, the downregulation of arachidonic acid metabolism, and the upregulation of glycerophospholipid metabolism. In conclusion, we elaborated on the relationship between metabolite distribution and the progression of PF, constructed the regulatory metabolic network of HG-2, and discovered the multi-target therapeutic effect of HG-2, which might be conducive to the development of new drugs for PF.展开更多
Liver fibrosis is primarily driven by the activation of hepatic stellate cells(HSCs),a process associated with ferroptosis.Ginsenoside Rb1(GRb1),a major active component extracted from Panax ginseng,inhibits HSC activ...Liver fibrosis is primarily driven by the activation of hepatic stellate cells(HSCs),a process associated with ferroptosis.Ginsenoside Rb1(GRb1),a major active component extracted from Panax ginseng,inhibits HSC activation.However,the potential role of GRb1 in mediating HSC ferroptosis remains unclear.This study examined the effect of GRb1 on liver fibrosis both in vivo and in vitro,using CCl4-induced liver fibrosis mouse model and primary HSCs,LX-2 cells.The findings revealed that GRb1 effectively inactivated HSCs in vitro,reducing alpha-smooth muscle actin(a-SMA)and type I collagen(Col1A1)levels.Moreover,GRb1 significantly alleviated CCl4-induced liver fibrosis in vivo.From a mechanistic standpoint,the ferroptosis pathway appeared to be central to the antifibrotic effects of GRb1.Specifically,GRb1 promoted HSC ferroptosis both in vivo and in vitro,characterized by increased glutathione depletion,malondialdehyde production,iron overload,and accumulation of reactive oxygen species(ROS).Intriguingly,GRb1 increased Beclin 1(BECN1)levels and decreased the System Xc-key subunit SLC7A11.Further experiments showed that BECN1 silencing inhibited GRb1-induced effects on HSC ferroptosis and mitigated the reduction of SLC7A11 caused by GRb1.Moreover,BECN1 could directly interact with SLC7A11,initiating HSC ferroptosis.In conclusion,the suppression of BECN1 counteracted the effects of GRb1 on HSC inactivation both in vivo and in vitro.Overall,this study highlights the novel role of GRb1 in inducing HSC ferroptosis and promoting HSC inactivation,at least partly through its modulation of BECN1 and SLC7A11.展开更多
基金supported by grants from National Key R&D Program of China,No.2023YFC2506100(to JZ)the National Natural Science Foundation of China,No.82171062(to JZ).
文摘Subretinal fibrosis is the end-stage sequelae of neovascular age-related macular degeneration.It causes local damage to photoreceptors,retinal pigment epithelium,and choroidal vessels,which leads to permanent central vision loss of patients with neovascular age-related macular degeneration.The pathogenesis of subretinal fibrosis is complex,and the underlying mechanisms are largely unknown.Therefore,there are no effective treatment options.A thorough understanding of the pathogenesis of subretinal fibrosis and its related mechanisms is important to elucidate its complications and explore potential treatments.The current article reviews several aspects of subretinal fibrosis,including the current understanding on the relationship between neovascular age-related macular degeneration and subretinal fibrosis;multimodal imaging techniques for subretinal fibrosis;animal models for studying subretinal fibrosis;cellular and non-cellular constituents of subretinal fibrosis;pathophysiological mechanisms involved in subretinal fibrosis,such as aging,infiltration of macrophages,different sources of mesenchymal transition to myofibroblast,and activation of complement system and immune cells;and several key molecules and signaling pathways participating in the pathogenesis of subretinal fibrosis,such as vascular endothelial growth factor,connective tissue growth factor,fibroblast growth factor 2,platelet-derived growth factor and platelet-derived growth factor receptor-β,transforming growth factor-βsignaling pathway,Wnt signaling pathway,and the axis of heat shock protein 70-Toll-like receptors 2/4-interleukin-10.This review will improve the understanding of the pathogenesis of subretinal fibrosis,allow the discovery of molecular targets,and explore potential treatments for the management of subretinal fibrosis.
基金United Arab Emirates University,Grant/Award Number:12R104 and 12R121。
文摘Cardiac injury initiates repair mechanisms and results in cardiac remodeling and fi-brosis,which appears to be a leading cause of cardiovascular diseases.Cardiac fi-brosis is characterized by the accumulation of extracellular matrix proteins,mainly collagen in the cardiac interstitium.Many experimental studies have demonstrated that fibrotic injury in the heart is reversible;therefore,it is vital to understand differ-ent molecular mechanisms that are involved in the initiation,progression,and resolu-tion of cardiac fibrosis to enable the development of antifibrotic agents.Of the many experimental models,one of the recent models that has gained renewed interest is isoproterenol(ISP)-induced cardiac fibrosis.ISP is a synthetic catecholamine,sympa-thomimetic,and nonselectiveβ-adrenergic receptor agonist.The overstimulated and sustained activation ofβ-adrenergic receptors has been reported to induce biochemi-cal and physiological alterations and ultimately result in cardiac remodeling.ISP has been used for decades to induce acute myocardial infarction.However,the use of low doses and chronic administration of ISP have been shown to induce cardiac fibrosis;this practice has increased in recent years.Intraperitoneal or subcutaneous ISP has been widely used in preclinical studies to induce cardiac remodeling manifested by fibrosis and hypertrophy.The induced oxidative stress with subsequent perturbations in cellular signaling cascades through triggering the release of free radicals is consid-ered the initiating mechanism of myocardial fibrosis.ISP is consistently used to induce fibrosis in laboratory animals and in cardiomyocytes isolated from animals.In recent years,numerous phytochemicals and synthetic molecules have been evaluated in ISP-induced cardiac fibrosis.The present review exclusively provides a comprehensive summary of the pathological biochemical,histological,and molecular mechanisms of ISP in inducing cardiac fibrosis and hypertrophy.It also summarizes the application of this experimental model in the therapeutic evaluation of natural as well as syn-thetic compounds to demonstrate their potential in mitigating myocardial fibrosis and hypertrophy.
文摘This article discusses the recent study written by Koizumi et al.Alcohol-associated liver disease(ALD)is a major cause of liver-related morbidity and mortality,which is driven by complex mechanisms,including lipid accumulation,apoptosis,and inflammatory responses exacerbated by gut barrier dysfunction.The study explored the therapeutic potential of elafibranor,a dual peroxisome proliferatoractivated receptor alpha/delta agonist.In clinical trials,elafibranor has shown promise for the treatment of other liver conditions;however,its effects on ALD remain unclear.The authors’findings indicate that elafibranor significantly reduced liver fibrosis and enhanced gut barrier integrity in patients with ALD.These positive effects of elafibranor are mediated through multiple pathways.Elafibranor promotes lipid metabolism,reduces oxidative stress,and inhibits inflammatory responses by restoring gut barrier function.Specifically,it improves hepatocyte function by enhancing autophagic and antioxidant capacity,and it mitigates inflammation by suppressing the lipopolysaccharide/toll-like receptor 4/nuclear factor kappa B signaling pathway.These findings indicate that elafibranor has promising clinical applications.In addition,the study highlights elafibranor’s potential as a therapeutic agent for liver diseases,particularly ALD.This article underscores the importance of understanding the mechanistic pathways underlying ALD and suggests directions for future research aimed at elucidating the benefits and limitations of elafibranor.
文摘BACKGROUND Neonatal screening(NS)is a public health policy to identify genetic pathologies such as cystic fibrosis(CF),sickle cell disease,and other diseases.Sickle cell disea-se is the comprehensive term for a group of hemoglobinopathies characterized by the presence of hemoglobin S.CF is an autosomal recessive multisystemic disease with pathophysiology involving deleterious mutations in the transmembrane re-gulatory gene that encodes a protein that regulates the activity of chloride and sodium channels in the cell surface epithelium.NS is crucial for early diagnosis and management,which ensures a better quality of life.AIM To report a case of the coexistence of sickle cell anemia(SCA)and CF and perform an integrative literature review.METHODS This is an observational study and a review of the literature focusing on two rare genetic pathologies identified simultaneously in NS from the perspective of a clinical case.The authors identified only 5 cases of SCA associated with CF.No clinical trials or review articles were identified considering the rarity of the coexistence of these two pathologies.RESULTS Herein,the authors reported the case of a girl who after undergoing NS on day 8 of life was diagnosed with SCA with an alteration in the dosage of immunoreactive trypsin.The diagnosis of CF was confirmed by the Coulometry Sweat Test.The rarity of the co-occurrence of these two severe genetic pathologies(CF and SCA)is a challenge for medical science.CONCLUSION This study adds to the few case reports present in the literature that highlight the identification of two severe diseases via NS.
基金National Natural Science Foundation of China,Grant/Award Number:82174292Key Project of Jiangsu Provincial Administration of Traditional Chinese Medicine,Grant/Award Number:ZD202312+2 种基金Natural Science Foundation of Laboratory Medicine School in Chengdu Medical College,Grant/Award Number:JYZK202203Sichuan Province Science and Technology Program,Grant/Award Number:2024NSFSC0577 and 2021YFG0316Technology innovation group project of Foshan 2019,Grant/Award Number:FS0AA-KJ919-4402-0027。
文摘Background:The emerging incidence of pathogenic liver conditions is turning into a major concern for global health.Induction of pyroptosis in hepatocytes instigates cel-lular disintegration,which in turn liberates substantial quantities of pro-inflammatory intracellular substances,thereby accelerating the advancement of liver fibrosis.Consequently,directing therapeutic efforts towards inhibiting pyroptosis could po-tentially serve as an innovative approach in managing inflammation related chronic hepatic disorders.Methods:GSDMD-NT^(ki/wt)mice and Alb-cre^(ki/wt)mice were generated using CRISPR/Cas9 technology.After crossing the two strains together,we induced conditional cell death by doxycycline to construct a mouse model of liver fibrosis.We analyzed differ-entially expressed genes by RNA sequencing and explored their biological functions.The efficacy of obeticholic acid(OCA)in the treatment of liver fibrosis was assessed.Results:Doxycycline-treated GSDMD-NT^(ki/wt)×Alb-cre^(ki/wt)mice showed severe liver damage,vacuolation of hepatocytes,increased collagen fibers,and accumulation of lipid droplets.The expression of liver fibrosis related genes was greatly increased in the doxycycline-treated mouse liver compared with untreated mouse liver.RNA-sequencing showed that upregulated differentially expressed genes were involved in inflammatory responses,cell activation,and metabolic processes.Treatment with OCA alleviated the liver fibrosis,with reduced ALT and AST levels seen in the GSDMD-NT^(ki/wt)×Alb-cre^(ki/wt)mice.Conclusions:We successfully constructed a novel mouse model for liver fibrosis.This GSDMD-NT-induced fibrosis may be mediated by abnormal lipid metabolism.Our re-sults demonstrated that we successfully constructed a mouse model of liver fibrosis,and GSDMD-NT induced fibrosis by mediating lipid metabolism.
基金Supported by the School-Level Project Fund of Chongqing Medical and Pharmaceutical College,No.Ygzrc2023109the Science and Technology Research Program of Chongqing Municipal Education Commission,No.KJQN202302822+1 种基金the Special Fund for Agro-Scientific Research in The Public Interest,No.201303040-05the Special Project for Fundamental Work of Science and Technology,No.2013FY110600-03.
文摘BACKGROUND Liver fibrosis and cirrhosis are global medical challenges that require safe and effective treatments.In the past two decades,there has been a surge in research on stem cell therapy for liver fibrosis and cirrhosis.This study aimed to conduct a comprehensive analysis of the research hotspots and trends in this field through bibliometrics.sters was conducted.RESULTS As of September 20,2024,a total of 1935 documents were retrieved dating from 2004 to 2024,with 1186 strongly relevant publications obtained after screening.China,the United States,and Japan were the major contributors in this field.Cairo University,Zhejiang University and Yamaguchi University were the major institution in this field.The journal Stem Cell Research&Therapy published the most papers.There were 686 authors,with Shuji Terai,Isao Sakaida,Soon Koo Baik,and Lanjuan Li publishing the most papers.The research focused on alcoholic cirrhosis and nonalcoholic fatty liver disease.The emerging areas of interest were extracellular vesicles,exosomes,and their enriched microRNAs.The field is experiencing rapid growth due to the changing research trends and increasing literature.CONCLUSION These findings provide a thorough overview of stem cell therapy in the field of liver fibrosis and cirrhosis.
文摘Idiopathic pulmonary fibrosis(IPF)has a poor prognosis if left untreated;therefore,early treatment with pirfenidone is crucial.Lei et al conducted a retrospective analysis to evaluate the effectiveness of early pirfenidone treatment on lung function in 113 patients with IPF.In addition to other research,pirfeni-done has demonstrated efficacy in patients at all stages of IPF once correct diagnosis has been made.In advanced IPF,we include the requirement for pirfenidone.Therefore,it is essential to choose an appropriate method of adminis-tration method,such as inhalation.This may circumvent the drawbacks of the high cost and possible adverse effects of this drug.
基金Supported by Research Fund for Academician Lin He New Medicine,No.JYHL2022FMS02.
文摘BACKGROUND The pathophysiology of diabetic kidney disease(DKD)is complex.Interfering with the processes of pyroptosis and fibrosis is an effective strategy for slowing DKD progression.Previous studies have revealed that nuclear receptor subfamily 4 group A member 1(NR4A1)may serve as a novel pathogenic element in DKD;however,the specific mechanism by which it contributes to pyroptosis and fibrosis in DKD is unknown.AIM To investigate the role of NR4A1 in renal pyroptosis and fibrosis in DKD and possible molecular mechanisms.METHODS Streptozotocin 60 mg/kg was injected intraperitoneally to establish a rat model of DKD.Typically,45 mmol/L glucose[high glucose(HG)]was used to activate HK-2 cells to mimic the DKD model in vitro.HK-2 cells were transfected with NR4A1 siRNA to silence NR4A1.RESULTS NR4A1 was elevated in renal tissues of DKD rats and HG-stimulated HK-2 cells.Concurrently,NOD-like receptor protein 3(NLRP3)and phosphoinositide 3-kinase(PI3K)/protein kinase B(AKT)pathways were triggered,and pyroptosis and expression of fibrosis-linked elements was increased in vivo and in vitro.These alterations were significantly reversed via NR4A1 silencing.CONCLUSION Inhibition of NR4A1 mitigated pyroptosis and fibrosis via suppressing NLRP3 activation and the PI3K/AKT pathway in HG-activated HK-2 cells.
文摘Pulmonary fibrosis significantly contributes to the pathogenesis of acute respiratory distress syndrome(ARDS),markedly increasing patient mortality.Despite the established anti-fibrotic effects of mesenchymal stem cells(MSCs),numerous challenges hinder their clinical application.A recent study demon-strated that microvesicles(MVs)from MSCs(MSC-MVs)could attenuate ARDS-related pulmonary fibrosis and enhance lung function via hepatocyte growth factor mRNA transcription.This discovery presents a promising strategy for managing ARDS-associated pulmonary fibrosis.This article initially examines the safety and efficacy of MSCs from both basic science and clinical perspectives,subsequently exploring the potential and obstacles of employing MSC-MVs as a novel therapeutic approach.Additionally,it provides perspectives on future research into the application of MSC-MVs in ARDS-associated pulmonary fi-brosis.
文摘BACKGROUND Alpha-1 antitrypsin deficiency(AATD)is a codominant autosomal hereditary condition that predisposes patients to the development of lung and/or liver disease,and Pi*Z allele is the most clinically relevant mutation.AIM To evaluate the impact of clinical parameters and AATD phenotypes,particularly the Pi*Z allele,in liver fibrosis.METHODS Cross-sectional cohort study including consecutive patients with AATD followed in Pulmonology or Hepatology consultation.RESULTS Included 69 patients,49.3%had Pi*MZ phenotype and 10.1%Pi*ZZ.An age≥55 years,age at diagnosis≥41 years and AAT at diagnosis<77 mg/dL predicted a nonalcoholic fatty liver disease fibrosis score(NFS)not excluding advanced fibrosis[area under the curve(AUC)=0.840,P<0.001;AUC=0.836,P<0.001;AUC=0.681,P=0.025].An age≥50 years and age at diagnosis≥41 years predicted a fibrosis-4 index of moderate to advanced fibrosis(AUC=0.831,P<0.001;AUC=0.795,P<0.001).Patients with hypertension,type 2 diabetes mellitus(DM),dyslipidaemia,metabolic syndrome,and regular alcohol consumption were more likely to have a NFS not excluding advanced fibrosis(P<0.001,P=0.002,P=0.008,P<0.001,P=0.033).Patients with at least one Pi*Z allele and type 2 DM were 8 times more likely to have liver stiffness measurement≥7.1 kPa(P=0.040).CONCLUSION Risk factors for liver disease in AATD included an age≥50 years,age at diagnosis≥41 years,metabolic risk factors,regular alcohol consumption,at least one Pi*Z allele,and AAT value at diagnosis<77 mg/dL.We created an algorithm for liver disease screening in AATD patients to use in primary care,selecting those to be referred to Hepatology consultation.
基金the Cuiying Scientific and Technological Innovation Program of Lanzhou University Second Hospital,NO.CY2021-QNB09the Science and Technology Project of Gansu Province,NO.21JR11RA122+1 种基金Department of Education of Gansu Province:Innovation Fund Project,NO.2022B-056Gansu Province Clinical Research Center for Functional and Molecular Imaging,NO.21JR7RA438.
文摘BACKGROUND Diffusion-weighted imaging(DWI)has been developed to stage liver fibrosis.However,its diagnostic performance is inconsistent among studies.Therefore,it is worth studying the diagnostic value of various diffusion models for liver fibrosis in one cohort.AIM To evaluate the clinical potential of six diffusion-weighted models in liver fibrosis staging and compare their diagnostic performances.METHODS This prospective study enrolled 59 patients suspected of liver disease and scheduled for liver biopsy and 17 healthy participants.All participants underwent multi-b value DWI.The main DWI-derived parameters included Mono-apparent diffusion coefficient(ADC)from mono-exponential DWI,intravoxel incoherent motion model-derived true diffusion coefficient(IVIM-D),diffusion kurtosis imaging-derived apparent diffusivity(DKI-MD),stretched exponential model-derived distributed diffusion coefficient(SEM-DDC),fractional order calculus(FROC)model-derived diffusion coefficient(FROC-D)and FROC model-derived microstructural quantity(FROC-μ),and continuous-time random-walk(CTRW)model-derived anomalous diffusion coefficient(CTRW-D)and CTRW model-derived temporal diffusion heterogeneity index(CTRW-α).The correlations between DWI-derived parameters and fibrosis stages and the parameters’diagnostic efficacy in detecting significant fibrosis(SF)were assessed and compared.RESULTS CTRW-D(r=-0.356),CTRW-α(r=-0.297),DKI-MD(r=-0.297),FROC-D(r=-0.350),FROC-μ(r=-0.321),IVIM-D(r=-0.251),Mono-ADC(r=-0.362),and SEM-DDC(r=-0.263)were significantly correlated with fibrosis stages.The areas under the ROC curves(AUCs)of the combined index of the six models for distinguishing SF(0.697-0.747)were higher than each of the parameters alone(0.524-0.719).The DWI models’ability to detect SF was similar.The combined index of CTRW model parameters had the highest AUC(0.747).CONCLUSION The DWI models were similarly valuable in distinguishing SF in patients with liver disease.The combined index of CTRW parameters had the highest AUC.
基金supported by the National Natural Science Foundation(82173877 and 82073918)the Natural Science Foundation of Hunan Province(2024JJ5571)the Frontier Cross Project of Central South University(2023QYJC031),China.
文摘Renal fibrosis is the common pathological basis for the progressive development of chronic kidney disease(CKD)caused by various etiologies.It is characterized by the persistent deposition of extracellular matrix,leading to renal tissue damage and impaired renal function,and ultimately progressing to kidney failure.Current clinical treatments for CKD mainly focus on managing the primary diseases,with no specific drugs targeting renal fibrosis.The pathogenesis of renal fibrosis is complex,and there are currently no drugs available to reverse it.A comprehensive overview of the pathogenesis of renal fibrosis,alongside a summary of current anti-fibrotic therapies,including some that are already used clinically to slow renal function progression,new drugs in clinical trials,and emerging targeted therapies,could provide new theoretical foundations and perspectives for the treatment of renal fibrosis.
文摘BACKGROUND Both tenofovir alafenamide(TAF)and tenofovir disoproxil fumarate(TDF)are the first-line treatments for chronic hepatitis B(CHB).We have showed switching from TDF to TAF for 96 weeks resulted in further alanine aminotransferase(ALT)improvement,but data remain lacking on the long-term benefits of TDF switching to TAF on hepatic fibrosis.AIM To assess the benefits of TDF switching to TAF for 3 years on ALT,aspartate aminotransferase(AST),and hepatic fibrosis improvement in patients with CHB.METHODS A single center retrospective study on 53 patients with CHB who were initially treated with TDF,then switched to TAF to determine dynamic patterns of ALT,AST,AST to platelet ratio index(APRI),fibrosis-4(FIB-4)scores,and shear wave elastography(SWE)reading improvement at switching week 144,and the associated factors.RESULTS The mean age was 55(28-80);45.3%,males;15.1%,clinical cirrhosis;mean baseline ALT,24.8;AST,25.7 U/L;APRI,0.37;and FIB-4,1.66.After 144 weeks TDF switching to TAF,mean ALT and AST were reduced to 19.7 and 21,respectively.From baseline to switching week 144,the rates of ALT and AST<35(male)/25(female)and<30(male)/19(female)were persistently increased;hepatic fibrosis was also improved by APRI<0.5,from 79.2%to 96.2%;FIB-4<1.45,from 52.8%to 58.5%,respectively;mean APRI was reduced to 0.27;FIB-4,to 1.38;and mean SWE reading,from 7.05 to 6.30 kPa after a mean of 109 weeks switching.The renal function was stable and the frequency of patients with glomerular filtration rate>60 mL/min was increased from 86.5%at baseline to 88.2%at switching week 144.CONCLUSION Our data confirmed that switching from TDF to TAF for 3 years results in not only persistent ALT/AST improvement,but also hepatic fibrosis improvement by APRI,FIB-4 scores,as well as SWE reading,the important clinical benefits of long-term hepatitis B virus antiviral treatment with TAF.
文摘BACKGROUND Alcohol-associated liver disease(ALD)is a leading cause of liver-related morbidity and mortality,but there are no therapeutic targets and modalities to prevent ALD-related liver fibrosis.Peroxisome proliferator activated receptor(PPAR)α and δ play a key role in lipid metabolism and intestinal barrier homeostasis,which are major contributors to the pathological progression of ALD.Meanwhile,elafibranor(EFN),which is a dual PPARαand PPARδagonist,has reached a phase III clinical trial for the treatment of metabolic dysfunctionassociated steatotic liver disease and primary biliary cholangitis.However,the benefits of EFN for ALD treatment is unknown.AIM To evaluate the inhibitory effects of EFN on liver fibrosis and gut-intestinal barrier dysfunction in an ALD mouse model.METHODS ALD-related liver fibrosis was induced in female C57BL/6J mice by feeding a 2.5% ethanol(EtOH)-containing Lieber-DeCarli liquid diet and intraperitoneally injecting carbon tetrachloride thrice weekly(1 mL/kg)for 8 weeks.EFN(3 and 10 mg/kg/day)was orally administered during the experimental period.Histological and molecular analyses were performed to assess the effect of EFN on steatohepatitis,fibrosis,and intestinal barrier integrity.The EFN effects on HepG2 lipotoxicity and Caco-2 barrier function were evaluated by cell-based assays.RESULTS The hepatic steatosis,apoptosis,and fibrosis in the ALD mice model were significantly attenuated by EFN treatment.EFN promoted lipolysis and β-oxidation and enhanced autophagic and antioxidant capacities in EtOH-stimulated HepG2 cells,primarily through PPARαactivation.Moreover,EFN inhibited the Kupffer cell-mediated inflammatory response,with blunted hepatic exposure to lipopolysaccharide(LPS)and toll like receptor 4(TLR4)/nuclear factor kappa B(NF-κB)signaling.EFN improved intestinal hyperpermeability by restoring tight junction proteins and autophagy and by inhibiting apoptosis and proinflammatory responses.The protective effect on intestinal barrier function in the EtOH-stimulated Caco-2 cells was predominantly mediated by PPARδ activation.CONCLUSION EFN reduced ALD-related fibrosis by inhibiting lipid accumulation and apoptosis,enhancing hepatocyte autophagic and antioxidant capacities,and suppressing LPS/TLR4/NF-κB-mediated inflammatory responses by restoring intestinal barrier function.
基金Supported by National Natural Science Foundation of China,No.82205025,No.82374355 and No.82174293Subject of Jiangsu Province Hospital of Chinese Medicine,No.Y21023Forth Batch of Construction Program for Inheritance Office of Jiangsu Province Famous TCM Experts,No.[2021]7.
文摘BACKGROUND Development of end-stage renal disease is predominantly attributed to diabetic nephropathy(DN).Previous studies have indicated that myricetin possesses the potential to mitigate the pathological alterations observed in renal tissue.Never-theless,the precise molecular mechanism through which myricetin influences the progression of DN remains uncertain.AIM To investigate the effects of myricetin on DN and explore its potential therapeutic mechanism.METHODS Db/db mice were administered myricetin intragastrically on a daily basis at doses of 50 mg/kg or 100 mg/kg for a duration of 12 wk.Subsequently,blood and urine indexes were assessed,along with examination of renal tissue pathology.Kidney morphology and fibrosis were evaluated using various staining techniques including hematoxylin and eosin,periodic acid–Schiff,Masson’s trichrome,and Sirius-red.Additionally,high-glucose culturing was conducted on the RAW 264.7 cell line,treated with 25 mM myricetin or co-administered with the PI3K/Akt inhibitor LY294002 for a period of 24 h.In both in vivo and in vitro settings,quantification of inflammation factor levels was conducted using western blotting,real-time qPCR and ELISA.RESULTS In db/db mice,administration of myricetin led to a mitigating effect on DN-induced renal dysfunction and fibrosis.Notably,we observed a significant reduction in expressions of the kidney injury markers kidney injury molecule-1 and neutrophil gelatinase associated lipocalin,along with a decrease in expressions of inflammatory cytokine-related factors.Furthermore,myricetin treatment effectively inhibited the up-regulation of tumor necrosis factor-alpha,interleukin-6,and interluekin-1βinduced by high glucose in RAW 264.7 cells.Additionally,myricetin modulated the M1-type polarization of the RAW 264.7 cells.Molecular docking and bioinformatic analyses revealed Akt as the target of myricetin.The protective effect of myricetin was nullified upon blocking the polarization of RAW 264.7 via inhibition of PI3K/Akt activation using LY294002.CONCLUSION This study demonstrated that myricetin effectively mitigates kidney injury in DN mice through the regulation of macrophage polarization via the PI3K/Akt signaling pathway.
文摘The present letter to the editor is related to the study titled‘Angiotensin-converting enzyme 2 improves liver fibrosis in mice by regulating autophagy of hepatic stellate cells’.Angiotensin-converting enzyme 2 can alleviate liver fibrosis by regulating autophagy of hepatic stellate cells and affecting the renin-angiotensin system.
文摘BACKGROUND Idiopathic pulmonary fibrosis(IPF)is classified under fibrotic interstitial pneumonia,characterized by a chronic and progressive course.The predominant clinical features of IPF include dyspnea and pulmonary dysfunction.AIM To assess the effects of pirfenidone in the early treatment of IPF on lung function in patients.METHODS A retrospective analysis was performed on 113 patients with IPF who were treated in our hospital from November 2017 to January 2023.These patients were divided into two groups:control group(n=53)and observation group(n=60).In the control group,patients received routine therapy in combination with methylprednisolone tablets,while those in the observation group received routine therapy together with pirfenidone.After applying these distinct treatment approaches to the two groups,we assessed several parameters,including the overall effectiveness of clinical therapy,the occurrence of adverse reactions(e.g.,nausea,vomiting,and anorexia),symptom severity scores,pulmonary function index levels,inflammatory marker levels,and the 6-min walk distance before and after treatment in both groups.RESULTS The observation group exhibited significantly higher rates than the control group after therapy,with a clear distinction(P<0.05).After treatment,the observation group experienced significantly fewer adverse reactions than the control group,with a noticeable difference(P<0.05).When analyzing the symptom severity scores between the two groups of patients after treatment,the observation group had significantly lower scores than the control group,with a distinct difference(P<0.05).When comparing the pulmonary function index levels between the two groups of patients after therapy,the observation group displayed significantly higher levels than the control group,with a noticeable difference(P<0.05).Evaluating the inflammatory marker data(C-reactive protein,interleukin-2[IL-2],and IL-8)between the two groups of patients after therapy,the observation group exhibited significantly lower levels than the control group,with significant disparities(P<0.05).Comparison of the 6-min walking distance data between the two groups of patients after treatment showed that the observation group achieved significantly greater distances than the control group,with a marked difference(P<0.05).CONCLUSION Prompt initiation of pirfenidone treatment in individuals diagnosed with IPF can enhance pulmonary function,elevate inflammatory factor levels,and increase the distance covered in the 6-min walk test.This intervention is conducive to effectively decreasing the occurrence of adverse reactions in patients.
基金supported by grants for National Key Research and Development Program of China(No.2020YFA0113003)Key Research and Development Project of Zhejiang Province(No.2023C03046)+1 种基金Fundamental Research Funds for the Central Universities(No.2022ZFJH003)Research Project of Jinan Microecological Biomedicine Shandong Laboratory(No.JNL-2022026C,JNL-2023003C).
文摘Primary sclerosing cholangitis(PSC)is an autoimmune cholangiopathy characterized by chronic inflammation of the biliary epithelium and periductal fibrosis,with no curative treatment available,and liver transplantation is inevitable for end-stage patients.Human placentalmesenchymal stem cell(hpMSC)-derived exosomes have demonstrated the ability to prevent fibrosis,inhibit collagen production and possess immunomodulatory properties in autoimmune liver disease.Here,we prepared hpMSC-derived exosomes(Exo^(MSC))and further investigated the anti-fibrotic effects and detailed mechanism on PSC based on Mdr2^(−/−)mice and multicellular organoids established from PSC patients.The results showed that Exo^(MSC) ameliorated liver fibrosis in Mdr2^(−/−)mice with significant collagen reduction in the preductal area where Th17 differentiation was inhibited as demonstrated by RNAseq analysis,and the percentage of CD4+IL-17A+T cells was reduced both in Exo^(MSC)-treated Mdr2^(−/−)mice(Mdr2^(−/−)-Exo)in vivo and Exo^(MSC)-treated Th17 differentiation progressed in vitro.Furthermore,Exo^(MSC) improved the hypersecretory phenotype and intercellular interactions in the hepatic Th17 microenvironment by regulating PERK/CHOP signaling as supported by multicellular organoids.Thus,our data demonstrate the antifibrosis effect of Exo^(MSC) in PSC disease by inhibiting Th17 differentiation,and ameliorating the Th17-induced microenvironment,indicating the promising potential therapeutic role of Exo^(MSC) in liver fibrosis of PSC or Th17-related diseases.
基金supported by the National Natural Science Foundation of China(Grant No.:82074104)the Research Project of Clinical Toxicology Transformation from the Chinese Society of Toxicology,China(Grant No.:CST2021CT101)the Chinese Academy of Medical Science Innovation Fund for Medical Sciences,China(Grant Nos.:2017-I2M-1-011 and 2022-I2M-2-002).
文摘Pulmonary fibrosis (PF) is a chronic progressive end-stage lung disease. However, the mechanisms underlying the progression of this disease remain elusive. Presently, clinically employed drugs are scarce for the treatment of PF. Hence, there is an urgent need for developing novel drugs to address such diseases. Our study found for the first time that a natural source of Prismatomeris connata Y. Z. Ruan (Huang Gen, HG) ethyl acetate extract (HG-2) had a significant anti-PF effect by inhibiting the expression of the transforming growth factor beta 1/suppressor of mothers against decapentaplegic (TGF-β1/Smad) pathway. Network pharmacological analysis suggested that HG-2 had effects on tyrosine kinase phosphorylation, cellular response to reactive oxygen species, and extracellular matrix (ECM) disassembly. Moreover, mass spectrometry imaging (MSI) was used to visualize the heterogeneous distribution of endogenous metabolites in lung tissue and reveal the anti-PF metabolic mechanism of HG-2, which was related to arginine biosynthesis and alanine, asparate and glutamate metabolism, the downregulation of arachidonic acid metabolism, and the upregulation of glycerophospholipid metabolism. In conclusion, we elaborated on the relationship between metabolite distribution and the progression of PF, constructed the regulatory metabolic network of HG-2, and discovered the multi-target therapeutic effect of HG-2, which might be conducive to the development of new drugs for PF.
基金supported by Wenzhou Municipal Science and technology Bureau,China(Grant No.:Y20220023)the Key Laboratory of Clinical Laboratory Diagnosis and Translational Research of Zhejiang Province,China(Grant No.:2022E10022)the Project of Wenzhou Medical University Basic Scientific Research,China(Grant No.:KYYW201904).
文摘Liver fibrosis is primarily driven by the activation of hepatic stellate cells(HSCs),a process associated with ferroptosis.Ginsenoside Rb1(GRb1),a major active component extracted from Panax ginseng,inhibits HSC activation.However,the potential role of GRb1 in mediating HSC ferroptosis remains unclear.This study examined the effect of GRb1 on liver fibrosis both in vivo and in vitro,using CCl4-induced liver fibrosis mouse model and primary HSCs,LX-2 cells.The findings revealed that GRb1 effectively inactivated HSCs in vitro,reducing alpha-smooth muscle actin(a-SMA)and type I collagen(Col1A1)levels.Moreover,GRb1 significantly alleviated CCl4-induced liver fibrosis in vivo.From a mechanistic standpoint,the ferroptosis pathway appeared to be central to the antifibrotic effects of GRb1.Specifically,GRb1 promoted HSC ferroptosis both in vivo and in vitro,characterized by increased glutathione depletion,malondialdehyde production,iron overload,and accumulation of reactive oxygen species(ROS).Intriguingly,GRb1 increased Beclin 1(BECN1)levels and decreased the System Xc-key subunit SLC7A11.Further experiments showed that BECN1 silencing inhibited GRb1-induced effects on HSC ferroptosis and mitigated the reduction of SLC7A11 caused by GRb1.Moreover,BECN1 could directly interact with SLC7A11,initiating HSC ferroptosis.In conclusion,the suppression of BECN1 counteracted the effects of GRb1 on HSC inactivation both in vivo and in vitro.Overall,this study highlights the novel role of GRb1 in inducing HSC ferroptosis and promoting HSC inactivation,at least partly through its modulation of BECN1 and SLC7A11.