The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliab...The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliability. Based on the analysis of the characteristics of real-time embedded software, the formal method is introduced into the real-time embedded software testing field and the real-time extended finite state machine (RT-EFSM) model is studied firstly. Then, the time zone division method of real-time embedded system is presented and the definition and description methods of time-constrained transition equivalence class (timeCTEC) are presented. Furthermore, the approaches of the testing sequence and test case generation are put forward. Finally, the proposed method is applied to a typical avionics real- time embedded software testing practice and the examples of the timeCTEC, testing sequences and test cases are given. With the analysis of the testing result, the application verification shows that the proposed method can effectively describe the real-time embedded software state transition characteristics and real-time requirements and play the advantages of the formal methods in accuracy, effectiveness and the automation supporting. Combined with the testing platform, the real-time, closed loop and automated simulation testing for real-time embedded software can be realized effectively.展开更多
Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protec...Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer suffi- cient and effective for those features. In this paper, we propose a distributed intrusion detection ap- proach based on timed automata. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then we con- struct the Finite State Machine (FSM) by the way of manually abstracting the correct behaviors of the node according to the routing protocol of Dynamic Source Routing (DSR). The monitor nodes can verify every node's behavior by the Finite State Ma- chine (FSM), and validly detect real-time attacks without signatures of intrusion or trained data.Compared with the architecture where each node is its own IDS agent, our approach is much more efficient while maintaining the same level of effectiveness. Finally, we evaluate the intrusion detection method through simulation experiments.展开更多
According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotiona...According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition fimction was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform. And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.展开更多
Using state assignment to minimize power dissipation and area for finite state ma-chines is computationally hard. Most of published results show that the reduction of switchingactivity often trades with area penalty. ...Using state assignment to minimize power dissipation and area for finite state ma-chines is computationally hard. Most of published results show that the reduction of switchingactivity often trades with area penalty. In this paper, a new approach is proposed. Experimentalresults show a significant reduction of switching activity without area penalty compared withprevious publications.展开更多
Finite state machine theory (FSM) is introduced and applied to global control of electric vehicle. Theoretical adaptation for application of FSM in control of electric vehicle is analyzed. Global control logic for par...Finite state machine theory (FSM) is introduced and applied to global control of electric vehicle. Theoretical adaptation for application of FSM in control of electric vehicle is analyzed. Global control logic for parts of electric vehicle is analyzed and built based on FSM. Using Matlab/Simulink, BJD6100-HEV global control algorithm is modeled and prove validity by simulation.展开更多
The lack of standard to electronic circuits modeling made possible the development of many tools and modeling languages for electronic circuits. In this way, several tools to be used on different descriptions stage of...The lack of standard to electronic circuits modeling made possible the development of many tools and modeling languages for electronic circuits. In this way, several tools to be used on different descriptions stage of the designs are necessary. This paper presents a tool called SF^2HDL (Stateflow to Hardware Description Language or State Transition Table) that translates a finite state machine on state transition diagram representation, described by Stateflow tool, into an input file standard for TABELA program or into a file behavioral VHDL (Very High Speed Integrated Circuits Hardware Description Language) directly. The TABELA program was used to optimization this finite state machine. After that, the TAB2VHDL program was used to generate the VHDL code on register transfer level, what permits comparisons with results obtained by synthesis. The finite state machine must be described by Mealy model and the user can describe the machine on high level abstraction using all Simulink supports. The tool was very efficient on computational cost and it made translation of several cases, for the two VHDL description models. Every state machine translated was simulated and implemented on device EP2C20F484C7 using Quartus II environment.展开更多
This study aims to propose a decision-making method based on artificial potential fields(APFs)and finite state machines(FSMs)in emergency conditions.This study presents a decision-making method based on APFs and FSMs ...This study aims to propose a decision-making method based on artificial potential fields(APFs)and finite state machines(FSMs)in emergency conditions.This study presents a decision-making method based on APFs and FSMs for emergency conditions.By modeling the longitudinal and lateral potential energy fields of the vehicle,the driving state is identified,and the trigger conditions are provided for path planning during lane changing.In addition,this study also designed the state transition rules based on the longitudinal and lateral virtual forces.It established the vehicle decision-making model based on the finite state machine to ensure driving safety in emergency situations.To illustrate the performance of the decision-making model by considering APFs and finite state machines.The version of the model in the co-simulation platform of MATLAB and CarSim shows that the developed decision model in this study accurately generates driving behaviors of the vehicle at different time intervals.The contributions of this study are two-fold.A hierarchical vehicle state machine decision model is proposed to enhance driving safety in emergency scenarios.Mathematical models for determining the transition thresholds of lateral and longitudinal vehicle states are established based on the vehicle potential field model,leading to the formulation of transition rules between different states of autonomous vehicles(AVs).展开更多
In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mob...In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mobile robot to safely navigate in an indoor environment. First, the designs of two behaviors for a robot's autonomous navigation are described, including path tracking and obstacle avoidance, which emulate human driving behaviors and reduce the complexity of the robot's navigation problems in unknown environments. Secondly, the two behaviors are combined by using a finite state machine (FSM), which ensures that the robot can safely track a predefined path in an unknown indoor environment. The inputs to this controller are the readings from the sensors. The corresponding output is the desired direction of the robot. Finally, both the simulation and experimental results verify the effectiveness of the proposed method.展开更多
制造业的生产物流方式处于不断变革中,对其建模仿真可为制造系统规划设计、分析及改造提供决策支持。依“人-机-物-环-法”分类给出了智能车间制造系统中实体元素的描述,结合EFSM(extended finite state machine)和组件化建模思想,建立...制造业的生产物流方式处于不断变革中,对其建模仿真可为制造系统规划设计、分析及改造提供决策支持。依“人-机-物-环-法”分类给出了智能车间制造系统中实体元素的描述,结合EFSM(extended finite state machine)和组件化建模思想,建立了生产和物流组件化EFSM模型;阐述了智能车间多作业生产的建模过程以及组件模型实例化方法;通过EFSM-DEVS(discrete event system specification)模型自动转换及DEVS引擎完成了仿真运行。仿真结果表明:该方法所建立的模型更符合车间实际状况,适用性更广;组件化建模思想能构造更具扩展性的软件;建模及仿真运行的3D可视化使软件直观性更好,其仿真结果与AnyLogic保持一致。展开更多
This paper presents a model specifying requirements of real-time systems. Different from existing researches, this model mainly uses rules and templates to represent hierarchical FSMs (Finite State Machine). In this m...This paper presents a model specifying requirements of real-time systems. Different from existing researches, this model mainly uses rules and templates to represent hierarchical FSMs (Finite State Machine). In this model, one rule corresponds to one state transition of FSM and one template corresponds to one FSM. Rules and information with respect to a FSM can be written in a template. So templates include not only state diagrams, but also information that can not be described by FSM, such as performance requirements. The specification using this model consists of a collection of templates and it is easy for users to understand and to review. After introduced the related researches and principles of the model, this paper specifies requirements of a real-time system with this model, and discusses characters of this model in the end.展开更多
Traditional matrix-based approaches in the field of finite state machines construct state transition matrices,and then use the powers of the state transition matrices to represent corresponding dynamic transition proc...Traditional matrix-based approaches in the field of finite state machines construct state transition matrices,and then use the powers of the state transition matrices to represent corresponding dynamic transition processes,which are cornerstones of system analysis.In this study,we propose a static matrix-based approach that revisits a finite state machine from its structure rather than its dynamic transition process,thus avoiding the“explosion of complexity”problem inherent in the existing approaches.Based on the static approach,we reexamine the issues of closed-loop detection and controllability for deterministic finite state machines.In addition,we propose controllable equivalent form and minimal controllable equivalent form concepts and give corresponding algorithms.展开更多
In developing distributed systems, conformance testing is required to determine whether an implementation under test (IUT) conforms to its specification. With distributed test architectures involving multiple remote...In developing distributed systems, conformance testing is required to determine whether an implementation under test (IUT) conforms to its specification. With distributed test architectures involving multiple remote testers, testing approaches may become more complicated because of issues known as controllability and observability problems. Based on a finite state machine (FSM) representation of the system's specification, this paper proposes a new method to generate a test sequence utilizing multiple UIO sequences. The method is essentially guided by the way of minimizing the use of external coordination messages and input/output operations. Experiments are given to evaluate the proposed method.展开更多
This paper presents the application of finite state machine (FSM) theory to the programming of nonlinear hysteretic model simulation for both known and newly created rules. The complicated reversed internal paths invo...This paper presents the application of finite state machine (FSM) theory to the programming of nonlinear hysteretic model simulation for both known and newly created rules. The complicated reversed internal paths involved in the nonlinear relationship which not only depend on material properties, but also on load history, often confuse rule creators and scholars. In this paper, we first describe the development of past hysteretic models. Then we introduce the FSM theory conceptually, and explain how it is applied to reversed and diverse routes. Next, state definitions and procedures are explained with a specific data example using the bilinear model. Finally, the successful application to UC-win/FRAME (3D) is described and several characteristics are summarized. By using FSM’s states and the linkages to represent a hysteresis model, we can quickly realize the programming of the defined complex model rules, and the nonlinear modeling becomes more efficient and feasible.展开更多
Aiming at the characteristics of modularity and reconfigurable in open architecture computer numerical control (CNC) system, the open architecture CNC system, Harbin Institute of Tech- nology computer numerical cont...Aiming at the characteristics of modularity and reconfigurable in open architecture computer numerical control (CNC) system, the open architecture CNC system, Harbin Institute of Tech- nology computer numerical control (HITCNC), is researched and manufactured based on the interface standards. The system's external interfaces are coincident with the corresponding international standards, and the internal interfaces follow the open modular architecture controller (OMAC) agreement. In the research and manufacturing process, object-oriented technology is used to ensure the openness of the HITCNC, and static programming is applied in the CNC system according to the idea of modularization disassembly. The HITCNC also actualizes real-time and unreal-time modules adopting real-time dynamical linked library (RTDLL) and component object model (COM). Finite state ma- chine (FSM) is adopted to do dynamically modeling of HITCNC. The complete separation between the software and the hardware is achieved in the HITCNC by applying the SoftSERCANS technique. The application of the above key techniques decreases the programming workload greatly, and uses software programs replacing hardware functions, which offers plenty technique ensures for the openness of HITCNC. Finally, based on the HITCNC, a three-dimensional milling system is established. On the system, series experiments are done to validate the expandability and interchangeability of HITCNC. The results of the experiments show that the established open architecture CNC system HITCNC is correct and feasible, and has good openness.展开更多
In this paper, a concept for the joint modeling of the device load and user intention is presented. It consists of two coupled models, a device load model to characterize the power consumption of an electric device of...In this paper, a concept for the joint modeling of the device load and user intention is presented. It consists of two coupled models, a device load model to characterize the power consumption of an electric device of interest, and a user intention model for describing the user intentions which cause the energy consumption. The advantage of this joint model is the ability to predict the device load from the user intention and to reconstruct the user intention from the measured device load. This opens a new way for load monitoring, simulation and prediction from the perspective of users instead of devices.展开更多
Aspect-oriented programming modularizes crosscutting concerns into aspects with the advice invoked at the specified points of program execution. Aspects can be used in a harmful way that invalidates desired properties...Aspect-oriented programming modularizes crosscutting concerns into aspects with the advice invoked at the specified points of program execution. Aspects can be used in a harmful way that invalidates desired properties and even destroys the conceptual integrity of programs. To assure the quality of an aspect-oriented system, rigorous analysis and design of aspects are highly desirable. In this paper, we present an approach to aspect-oriented modeling and verification with finite state machines. Our approach provides explicit notations (e.g., pointcut, advice and aspect) for capturing crosscutting concerns and incremental modification requirements with respect to class state models. For verification purposes, we compose the aspect models and class models in an aspect-oriented model through a weaving mechanism. Then we transform the woven models and the class models not affected by the aspects into FSP (Finite State Processes), which are to be checked by the LTSA (Labeled Transition System Analyzer) model checker against the desired system properties. We have applied our approach to the modeling and verification of three aspect-oriented systems. To further evaluate the effectiveness of verification, we created a large number of flawed aspect models and verified them against the system requirements. The results show that the verification has revealed all flawed models. This indicates that our approach is effective in quality assurance of aspect-oriented state models. As such, our approach can be used for model-checking state-based specification of aspect-oriented design and can uncover some system design problems before the system is implemented.展开更多
Motivated by the inconvenience or even inability to explain the mathematics of the state space optimization of finite state machines(FSMs)in most existing results,we consider the problem by viewing FSMs as logical dyn...Motivated by the inconvenience or even inability to explain the mathematics of the state space optimization of finite state machines(FSMs)in most existing results,we consider the problem by viewing FSMs as logical dynamic systems.Borrowing ideas from the concept of equilibrium points of dynamic systems in control theory,the concepts of t-equivalent states and t-source equivalent states are introduced.Based on the state transition dynamic equations of FSMs proposed in recent years,several mathematical formulations of t-equivalent states and t-source equivalent states are proposed.These can be analogized to the necessary and sufficient conditions of equilibrium points of dynamic systems in control theory and thus give a mathematical explanation of the optimization problem.Using these mathematical formulations,two methods are designed to find all the t-equivalent states and t-source equivalent states of FSMs.Further,two ways of reducing the state space of FSMs are found.These can be implemented without computers but with only pen and paper in a mathematical manner.In addition,an open question is raised which can further improve these methods into unattended ones.Finally,the correctness and effectiveness of the proposed methods are verified by a practical language model.展开更多
A formal methodology is proposed to reduce the amount of information displayed to remote human operators at interfaces to large-scale process control plants of a certain type. The reduction proceeds in two stages. In ...A formal methodology is proposed to reduce the amount of information displayed to remote human operators at interfaces to large-scale process control plants of a certain type. The reduction proceeds in two stages. In the first stage, minimal reduced subsets of components, which give full information about the state of the whole system, are generated by determining functional dependencies between components. This is achieved by using a temporal logic proof obligation to check whether the state of all components can be inferred from the state of components in a subset in specified situations that the human operator needs to detect, with respect to a finite state machine model of the system and other human operator behavior. Generation of reduced subsets is automated with the help of a temporal logic model checker. The second stage determines the interconnections between components to be displayed in the reduced system so that the natural overall graphical structure of the system is maintained. A formal definition of an aesthetic for the required subgraph of a graph representation of the full system, containing the reduced subset of components, is given for this purpose. The methodology is demonstrated by a case study.展开更多
Testing is an integral part of software development.Current fastpaced system developments have rendered traditional testing techniques obsolete.Therefore,automated testing techniques are needed to adapt to such system...Testing is an integral part of software development.Current fastpaced system developments have rendered traditional testing techniques obsolete.Therefore,automated testing techniques are needed to adapt to such system developments speed.Model-based testing(MBT)is a technique that uses system models to generate and execute test cases automatically.It was identified that the test data generation(TDG)in many existing model-based test case generation(MB-TCG)approaches were still manual.An automatic and effective TDG can further reduce testing cost while detecting more faults.This study proposes an automated TDG approach in MB-TCG using the extended finite state machine model(EFSM).The proposed approach integrates MBT with combinatorial testing.The information available in an EFSM model and the boundary value analysis strategy are used to automate the domain input classifications which were done manually by the existing approach.The results showed that the proposed approach was able to detect 6.62 percent more faults than the conventionalMB-TCG but at the same time generated 43 more tests.The proposed approach effectively detects faults,but a further treatment to the generated tests such as test case prioritization should be done to increase the effectiveness and efficiency of testing.展开更多
This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous drivi...This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous driving practitioners,this paper firstly puts forward a logical framework for designing a cerebrum-like autonomous driving system.Secondly,situated on this framework,it builds a hierarchical finite state machine(HFSM)model as well as a TOPSIS-GRA algorithm for making ICV autonomous driving decisions by employing a data fusion approach between the entropy weight method(EWM)and analytic hierarchy process method(AHP)and by employing a model fusion approach between the technique for order preference by similarity to an ideal solution(TOPSIS)and grey relational analysis(GRA).The HFSM model is composed of two layers:the global FSM model and the local FSM model.The decision of the former acts as partial input information of the latter and the result of the latter is sent forward to the local pathplanning module,meanwhile pulsating feedback to the former as real-time refresh data.To identify different traffic scenarios in a cerebrum-like way,the global FSM model is designed as 7 driving behavior states and 17 driving characteristic events,and the local FSM model is designed as 16 states and 8 characteristic events.In respect to designing a cerebrum-like algorithm for state transition,this paper firstly fuses AHP weight and EWM weight at their output layer to generate a synthetic weight coefficient for each characteristic event;then,it further fuses TOPSIS method and GRA method at the model building layer to obtain the implementable order of state transition.To verify the feasibility,reliability,and safety of theHFSMmodel aswell as its TOPSISGRA state transition algorithm,this paper elaborates on a series of simulative experiments conducted on the PreScan8.50 platform.The results display that the accuracy of obstacle detection gets 98%,lane line prediction is beyond 70 m,the speed of collision avoidance is higher than 45 km/h,the distance of collision avoidance is less than 5 m,path planning time for obstacle avoidance is averagely less than 50 ms,and brake deceleration is controlled under 6 m/s2.These technical indexes support that the driving states set and characteristic events set for the HFSM model as well as its TOPSIS-GRA algorithm may bring about cerebrum-like decision-making effectiveness for ICV autonomous driving under 5G-V2X intelligent road infrastructure.展开更多
基金supported by the Aviation Science Foundation of China
文摘The reliability of real-time embedded software directly determines the reliability of the whole real-time embedded sys- tem, and the effective software testing is an important way to ensure software quality and reliability. Based on the analysis of the characteristics of real-time embedded software, the formal method is introduced into the real-time embedded software testing field and the real-time extended finite state machine (RT-EFSM) model is studied firstly. Then, the time zone division method of real-time embedded system is presented and the definition and description methods of time-constrained transition equivalence class (timeCTEC) are presented. Furthermore, the approaches of the testing sequence and test case generation are put forward. Finally, the proposed method is applied to a typical avionics real- time embedded software testing practice and the examples of the timeCTEC, testing sequences and test cases are given. With the analysis of the testing result, the application verification shows that the proposed method can effectively describe the real-time embedded software state transition characteristics and real-time requirements and play the advantages of the formal methods in accuracy, effectiveness and the automation supporting. Combined with the testing platform, the real-time, closed loop and automated simulation testing for real-time embedded software can be realized effectively.
基金Acknowledgements Project supported by the National Natural Science Foundation of China (Grant No.60932003), the National High Technology Development 863 Program of China (Grant No.2007AA01Z452, No. 2009AA01 Z118 ), Project supported by Shanghai Municipal Natural Science Foundation (Grant No.09ZRI414900), National Undergraduate Innovative Test Program (091024812).
文摘Wireless Mesh Networks is vulnerable to attacks due to the open medium, dynamically changing network topology, cooperative algorithms, Lack of centralized monitoring and management point. The traditional way of protecting networks with firewalls and encryption software is no longer suffi- cient and effective for those features. In this paper, we propose a distributed intrusion detection ap- proach based on timed automata. A cluster-based detection scheme is presented, where periodically a node is elected as the monitor node for a cluster. These monitor nodes can not only make local intrusion detection decisions, but also cooperatively take part in global intrusion detection. And then we con- struct the Finite State Machine (FSM) by the way of manually abstracting the correct behaviors of the node according to the routing protocol of Dynamic Source Routing (DSR). The monitor nodes can verify every node's behavior by the Finite State Ma- chine (FSM), and validly detect real-time attacks without signatures of intrusion or trained data.Compared with the architecture where each node is its own IDS agent, our approach is much more efficient while maintaining the same level of effectiveness. Finally, we evaluate the intrusion detection method through simulation experiments.
基金Project(2006AA04Z201) supported by the National High-Tech Research and Development Program of China
文摘According to the basic emotional theory, the artificial emotional model based on the finite state machine(FSM) was presented. In finite state machine model of emotion, the emotional space included the basic emotional space and the multiple emotional spaces. The emotion-switching diagram was defined and transition fimction was developed using Markov chain and linear interpolation algorithm. The simulation model was built using Stateflow toolbox and Simulink toolbox based on the Matlab platform. And the model included three subsystems: the input one, the emotion one and the behavior one. In the emotional subsystem, the responses of different personalities to the external stimuli were described by defining personal space. This model takes states from an emotional space and updates its state depending on its current state and a state of its input (also a state-emotion). The simulation model realizes the process of switching the emotion from the neutral state to other basic emotions. The simulation result is proved to correspond to emotion-switching law of human beings.
基金Supported by NNSF of China(Key International Cooperative Project No.60010121219)
文摘Using state assignment to minimize power dissipation and area for finite state ma-chines is computationally hard. Most of published results show that the reduction of switchingactivity often trades with area penalty. In this paper, a new approach is proposed. Experimentalresults show a significant reduction of switching activity without area penalty compared withprevious publications.
文摘Finite state machine theory (FSM) is introduced and applied to global control of electric vehicle. Theoretical adaptation for application of FSM in control of electric vehicle is analyzed. Global control logic for parts of electric vehicle is analyzed and built based on FSM. Using Matlab/Simulink, BJD6100-HEV global control algorithm is modeled and prove validity by simulation.
文摘The lack of standard to electronic circuits modeling made possible the development of many tools and modeling languages for electronic circuits. In this way, several tools to be used on different descriptions stage of the designs are necessary. This paper presents a tool called SF^2HDL (Stateflow to Hardware Description Language or State Transition Table) that translates a finite state machine on state transition diagram representation, described by Stateflow tool, into an input file standard for TABELA program or into a file behavioral VHDL (Very High Speed Integrated Circuits Hardware Description Language) directly. The TABELA program was used to optimization this finite state machine. After that, the TAB2VHDL program was used to generate the VHDL code on register transfer level, what permits comparisons with results obtained by synthesis. The finite state machine must be described by Mealy model and the user can describe the machine on high level abstraction using all Simulink supports. The tool was very efficient on computational cost and it made translation of several cases, for the two VHDL description models. Every state machine translated was simulated and implemented on device EP2C20F484C7 using Quartus II environment.
基金supported by the National Natural Science Foundation of China(Grant No.52102454)the Postdoctoral Science Foundation of China(Grant No.2021M700169)+4 种基金in part by the Natural Science Foundation of Chongqing(Grant No.cstc2021jcyj-msxmX0395)the Special Funding for Postdoctoral Research Projects in Chongqing(Grant No.2021XM3069)the Youth Project of Science and Technology Research Program of Chongqing Education Commission of China(Grant Nos.KJQN202001302 and KJQN202203909)the Natural Science Foundation of Yongchuan District(Grant No.2023yc-jckx20089)the Opening Project of Intelligent Policing Key Laboratory of Sichuan Province(Grant No.ZNJW2023KFQN002).
文摘This study aims to propose a decision-making method based on artificial potential fields(APFs)and finite state machines(FSMs)in emergency conditions.This study presents a decision-making method based on APFs and FSMs for emergency conditions.By modeling the longitudinal and lateral potential energy fields of the vehicle,the driving state is identified,and the trigger conditions are provided for path planning during lane changing.In addition,this study also designed the state transition rules based on the longitudinal and lateral virtual forces.It established the vehicle decision-making model based on the finite state machine to ensure driving safety in emergency situations.To illustrate the performance of the decision-making model by considering APFs and finite state machines.The version of the model in the co-simulation platform of MATLAB and CarSim shows that the developed decision model in this study accurately generates driving behaviors of the vehicle at different time intervals.The contributions of this study are two-fold.A hierarchical vehicle state machine decision model is proposed to enhance driving safety in emergency scenarios.Mathematical models for determining the transition thresholds of lateral and longitudinal vehicle states are established based on the vehicle potential field model,leading to the formulation of transition rules between different states of autonomous vehicles(AVs).
基金Cultivation Fund for Innovation Project of Ministry of Education (No.708045)
文摘In order to improve a mobile robot's autonomy in unknown environments, a novel intelligent controller is designed. The proposed controller is based on fuzzy logic with the aim of assisting a multi-sensor equipped mobile robot to safely navigate in an indoor environment. First, the designs of two behaviors for a robot's autonomous navigation are described, including path tracking and obstacle avoidance, which emulate human driving behaviors and reduce the complexity of the robot's navigation problems in unknown environments. Secondly, the two behaviors are combined by using a finite state machine (FSM), which ensures that the robot can safely track a predefined path in an unknown indoor environment. The inputs to this controller are the readings from the sensors. The corresponding output is the desired direction of the robot. Finally, both the simulation and experimental results verify the effectiveness of the proposed method.
文摘制造业的生产物流方式处于不断变革中,对其建模仿真可为制造系统规划设计、分析及改造提供决策支持。依“人-机-物-环-法”分类给出了智能车间制造系统中实体元素的描述,结合EFSM(extended finite state machine)和组件化建模思想,建立了生产和物流组件化EFSM模型;阐述了智能车间多作业生产的建模过程以及组件模型实例化方法;通过EFSM-DEVS(discrete event system specification)模型自动转换及DEVS引擎完成了仿真运行。仿真结果表明:该方法所建立的模型更符合车间实际状况,适用性更广;组件化建模思想能构造更具扩展性的软件;建模及仿真运行的3D可视化使软件直观性更好,其仿真结果与AnyLogic保持一致。
基金Supported by the National Natural Science F oundation of China(6 98730 35 ) and the Research Fund for the Doctoral Program of Hi
文摘This paper presents a model specifying requirements of real-time systems. Different from existing researches, this model mainly uses rules and templates to represent hierarchical FSMs (Finite State Machine). In this model, one rule corresponds to one state transition of FSM and one template corresponds to one FSM. Rules and information with respect to a FSM can be written in a template. So templates include not only state diagrams, but also information that can not be described by FSM, such as performance requirements. The specification using this model consists of a collection of templates and it is easy for users to understand and to review. After introduced the related researches and principles of the model, this paper specifies requirements of a real-time system with this model, and discusses characters of this model in the end.
基金supported by the National Natural Science Foundation of China(Nos.U1804150,62073124,and 61973175)。
文摘Traditional matrix-based approaches in the field of finite state machines construct state transition matrices,and then use the powers of the state transition matrices to represent corresponding dynamic transition processes,which are cornerstones of system analysis.In this study,we propose a static matrix-based approach that revisits a finite state machine from its structure rather than its dynamic transition process,thus avoiding the“explosion of complexity”problem inherent in the existing approaches.Based on the static approach,we reexamine the issues of closed-loop detection and controllability for deterministic finite state machines.In addition,we propose controllable equivalent form and minimal controllable equivalent form concepts and give corresponding algorithms.
基金Project supported by the National Natural Science Foundation of China (Grant No.60673115), and the Open Foundation of State Key Laboratory of Software Engineering (Grant No.SKLSE05-13)
文摘In developing distributed systems, conformance testing is required to determine whether an implementation under test (IUT) conforms to its specification. With distributed test architectures involving multiple remote testers, testing approaches may become more complicated because of issues known as controllability and observability problems. Based on a finite state machine (FSM) representation of the system's specification, this paper proposes a new method to generate a test sequence utilizing multiple UIO sequences. The method is essentially guided by the way of minimizing the use of external coordination messages and input/output operations. Experiments are given to evaluate the proposed method.
文摘This paper presents the application of finite state machine (FSM) theory to the programming of nonlinear hysteretic model simulation for both known and newly created rules. The complicated reversed internal paths involved in the nonlinear relationship which not only depend on material properties, but also on load history, often confuse rule creators and scholars. In this paper, we first describe the development of past hysteretic models. Then we introduce the FSM theory conceptually, and explain how it is applied to reversed and diverse routes. Next, state definitions and procedures are explained with a specific data example using the bilinear model. Finally, the successful application to UC-win/FRAME (3D) is described and several characteristics are summarized. By using FSM’s states and the linkages to represent a hysteresis model, we can quickly realize the programming of the defined complex model rules, and the nonlinear modeling becomes more efficient and feasible.
基金This project is supported by Provincial Science & Technology Projoct of Heilongjiang, China (No. GB05A501).
文摘Aiming at the characteristics of modularity and reconfigurable in open architecture computer numerical control (CNC) system, the open architecture CNC system, Harbin Institute of Tech- nology computer numerical control (HITCNC), is researched and manufactured based on the interface standards. The system's external interfaces are coincident with the corresponding international standards, and the internal interfaces follow the open modular architecture controller (OMAC) agreement. In the research and manufacturing process, object-oriented technology is used to ensure the openness of the HITCNC, and static programming is applied in the CNC system according to the idea of modularization disassembly. The HITCNC also actualizes real-time and unreal-time modules adopting real-time dynamical linked library (RTDLL) and component object model (COM). Finite state ma- chine (FSM) is adopted to do dynamically modeling of HITCNC. The complete separation between the software and the hardware is achieved in the HITCNC by applying the SoftSERCANS technique. The application of the above key techniques decreases the programming workload greatly, and uses software programs replacing hardware functions, which offers plenty technique ensures for the openness of HITCNC. Finally, based on the HITCNC, a three-dimensional milling system is established. On the system, series experiments are done to validate the expandability and interchangeability of HITCNC. The results of the experiments show that the established open architecture CNC system HITCNC is correct and feasible, and has good openness.
文摘In this paper, a concept for the joint modeling of the device load and user intention is presented. It consists of two coupled models, a device load model to characterize the power consumption of an electric device of interest, and a user intention model for describing the user intentions which cause the energy consumption. The advantage of this joint model is the ability to predict the device load from the user intention and to reconstruct the user intention from the measured device load. This opens a new way for load monitoring, simulation and prediction from the perspective of users instead of devices.
基金supported in part by the ND EPSCoR IIP-SG via NSF of USA under Grant No.EPS-047679The fourth author was supported in part by the National Natural Science Foundation of China under Grant No.60603036+1 种基金the National Basic Research 973 Program of China under Grant No.2009CB320702the National High-Tech Research and Development 863 Program of China under Grant No.2009AA01Z148
文摘Aspect-oriented programming modularizes crosscutting concerns into aspects with the advice invoked at the specified points of program execution. Aspects can be used in a harmful way that invalidates desired properties and even destroys the conceptual integrity of programs. To assure the quality of an aspect-oriented system, rigorous analysis and design of aspects are highly desirable. In this paper, we present an approach to aspect-oriented modeling and verification with finite state machines. Our approach provides explicit notations (e.g., pointcut, advice and aspect) for capturing crosscutting concerns and incremental modification requirements with respect to class state models. For verification purposes, we compose the aspect models and class models in an aspect-oriented model through a weaving mechanism. Then we transform the woven models and the class models not affected by the aspects into FSP (Finite State Processes), which are to be checked by the LTSA (Labeled Transition System Analyzer) model checker against the desired system properties. We have applied our approach to the modeling and verification of three aspect-oriented systems. To further evaluate the effectiveness of verification, we created a large number of flawed aspect models and verified them against the system requirements. The results show that the verification has revealed all flawed models. This indicates that our approach is effective in quality assurance of aspect-oriented state models. As such, our approach can be used for model-checking state-based specification of aspect-oriented design and can uncover some system design problems before the system is implemented.
基金Project supported by the National Natural Science Foundation of China(Nos.U1804150,62073124,and 61973175)。
文摘Motivated by the inconvenience or even inability to explain the mathematics of the state space optimization of finite state machines(FSMs)in most existing results,we consider the problem by viewing FSMs as logical dynamic systems.Borrowing ideas from the concept of equilibrium points of dynamic systems in control theory,the concepts of t-equivalent states and t-source equivalent states are introduced.Based on the state transition dynamic equations of FSMs proposed in recent years,several mathematical formulations of t-equivalent states and t-source equivalent states are proposed.These can be analogized to the necessary and sufficient conditions of equilibrium points of dynamic systems in control theory and thus give a mathematical explanation of the optimization problem.Using these mathematical formulations,two methods are designed to find all the t-equivalent states and t-source equivalent states of FSMs.Further,two ways of reducing the state space of FSMs are found.These can be implemented without computers but with only pen and paper in a mathematical manner.In addition,an open question is raised which can further improve these methods into unattended ones.Finally,the correctness and effectiveness of the proposed methods are verified by a practical language model.
基金This work was supported by the Royal Society in the UK (No.2004R1)An initial study appeared in Proceedings of IEEE International Conference on Systems,Man and Cybernetics,the Hague,Netherlands,pp.124-129,2004.
文摘A formal methodology is proposed to reduce the amount of information displayed to remote human operators at interfaces to large-scale process control plants of a certain type. The reduction proceeds in two stages. In the first stage, minimal reduced subsets of components, which give full information about the state of the whole system, are generated by determining functional dependencies between components. This is achieved by using a temporal logic proof obligation to check whether the state of all components can be inferred from the state of components in a subset in specified situations that the human operator needs to detect, with respect to a finite state machine model of the system and other human operator behavior. Generation of reduced subsets is automated with the help of a temporal logic model checker. The second stage determines the interconnections between components to be displayed in the reduced system so that the natural overall graphical structure of the system is maintained. A formal definition of an aesthetic for the required subgraph of a graph representation of the full system, containing the reduced subset of components, is given for this purpose. The methodology is demonstrated by a case study.
基金The research was funded by Universiti Teknologi Malaysia(UTM)and the MalaysianMinistry of Higher Education(MOHE)under the Industry-International Incentive Grant Scheme(IIIGS)(Vote Number:Q.J130000.3651.02M67 and Q.J130000.3051.01M86)the Aca-demic Fellowship Scheme(SLAM).
文摘Testing is an integral part of software development.Current fastpaced system developments have rendered traditional testing techniques obsolete.Therefore,automated testing techniques are needed to adapt to such system developments speed.Model-based testing(MBT)is a technique that uses system models to generate and execute test cases automatically.It was identified that the test data generation(TDG)in many existing model-based test case generation(MB-TCG)approaches were still manual.An automatic and effective TDG can further reduce testing cost while detecting more faults.This study proposes an automated TDG approach in MB-TCG using the extended finite state machine model(EFSM).The proposed approach integrates MBT with combinatorial testing.The information available in an EFSM model and the boundary value analysis strategy are used to automate the domain input classifications which were done manually by the existing approach.The results showed that the proposed approach was able to detect 6.62 percent more faults than the conventionalMB-TCG but at the same time generated 43 more tests.The proposed approach effectively detects faults,but a further treatment to the generated tests such as test case prioritization should be done to increase the effectiveness and efficiency of testing.
基金funded by Chongqing Science and Technology Bureau (No.cstc2021jsyj-yzysbAX0008)Chongqing University of Arts and Sciences (No.P2021JG13)2021 Humanities and Social Sciences Program of Chongqing Education Commission (No.21SKGH227).
文摘This paper is to explore the problems of intelligent connected vehicles(ICVs)autonomous driving decision-making under a 5G-V2X structured road environment.Through literature review and interviews with autonomous driving practitioners,this paper firstly puts forward a logical framework for designing a cerebrum-like autonomous driving system.Secondly,situated on this framework,it builds a hierarchical finite state machine(HFSM)model as well as a TOPSIS-GRA algorithm for making ICV autonomous driving decisions by employing a data fusion approach between the entropy weight method(EWM)and analytic hierarchy process method(AHP)and by employing a model fusion approach between the technique for order preference by similarity to an ideal solution(TOPSIS)and grey relational analysis(GRA).The HFSM model is composed of two layers:the global FSM model and the local FSM model.The decision of the former acts as partial input information of the latter and the result of the latter is sent forward to the local pathplanning module,meanwhile pulsating feedback to the former as real-time refresh data.To identify different traffic scenarios in a cerebrum-like way,the global FSM model is designed as 7 driving behavior states and 17 driving characteristic events,and the local FSM model is designed as 16 states and 8 characteristic events.In respect to designing a cerebrum-like algorithm for state transition,this paper firstly fuses AHP weight and EWM weight at their output layer to generate a synthetic weight coefficient for each characteristic event;then,it further fuses TOPSIS method and GRA method at the model building layer to obtain the implementable order of state transition.To verify the feasibility,reliability,and safety of theHFSMmodel aswell as its TOPSISGRA state transition algorithm,this paper elaborates on a series of simulative experiments conducted on the PreScan8.50 platform.The results display that the accuracy of obstacle detection gets 98%,lane line prediction is beyond 70 m,the speed of collision avoidance is higher than 45 km/h,the distance of collision avoidance is less than 5 m,path planning time for obstacle avoidance is averagely less than 50 ms,and brake deceleration is controlled under 6 m/s2.These technical indexes support that the driving states set and characteristic events set for the HFSM model as well as its TOPSIS-GRA algorithm may bring about cerebrum-like decision-making effectiveness for ICV autonomous driving under 5G-V2X intelligent road infrastructure.