By combining of the second gradient operator, the second class of integral theorems, the Gaussian-curvature-based integral theorems and the Gaussian (or spherical) mapping, a series of invariants or geometric conser...By combining of the second gradient operator, the second class of integral theorems, the Gaussian-curvature-based integral theorems and the Gaussian (or spherical) mapping, a series of invariants or geometric conservation quantities under Gaussian (or spherical) mapping are revealed. From these mapping invariants important transformations between original curved surface and the spherical surface are derived. The potential applications of these invariants and transformations to geometry are discussed展开更多
In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic me...In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic method. The Cauchy-Pompeiu formula for Clifford-valued functions under the weak condition will be derived as their simple application. Furthermore, Cauchy formula for monogenic functions under the weak condition is derived directly from the Cauchy-Pompeiu formula.展开更多
We prove a generalized Gauss-Kuzmin-L′evy theorem for the generalized Gauss transformation Tp(x) = {p/x}.In addition, we give an estimate for the constant that appears in the theorem.
We offer an intrinsic theoretical framework to reveal the inner relationships among three theories for Euler characteristic number, including Gauss Bonnet-Chern theorem, Hop-Poincaré theorem and Morse theory. Mor...We offer an intrinsic theoretical framework to reveal the inner relationships among three theories for Euler characteristic number, including Gauss Bonnet-Chern theorem, Hop-Poincaré theorem and Morse theory. Moreover, we consider the Gauss Bonnet-Chern (GBC) form imbedded in arbitrary higher-dimensional manifold, which suggests a Hodge dual tensor current. We show the brane structure inherent in the GBC tensor current and obtain the generalized Nambu action for the multi branes with quantized topological charge.展开更多
Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves t...Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves that on the almost sure central limit theory previously obtained by Marcin Dudzinski [1]. Our result reaches the optimal form.展开更多
We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-l...We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.展开更多
We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Dio...We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp.展开更多
Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely...Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.展开更多
Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with...Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with a realizable (rational) transfer function thanks to the Adamjan, Arov and Krein (AAK) theorem. It is well known that the one dimensional AAK results give the best approximation of a polynomial as a rational function in the Hankel semi norm. We suppose that the Hankel matrix associated to the transfer function has a finite rank.展开更多
In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some ...In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.展开更多
The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infini...The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infinitely many solutions if the problem is recast in terms of modular arithmetic. Over a hundred years ago Issai Schur was able to show that for any n there is always a sufficiently large prime p0such that for all primes p≥p0the congruence xn+yn≡zn(modp)has a non-trivial solution. Schur’s argument wasnon-constructive, and there is no systematic method available at present to construct specific examples for small primes. We offer a simple method for constructing all possible solutions to a large class of congruences of this type.展开更多
A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm de...A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.展开更多
In this paper,we present some vanishing theorems for p-harmonic forms on-super stable complete submanifold M immersed in sphere Sn+m.When 2≤1≤n-2,M has a flat normal bundle.Assuming that M is a minimal submanifold ...In this paper,we present some vanishing theorems for p-harmonic forms on-super stable complete submanifold M immersed in sphere Sn+m.When 2≤1≤n-2,M has a flat normal bundle.Assuming that M is a minimal submanifold andδ>1(n-1)p2/4n[p-1+(p-1)2kp],we prove a vanishing theorem for p-harmonicℓ-forms.展开更多
Teachers’teaching behavior plays a crucial role in students’development,and there are problems in the current teaching behavior of mathematics teachers such as ignoring students’cognitive needs,lack of equal opport...Teachers’teaching behavior plays a crucial role in students’development,and there are problems in the current teaching behavior of mathematics teachers such as ignoring students’cognitive needs,lack of equal opportunities for students’classroom performance as well as lack of formative evaluation of students.In order to solve the phenomenon,this paper analyzes and explains how to promote teaching based on the Teaching for Robust Understanding(TRU)evaluation framework with the goal of focusing on the development of all students,taking the teaching design of The Cosine Theorem as an example,and provides ideas and methods for first-line high school mathematics teachers.展开更多
基金Project supported by the National Natural Science Foundation of China (No.10572076)
文摘By combining of the second gradient operator, the second class of integral theorems, the Gaussian-curvature-based integral theorems and the Gaussian (or spherical) mapping, a series of invariants or geometric conservation quantities under Gaussian (or spherical) mapping are revealed. From these mapping invariants important transformations between original curved surface and the spherical surface are derived. The potential applications of these invariants and transformations to geometry are discussed
基金supported by NNSF of China(11171260)RFDP of Higher Education of China(20100141110054)
文摘In this article, we establish the Gauss Green type theorems for Clifford-valued functions in Clifford analysis. The boundary conditions in theorems obtained are very general by using the geometric measure theoretic method. The Cauchy-Pompeiu formula for Clifford-valued functions under the weak condition will be derived as their simple application. Furthermore, Cauchy formula for monogenic functions under the weak condition is derived directly from the Cauchy-Pompeiu formula.
文摘We prove a generalized Gauss-Kuzmin-L′evy theorem for the generalized Gauss transformation Tp(x) = {p/x}.In addition, we give an estimate for the constant that appears in the theorem.
基金The project supported in part by National Natural Science Foundation of China under Grant No. 10175028, the TianYuan Mathematics Fund under Grant No. A0324661, the China Postdoctoral Science Foundation and the Doctoral Foundation of China
文摘We offer an intrinsic theoretical framework to reveal the inner relationships among three theories for Euler characteristic number, including Gauss Bonnet-Chern theorem, Hop-Poincaré theorem and Morse theory. Moreover, we consider the Gauss Bonnet-Chern (GBC) form imbedded in arbitrary higher-dimensional manifold, which suggests a Hodge dual tensor current. We show the brane structure inherent in the GBC tensor current and obtain the generalized Nambu action for the multi branes with quantized topological charge.
文摘Considering a sequence of standardized stationary Gaussian random variables, a universal result in the almost sure central limit theorem for maxima and partial sum is established. Our result generalizes and improves that on the almost sure central limit theory previously obtained by Marcin Dudzinski [1]. Our result reaches the optimal form.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61877054,12031004,and 12271474).
文摘We establish the Stinespring dilation theorem of the link product of quantum channels in two different ways,discuss the discrimination of quantum channels,and show that the distinguishability can be improved by self-linking each quantum channel n times as n grows.We also find that the maximum value of Uhlmann's theorem can be achieved for diagonal channels.
文摘We analyse the Diophantine equation of Fermat xp yp = zp with p > 2 a prime, x, y, z positive nonzero integers. We consider the hypothetical solution (a, b, c) of previous equation. We use Fermat main divisors, Diophantine remainders of (a, b, c), an asymptotic approach based on Balzano Weierstrass Analysis Theorem as tools. We construct convergent infinite sequences and establish asymptotic results including the following surprising one. If z y = 1 then there exists a tight bound N such that, for all prime exponents p > N , we have xp yp zp.
基金supported by the National Natural Science Foundation of China(12131015,12071422).
文摘Fermat’s Last Theorem is a famous theorem in number theory which is difficult to prove.However,it is known that the version of polynomials with one variable of Fermat’s Last Theorem over C can be proved very concisely.The aim of this paper is to study the similar problems about Fermat’s Last Theorem for multivariate(skew)-polynomials with any characteristic.
文摘Rational approximation theory occupies a significant place in signal processing and systems theory. This research paper proposes an optimal design of BIBO stable multidimensional Infinite Impulse Response filters with a realizable (rational) transfer function thanks to the Adamjan, Arov and Krein (AAK) theorem. It is well known that the one dimensional AAK results give the best approximation of a polynomial as a rational function in the Hankel semi norm. We suppose that the Hankel matrix associated to the transfer function has a finite rank.
基金Supported in part by the National Social Science Foundation of China(19BTJ020)。
文摘In this paper,we consider the extension of the concave integral from classical crispσ-algebra to fuzzyσ-algebra of fuzzy sets.Firstly,the concept of fuzzy concave integral on a fuzzy set is introduced.Secondly,some important properties of such integral are discussed.Finally,various kinds of convergence theorems of a sequence of fuzzy concave integrals are proved.
文摘The proof by Andrew Wiles of Fermat’s Last Theorem in 1995 resolved the existence question for non-trivial solutions in integers x,y,zto the equation xn+yn=znfor n>2. There are none. Surprisingly, there are infinitely many solutions if the problem is recast in terms of modular arithmetic. Over a hundred years ago Issai Schur was able to show that for any n there is always a sufficiently large prime p0such that for all primes p≥p0the congruence xn+yn≡zn(modp)has a non-trivial solution. Schur’s argument wasnon-constructive, and there is no systematic method available at present to construct specific examples for small primes. We offer a simple method for constructing all possible solutions to a large class of congruences of this type.
文摘A naïve discussion of Fermat’s last theorem conundrum is described. The present theorem’s proof is grounded on the well-known properties of sums of powers of the sine and cosine functions, the Minkowski norm definition, and some vector-specific structures.
文摘In this paper,we present some vanishing theorems for p-harmonic forms on-super stable complete submanifold M immersed in sphere Sn+m.When 2≤1≤n-2,M has a flat normal bundle.Assuming that M is a minimal submanifold andδ>1(n-1)p2/4n[p-1+(p-1)2kp],we prove a vanishing theorem for p-harmonicℓ-forms.
基金Henan Province 2022 Teacher Education Curriculum Reform Research Project:Research on Improving the Teaching Practice Ability of Mathematics Normal University Students under the OBE Concept(Project number:2022-JSJYZD-009)A Study on the Measurement and Development of Mathematics Core Literacy for Secondary School Students,Doctoral Research Initiation Fee of Henan Normal University(Project number:20230234)Henan Normal University Graduate Quality Course Program,Mathematical Planning I(Project number:YJS2022KC02)。
文摘Teachers’teaching behavior plays a crucial role in students’development,and there are problems in the current teaching behavior of mathematics teachers such as ignoring students’cognitive needs,lack of equal opportunities for students’classroom performance as well as lack of formative evaluation of students.In order to solve the phenomenon,this paper analyzes and explains how to promote teaching based on the Teaching for Robust Understanding(TRU)evaluation framework with the goal of focusing on the development of all students,taking the teaching design of The Cosine Theorem as an example,and provides ideas and methods for first-line high school mathematics teachers.