The surface grinding temperature of the silicon wafer ground by diamond wheels is studied.Rudimentally,the properties of the surface grinding temperature generated by two grinding methods,ground by straight and cup wh...The surface grinding temperature of the silicon wafer ground by diamond wheels is studied.Rudimentally,the properties of the surface grinding temperature generated by two grinding methods,ground by straight and cup wheels respectively,are analyzed.In addition,considering the effects of grain size and grinding depth on surface grinding temperature during these two grinding processes,significant results and conclusions are obtained from experimental research.展开更多
Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oi...Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM-III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1) castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2) palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3) MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4) viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5) although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6) saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7) a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 degrees C grinding temperature, and 42.7% energy ratio coefficient. (C) 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.展开更多
Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality.However,a significant technical challenge in grinding is the potential increas...Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality.However,a significant technical challenge in grinding is the potential increase in temperature due to high specific energy,which can lead to surface thermal damage.Therefore,ensuring control over the surface integrity of workpieces during grinding becomes a critical concern.This necessitates the development of temperature field models that consider various parameters,such as workpiece materials,grinding wheels,grinding parameters,cooling methods,and media,to guide industrial production.This study thoroughly analyzes and summarizes grinding temperature field models.First,the theory of the grinding temperature field is investigated,classifying it into traditional models based on a continuous belt heat source and those based on a discrete heat source,depending on whether the heat source is uniform and continuous.Through this examination,a more accurate grinding temperature model that closely aligns with practical grinding conditions is derived.Subsequently,various grinding thermal models are summarized,including models for the heat source distribution,energy distribution proportional coefficient,and convective heat transfer coefficient.Through comprehensive research,the most widely recognized,utilized,and accurate model for each category is identified.The application of these grinding thermal models is reviewed,shedding light on the governing laws that dictate the influence of the heat source distribution,heat distribution,and convective heat transfer in the grinding arc zone on the grinding temperature field.Finally,considering the current issues in the field of grinding temperature,potential future research directions are proposed.The aim of this study is to provide theoretical guidance and technical support for predicting workpiece temperature and improving surface integrity.展开更多
A new thermal model with triangular heat flux distribution is given in high-efficiency deep grinding. The mathematical expressions are driven to calculate the surface temperature. The transient behavior of the maximum...A new thermal model with triangular heat flux distribution is given in high-efficiency deep grinding. The mathematical expressions are driven to calculate the surface temperature. The transient behavior of the maximum temperature on contact area is investigated in different grinding conditions with a J-type thermocouple. The maximum contact temperatures measured in different conditions are found to be between 1 000 ℃ and 1 500 ℃ in burn-out conditions. The experiment results show good agreement with the new thermal model.展开更多
There is less research on vertical sculptured grinding technology. Especially in high vertical surface grinding process with the cup abrasive wheel, the thermal damage is prone to happen and undermine the grinding sur...There is less research on vertical sculptured grinding technology. Especially in high vertical surface grinding process with the cup abrasive wheel, the thermal damage is prone to happen and undermine the grinding surface integrity. This problem limits to improve the grinding efficiency and the grinding ratio greatly. Through the analysis of vertical surface grinding process and features in depth, this paper revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel. Based on the previous research achievements, the grinding experiments on TC4 (Ti-6A1-4V) and GH4169 are carried out utilizing the self-inhaling internal cooling wheel. The experimental results show that the self-inhaling internal cooling wheel can efficiently reduce the grinding surface temperature. Moreover, the inherent mechanism of reducing the grinding temperature using the internal cooling method is revealed. Meanwhile, under the same grinding conditions, the grinding ratio during the experiments on GH4169 using self-inhaling internal cooling method is about 3 times as high as using conventional external cooling method. And the grinding forces can be reduced by about 20%. This research revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel, which provides theoretical basis for the design and application of self-inhaling internal cooling wheel. At the same time, an efficient and non-invasive surface grinding method of TC4 and GH4169 is presented.展开更多
The purpose of this study is to investigate the effect of graphite lubricant on the dry grinding performance of Ti-6Al-4Valloy,using graphite-coated,brazed monolayer,cubic boron nitride(cBN)wheels.Brazed monolayer cBN...The purpose of this study is to investigate the effect of graphite lubricant on the dry grinding performance of Ti-6Al-4Valloy,using graphite-coated,brazed monolayer,cubic boron nitride(cBN)wheels.Brazed monolayer cBN wheels both with and without a coating of polymer-based graphite lubricant are fabricated and subsequently compared for grinding performance based on measurements of grinding temperature,surface microstructure and grinding.In terms of grinding temperature,considerable improvement in dry grinding performance of titanium alloy is achieved using coated brazed monolayer cBN wheels,with 42%—47%reduction in grinding temperature as opposed to uncoated wheels.The grinding force ratio with the coated wheels is observed to remain between 1.45to1.85despite material removal rates reaching up to 1 950mm3/mm.No tangible change in ground titanium surface microstructure is noted as a result of grinding with the graphite coated wheels as opposed to the uncoated ones.展开更多
To meet the increasing demand on the quality and co st of precision components for the semiconductor industries, extensive studies on high efficiency and precision machining of ceramic materials have been conducted ov...To meet the increasing demand on the quality and co st of precision components for the semiconductor industries, extensive studies on high efficiency and precision machining of ceramic materials have been conducted over the past several years. It is found that the effects of grinding pressure and rotational speed of spindle in the machining for the ceramic materials are v ery significant on the quality of the grinding process. In order to achieve stab le grinding conditions for improved performance, a new grinding control scheme i n which the grinding pressure is maintained constant throughout the grinding pro cess was carried out in the present study. The surface quality of ground ceramics depends on the mechanism of material remo val in the vertical grinding process. For grinding of Si 3N 4 and glass under the condition of constant pressure, increasing pressure enhances material remova l rate, and at the same time causes more machining-induced microcracks on the g round surfaces. Along with the analysis of tangential forces, specific grinding energy, and the micro observations on ground surfaces, it can be found that low pressure and high wheel speed should be selected to high efficiently remove cera mics in ductile mode in the vertical grinding. From the theoretically analytical and measured grinding temperatures in the vert ical grinding of ceramics, it is found that the analytical temperature profile w ithε= 55% has the same trend with the measured one. The measured temperature is higher that the analytical one at the beginning stage of grinding process, whic h might be contributed to the unstable grinding condition of this stage. The gri nding temperatures in the vertical grinding of ceramics under a constant are not high enough for glassy phase formation, and may not reduce surface fracture as expected. However, the temperature in dry grinding may cause thermal damage to t he resin bond diamond wheel, thereby resulting in low quality workpiece surface.展开更多
To meet the increasing demand on the quality and co st of precision structural components, extensive studies on high efficiency and pr ecision machining of ceramic materials, including face grinding, have been condu c...To meet the increasing demand on the quality and co st of precision structural components, extensive studies on high efficiency and pr ecision machining of ceramic materials, including face grinding, have been condu cted over the past several years. However, there are few reports about the mecha nism in face grinding of ceramics, especially the thermal aspects during the gri nding process. In the present study, experiments of face grinding two typical ce ramics were carried out to study themal aspects at the wheel-workpiece contact zone. The present investigation was undertaken to experimentally study the energy part ition to workpiece and thermal characteristics during face grinding of two typic al ceramics. For this purpose, grinding temperature distribution in the ceramics workpiece was calculated with the classic moving heat source theory. The grindi ng temperature at the wheel-workpiece contact zone was measured under different machining conditions using a grindable foil thermocouple. Combining the analyti cal results and the experimental result for temperatures, the mechanism of energ y partition in face grinding of ceramic materials was discussed. According to the experimental results and the comparison of theoretic and measur ed temperature profiles, temperature characteristics and mechanism of energy par tition in face grinding of ceramic materials were discussed. Temperature rise in the workpiece and energy partition during the grinding process were found to be derictly related to the machining parameters and the mechanism of mateirial rem oval. The increasing of either v w or a p can lead to an increase of temperatu re. The temperature rise in Si 3N 4 is much lower than that in ZrO 2 under th e same condition, which might be attributed to the different material removal me chanisms. Both temperatures in dry grinding and in wet grinding are not high eno ugh to cause thermal damage to ceramic materials. The value of energy partition increases with the increasing of v w. The energy partition for Si 3N 4 grindi ng is much lower than that for ZrO 2 grinding, which is consistent with the res ults of grinding temperatures.展开更多
Grinding is an energy-intensive process in which the heat generated can cause various types of thermal damage to workpiece.Many theoretical,empirical or numerical models have been developed to predict grinding tempera...Grinding is an energy-intensive process in which the heat generated can cause various types of thermal damage to workpiece.Many theoretical,empirical or numerical models have been developed to predict grinding temperature.However,these models are not directly applicable for coated workpieces.Tools or other parts are coated with hard materials like tungsten carbide,ceramics or polycrystalline diamond to increase their surface hardness and prolong their life expectancy.In this paper,an empirical model is proposed to predict the maximum grinding temperature of coated workpieces.Experimental and numerical studies are carried out to validate the model.The results indicated that the new model is able to accurately predict grinding temperature.展开更多
Bone grinding is an essential and vital procedure in most surgical operations.Currently,the insufficient cooling capacity of dry grinding,poor visibility of drip irrigation surgery area,and large grinding force leadin...Bone grinding is an essential and vital procedure in most surgical operations.Currently,the insufficient cooling capacity of dry grinding,poor visibility of drip irrigation surgery area,and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding.A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling(U-NJMC)is innovatively proposed to solve the technical problem.It combines the advantages of ultrasonic vibration(UV)and nanoparticle jet mist cooling(NJMC).Notwithstanding,the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated.The grinding force,friction coefficient,specific grinding energy,and grinding temperature under dry,drip irrigation,UV,minimum quantity lubrication(MQL),NJMC,and U-NJMC micro-grinding were compared and analyzed.Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N,which were 75.1%and 82.9%less than those in dry grinding,respectively.The minimum friction coefficient and specific grinding energy were achieved using U-NJMC.Compared with dry,drip,UV,MQL,and NJMC grinding,the friction coefficient of U-NJMC was decreased by 31.3%,17.0%,19.0%,9.8%,and 12.5%,respectively,and the specific grinding energy was decreased by 83.0%,72.7%,77.8%,52.3%,and 64.7%,respectively.Compared with UV or NJMC alone,the grinding temperature of U-NJMC was decreased by 33.5%and 10.0%,respectively.These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone.展开更多
(TiCp+ TiBw)/Ti-6Al-4V titanium matrix composites(PTMCs) have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforc...(TiCp+ TiBw)/Ti-6Al-4V titanium matrix composites(PTMCs) have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforcements, high strength and low thermal conductivity of Ti-6Al-4V alloy matrix. Grinding experiments with vitrified CBN wheels were conducted to analyze comparatively the grinding performance of PTMCs and Ti-6Al-4V alloy. Grinding force and force ratios, specific grinding energy, grinding temperature, surface roughness, ground surface appearance were discussed. The results show that the normal grinding force and the force ratios of PTMCs are much larger than that of Ti-6Al-4V alloy. Low depth of cut and high workpiece speed are generally beneficial to achieve the precision ground surface for PTMCs. The hard reinforcements of PTMCs are mainly removed in the ductile mode during grinding. However, the removal phenomenon of the reinforcements due to brittle fracture still exists, which contributes to the lower specific grinding energy and grinding temperature of PTMCs than Ti-6Al-4V alloy.展开更多
Particle-reinforcing titanium matrix composites(PTMCs)exhibit the sharp raising applications in modern industries owing to its extraordinary physical and mechanical properties.However,the poor grindability and unstabl...Particle-reinforcing titanium matrix composites(PTMCs)exhibit the sharp raising applications in modern industries owing to its extraordinary physical and mechanical properties.However,the poor grindability and unstable grinding processes due to the existence of TiC particles and TiB short fibres inside PTMCs,leading to the sudden grinding burn and low material removal rate.In this work,a novel radial ultrasonic vibration-assisted grinding(RUVAG)device with a special cross structure was developed to improve machining efficiency and avoid grinding burns.Meanwhile,the resonant modal and transient dynamic characteristics of radial ultrasonic vibration system were discussed.Comparative grinding performance experiments were then conducted under the conventional grinding(CG)and RUVAG using mono-layer cubic boron nitride abrasive wheels,in views of the grinding forces and force ratio,grinding temperature,and ground surface morphology.Results show that the ultrasonic vibration direction can be transformed effectively using the special cross structure of vibration converter,and better vibration homogeneity can be obtained.RUVAG has a smaller tangential grinding force by 5.0%–17.2%than that of CG,but a higher normal grinding force of 6.5%–14.9%,owing to the periodic impact of grinding wheels.In addition,RUVAG possesses a remarkable lower grinding temperature in range of 24.2%–51.8%and a higher material removal rate by 2.8 times compared with CG,resulting from the intermittent cutting behavior between the grinding wheel and workpiece.In this case,the sudden burn can be avoided during high-speed grinding processes.Moreover,the proportion of micro-fracture defects on machined surface is slightly increased once the ultrasonic vibration mode is employed because of the periodic impact on reinforced particles,whereas the pull-out defects of reinforced particles are reduced significantly.展开更多
Gamma titanium-aluminum intermetallic compounds(γ-TiAl)have gained considerable attentions in the aerospace industry due to their exceptional thermal resilience and comprehensive attributes,making them a prime exampl...Gamma titanium-aluminum intermetallic compounds(γ-TiAl)have gained considerable attentions in the aerospace industry due to their exceptional thermal resilience and comprehensive attributes,making them a prime example of lightweight and advanced materials.To address the frequent occurrence of burns and severe tool deterioration during the process of high-efficiency deep grinding(HEDG)onγ-TiAl alloys,ultrasonic vibration-assisted high-efficiency deep grinding(UVHEDG)has been emerged.Results indicate that in UVHEDG,the grinding temperature is on average 15.4%lower than HEDG due to the employment of ultrasonic vibrations,enhancing coolant penetration into the grinding area and thus reducing heat generation.Besides,UVHEDG possesses superior performance in terms of grinding forces compared to HEDG.As the material removal volume(MRV)increases,the tangential grinding force(F_(t))and normal grinding force(F_(n))of UVHEDG increase but to a lesser extent than in HEDG,with an average reduction of16.25%and 14.7%,respectively.UVHEDG primarily experiences microfracture of grains,whereas HEDG undergoes large-scale wear later in the process due to increased grinding forces.The surface roughness(R_(a))characteristics of UVHEDG are superior,with the average value of R_(a)decreasing by 46.5%compared to HEDG as MRV increases.The surface morphology in UVHEDG exhibits enhanced smoothness and a shallower layer of plastic deformation.Grinding chips generated by UVHEDG show a more shear-like shape,with the applied influence of ultrasonic vibration on chip morphology,thereby impacting material removal behaviors.These aforementioned findings contribute to enhanced machining efficiency and product quality ofγ-TiAl alloys after employing ultrasonic vibrations into HEDG.展开更多
Addressing the challenges of high grinding temperature,poor hole quality,and tool rod blocking in core drilling of carbon fiber reinforced plastics(CFRP),this study investigates the material removal characteristic of ...Addressing the challenges of high grinding temperature,poor hole quality,and tool rod blocking in core drilling of carbon fiber reinforced plastics(CFRP),this study investigates the material removal characteristic of rotary longitudinal-torsional ultrasonic machining(RLTUM)of CFRP based on the Hertz contact theory.The study also conducts relevant experiments to compare and analyze the grinding force,grinding temperature,hole wall quality,exit quality,and tool wear in ordinary core drilling(OCD),rotary ultrasonic machining(RUM),and RLTUM of CFRP.The results demonstrate that RLTUM significantly reduces the grinding force,grinding temperature,hole exit damage and improves the surface smoothness of the CFRP hole walls.By utilizing intermittent cutting in circumferential direction for torsional vibration,RLTUM enables automatic removal of rod chips while restraining tool chip adhesion and reducing heat generation as well as tool wear.Therefore,RLTUM shows great potential for enhancing the quality of holemaking in CFRP.展开更多
基金Supported by the Open L ab.Foundation of Educational Ministryof China
文摘The surface grinding temperature of the silicon wafer ground by diamond wheels is studied.Rudimentally,the properties of the surface grinding temperature generated by two grinding methods,ground by straight and cup wheels respectively,are analyzed.In addition,considering the effects of grain size and grinding depth on surface grinding temperature during these two grinding processes,significant results and conclusions are obtained from experimental research.
基金co-supported by the National Natural Science Foundation of China (Nos. 51175276 and 51575290)the Qingdao Science and Technology Program of Basic Research Projects (No. 14-2-4-18-jch) of Chinathe Huangdao District Application Science and Technology Project (No. 2014-1-55) of China
文摘Vegetable oil can be used as a base oil in minimal quantity of lubrication (MQL). This study compared the performances of MQL grinding by using castor oil, soybean oil, rapeseed oil, corn oil, sunflower oil, peanut oil, and palm oil as base oils. A K-P36 numerical-control precision surface grinder was used to perform plain grinding on a workpiece material with a high-temperature nickel base alloy. A YDM-III 99 three-dimensional dynamometer was used to measure grinding force, and a clip-type thermocouple was used to determine grinding temperature. The grinding force, grinding temperature, and energy ratio coefficient of MQL grinding were compared among the seven vegetable oil types. Results revealed that (1) castor oil-based MQL grinding yields the lowest grinding force but exhibits the highest grinding temperature and energy ratio coefficient; (2) palm oil-based MQL grinding generates the second lowest grinding force but shows the lowest grinding temperature and energy ratio coefficient; (3) MQL grinding based on the five other vegetable oils produces similar grinding forces, grinding temperatures, and energy ratio coefficients, with values ranging between those of castor oil and palm oil; (4) viscosity significantly influences grinding force and grinding temperature to a greater extent than fatty acid varieties and contents in vegetable oils; (5) although more viscous vegetable oil exhibits greater lubrication and significantly lower grinding force than less viscous vegetable oil, high viscosity reduces the heat exchange capability of vegetable oil and thus yields a high grinding temperature; (6) saturated fatty acid is a more efficient lubricant than unsaturated fatty acid; and (7) a short carbon chain transfers heat more effectively than a long carbon chain. Palm oil is the optimum base oil of MQL grinding, and this base oil yields 26.98 N tangential grinding force, 87.10 N normal grinding force, 119.6 degrees C grinding temperature, and 42.7% energy ratio coefficient. (C) 2015 The Authors. Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and Astronautics.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.52205481,51975305 and 52105457)Shandong Natural Science Foundation(Grant Nos.ZR2020ME158,ZR2023QE057,ZR2022QE028,ZR2021QE116,ZR2020KE027,and ZR2022QE159)+1 种基金Qingdao Science and Technology Planning Park Cultivation Plan(23-1-5-yqpy-17-qy)China Postdoctral Science Foundation(2021M701810).
文摘Grinding is a crucial process in machining workpieces because it plays a vital role in achieving the desired precision and surface quality.However,a significant technical challenge in grinding is the potential increase in temperature due to high specific energy,which can lead to surface thermal damage.Therefore,ensuring control over the surface integrity of workpieces during grinding becomes a critical concern.This necessitates the development of temperature field models that consider various parameters,such as workpiece materials,grinding wheels,grinding parameters,cooling methods,and media,to guide industrial production.This study thoroughly analyzes and summarizes grinding temperature field models.First,the theory of the grinding temperature field is investigated,classifying it into traditional models based on a continuous belt heat source and those based on a discrete heat source,depending on whether the heat source is uniform and continuous.Through this examination,a more accurate grinding temperature model that closely aligns with practical grinding conditions is derived.Subsequently,various grinding thermal models are summarized,including models for the heat source distribution,energy distribution proportional coefficient,and convective heat transfer coefficient.Through comprehensive research,the most widely recognized,utilized,and accurate model for each category is identified.The application of these grinding thermal models is reviewed,shedding light on the governing laws that dictate the influence of the heat source distribution,heat distribution,and convective heat transfer in the grinding arc zone on the grinding temperature field.Finally,considering the current issues in the field of grinding temperature,potential future research directions are proposed.The aim of this study is to provide theoretical guidance and technical support for predicting workpiece temperature and improving surface integrity.
基金This project is supported by National Natural Science Foundation of China (No.50475052)Provincial Natural Science Foundation of Liaoning (No.20022161)Provincial Scientific Research Plan of Education Office of Uaoning(No.202223206).
文摘A new thermal model with triangular heat flux distribution is given in high-efficiency deep grinding. The mathematical expressions are driven to calculate the surface temperature. The transient behavior of the maximum temperature on contact area is investigated in different grinding conditions with a J-type thermocouple. The maximum contact temperatures measured in different conditions are found to be between 1 000 ℃ and 1 500 ℃ in burn-out conditions. The experiment results show good agreement with the new thermal model.
基金supported by National Natural Science Foundation of China(Grant No.51105024)
文摘There is less research on vertical sculptured grinding technology. Especially in high vertical surface grinding process with the cup abrasive wheel, the thermal damage is prone to happen and undermine the grinding surface integrity. This problem limits to improve the grinding efficiency and the grinding ratio greatly. Through the analysis of vertical surface grinding process and features in depth, this paper revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel. Based on the previous research achievements, the grinding experiments on TC4 (Ti-6A1-4V) and GH4169 are carried out utilizing the self-inhaling internal cooling wheel. The experimental results show that the self-inhaling internal cooling wheel can efficiently reduce the grinding surface temperature. Moreover, the inherent mechanism of reducing the grinding temperature using the internal cooling method is revealed. Meanwhile, under the same grinding conditions, the grinding ratio during the experiments on GH4169 using self-inhaling internal cooling method is about 3 times as high as using conventional external cooling method. And the grinding forces can be reduced by about 20%. This research revealed the inherent mechanism of higher grinding temperature in the process of vertical sculptured grinding using the cup wheel, which provides theoretical basis for the design and application of self-inhaling internal cooling wheel. At the same time, an efficient and non-invasive surface grinding method of TC4 and GH4169 is presented.
基金Supported by the State Major Science and Technology Special Projects(2010ZX04003081-03)
文摘The purpose of this study is to investigate the effect of graphite lubricant on the dry grinding performance of Ti-6Al-4Valloy,using graphite-coated,brazed monolayer,cubic boron nitride(cBN)wheels.Brazed monolayer cBN wheels both with and without a coating of polymer-based graphite lubricant are fabricated and subsequently compared for grinding performance based on measurements of grinding temperature,surface microstructure and grinding.In terms of grinding temperature,considerable improvement in dry grinding performance of titanium alloy is achieved using coated brazed monolayer cBN wheels,with 42%—47%reduction in grinding temperature as opposed to uncoated wheels.The grinding force ratio with the coated wheels is observed to remain between 1.45to1.85despite material removal rates reaching up to 1 950mm3/mm.No tangible change in ground titanium surface microstructure is noted as a result of grinding with the graphite coated wheels as opposed to the uncoated ones.
文摘To meet the increasing demand on the quality and co st of precision components for the semiconductor industries, extensive studies on high efficiency and precision machining of ceramic materials have been conducted over the past several years. It is found that the effects of grinding pressure and rotational speed of spindle in the machining for the ceramic materials are v ery significant on the quality of the grinding process. In order to achieve stab le grinding conditions for improved performance, a new grinding control scheme i n which the grinding pressure is maintained constant throughout the grinding pro cess was carried out in the present study. The surface quality of ground ceramics depends on the mechanism of material remo val in the vertical grinding process. For grinding of Si 3N 4 and glass under the condition of constant pressure, increasing pressure enhances material remova l rate, and at the same time causes more machining-induced microcracks on the g round surfaces. Along with the analysis of tangential forces, specific grinding energy, and the micro observations on ground surfaces, it can be found that low pressure and high wheel speed should be selected to high efficiently remove cera mics in ductile mode in the vertical grinding. From the theoretically analytical and measured grinding temperatures in the vert ical grinding of ceramics, it is found that the analytical temperature profile w ithε= 55% has the same trend with the measured one. The measured temperature is higher that the analytical one at the beginning stage of grinding process, whic h might be contributed to the unstable grinding condition of this stage. The gri nding temperatures in the vertical grinding of ceramics under a constant are not high enough for glassy phase formation, and may not reduce surface fracture as expected. However, the temperature in dry grinding may cause thermal damage to t he resin bond diamond wheel, thereby resulting in low quality workpiece surface.
文摘To meet the increasing demand on the quality and co st of precision structural components, extensive studies on high efficiency and pr ecision machining of ceramic materials, including face grinding, have been condu cted over the past several years. However, there are few reports about the mecha nism in face grinding of ceramics, especially the thermal aspects during the gri nding process. In the present study, experiments of face grinding two typical ce ramics were carried out to study themal aspects at the wheel-workpiece contact zone. The present investigation was undertaken to experimentally study the energy part ition to workpiece and thermal characteristics during face grinding of two typic al ceramics. For this purpose, grinding temperature distribution in the ceramics workpiece was calculated with the classic moving heat source theory. The grindi ng temperature at the wheel-workpiece contact zone was measured under different machining conditions using a grindable foil thermocouple. Combining the analyti cal results and the experimental result for temperatures, the mechanism of energ y partition in face grinding of ceramic materials was discussed. According to the experimental results and the comparison of theoretic and measur ed temperature profiles, temperature characteristics and mechanism of energy par tition in face grinding of ceramic materials were discussed. Temperature rise in the workpiece and energy partition during the grinding process were found to be derictly related to the machining parameters and the mechanism of mateirial rem oval. The increasing of either v w or a p can lead to an increase of temperatu re. The temperature rise in Si 3N 4 is much lower than that in ZrO 2 under th e same condition, which might be attributed to the different material removal me chanisms. Both temperatures in dry grinding and in wet grinding are not high eno ugh to cause thermal damage to ceramic materials. The value of energy partition increases with the increasing of v w. The energy partition for Si 3N 4 grindi ng is much lower than that for ZrO 2 grinding, which is consistent with the res ults of grinding temperatures.
基金the Shanghai Special Development Project of Major Equipment Technologies(No. 0706014)the Key Scientific Research Project of Shanghai Ministry of Science and Technology(No. 021111125)
文摘Grinding is an energy-intensive process in which the heat generated can cause various types of thermal damage to workpiece.Many theoretical,empirical or numerical models have been developed to predict grinding temperature.However,these models are not directly applicable for coated workpieces.Tools or other parts are coated with hard materials like tungsten carbide,ceramics or polycrystalline diamond to increase their surface hardness and prolong their life expectancy.In this paper,an empirical model is proposed to predict the maximum grinding temperature of coated workpieces.Experimental and numerical studies are carried out to validate the model.The results indicated that the new model is able to accurately predict grinding temperature.
基金supported by the National Natural Science Foundation of China (Grant Nos.51905289 and 51975305)the National Key R&D Program of China (Grant No.2020YFB2010500)+3 种基金the Natural Science Foundation of Shandong Province,China (Grant Nos.ZR2022QE159,ZR2020KE027,ZR2020ME158,and ZR2019PEE008)the China Postdoctoral Science Foundation (Grant No.2021M701810)the Innovation Talent Supporting Program for Postdoctoral Fellows of Shandong Province,China (Grant No.SDBX2020012)the Qingdao Postdoctoral Researchers Applied Research Project Funding,China (Grant No.A2020-072).
文摘Bone grinding is an essential and vital procedure in most surgical operations.Currently,the insufficient cooling capacity of dry grinding,poor visibility of drip irrigation surgery area,and large grinding force leading to high grinding temperature are the technical bottlenecks of micro-grinding.A new micro-grinding process called ultrasonic vibration-assisted nanoparticle jet mist cooling(U-NJMC)is innovatively proposed to solve the technical problem.It combines the advantages of ultrasonic vibration(UV)and nanoparticle jet mist cooling(NJMC).Notwithstanding,the combined effect of multi parameter collaborative of U-NJMC on cooling has not been investigated.The grinding force,friction coefficient,specific grinding energy,and grinding temperature under dry,drip irrigation,UV,minimum quantity lubrication(MQL),NJMC,and U-NJMC micro-grinding were compared and analyzed.Results showed that the minimum normal grinding force and tangential grinding force of U-NJMC micro-grinding were 1.39 and 0.32 N,which were 75.1%and 82.9%less than those in dry grinding,respectively.The minimum friction coefficient and specific grinding energy were achieved using U-NJMC.Compared with dry,drip,UV,MQL,and NJMC grinding,the friction coefficient of U-NJMC was decreased by 31.3%,17.0%,19.0%,9.8%,and 12.5%,respectively,and the specific grinding energy was decreased by 83.0%,72.7%,77.8%,52.3%,and 64.7%,respectively.Compared with UV or NJMC alone,the grinding temperature of U-NJMC was decreased by 33.5%and 10.0%,respectively.These results showed that U-NJMC provides a novel approach for clinical surgical micro-grinding of biological bone.
基金co-supported by the National Natural Science Foundation of China (Nos. 51235004, 51375235)the Fundamental Research Funds for the Central Universities (No. NE2014103) of ChinaPriority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) of China
文摘(TiCp+ TiBw)/Ti-6Al-4V titanium matrix composites(PTMCs) have broad application prospects in the aviation and nuclear field. However, it is a typical difficult-to-cut material due to high hardness of the reinforcements, high strength and low thermal conductivity of Ti-6Al-4V alloy matrix. Grinding experiments with vitrified CBN wheels were conducted to analyze comparatively the grinding performance of PTMCs and Ti-6Al-4V alloy. Grinding force and force ratios, specific grinding energy, grinding temperature, surface roughness, ground surface appearance were discussed. The results show that the normal grinding force and the force ratios of PTMCs are much larger than that of Ti-6Al-4V alloy. Low depth of cut and high workpiece speed are generally beneficial to achieve the precision ground surface for PTMCs. The hard reinforcements of PTMCs are mainly removed in the ductile mode during grinding. However, the removal phenomenon of the reinforcements due to brittle fracture still exists, which contributes to the lower specific grinding energy and grinding temperature of PTMCs than Ti-6Al-4V alloy.
基金financially supported by the National Natural Science Foundation of China (Nos. 51921003, 92160301, 52175415 and 52205475)the Science Center for Gas Turbine Project (No. P2022-A-IV-002-001)+3 种基金the Natural Science Foundation of Jiangsu Province (No. BK20210295)the Superior Postdoctoral Project of Jiangsu Province (No. 2022ZB215)the Open Foundation State Key Laboratory of Mechanical Transmissions (No. SKLMT-MSKFKT-202101)the Special Projects for the Reengineering of Industrial Foundation and the High-quality Development of Manufacturing Industry (No. TC210H02X)
文摘Particle-reinforcing titanium matrix composites(PTMCs)exhibit the sharp raising applications in modern industries owing to its extraordinary physical and mechanical properties.However,the poor grindability and unstable grinding processes due to the existence of TiC particles and TiB short fibres inside PTMCs,leading to the sudden grinding burn and low material removal rate.In this work,a novel radial ultrasonic vibration-assisted grinding(RUVAG)device with a special cross structure was developed to improve machining efficiency and avoid grinding burns.Meanwhile,the resonant modal and transient dynamic characteristics of radial ultrasonic vibration system were discussed.Comparative grinding performance experiments were then conducted under the conventional grinding(CG)and RUVAG using mono-layer cubic boron nitride abrasive wheels,in views of the grinding forces and force ratio,grinding temperature,and ground surface morphology.Results show that the ultrasonic vibration direction can be transformed effectively using the special cross structure of vibration converter,and better vibration homogeneity can be obtained.RUVAG has a smaller tangential grinding force by 5.0%–17.2%than that of CG,but a higher normal grinding force of 6.5%–14.9%,owing to the periodic impact of grinding wheels.In addition,RUVAG possesses a remarkable lower grinding temperature in range of 24.2%–51.8%and a higher material removal rate by 2.8 times compared with CG,resulting from the intermittent cutting behavior between the grinding wheel and workpiece.In this case,the sudden burn can be avoided during high-speed grinding processes.Moreover,the proportion of micro-fracture defects on machined surface is slightly increased once the ultrasonic vibration mode is employed because of the periodic impact on reinforced particles,whereas the pull-out defects of reinforced particles are reduced significantly.
基金financially supported by the National Natural Science Foundation of China(Nos.92160301,92060203,52175415 and 52205475)the Science Center for Gas Turbine Project(Nos.P2022-AB-Ⅳ-002-001 and P2023-B-Ⅳ-003-001)+4 种基金the Natural Science Foundation of Jiangsu Province(No.BK20210295)the Superior Postdoctoral Project of Jiangsu Province(No.2022ZB215)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(KYCX23_0355)the Interdisciplinary Innovation Fund for Doctoral Students of Nanjing University of Aeronautics and Astronautics(KXKCXJJ202305)the Fundamental Research Funds for the Central Universities(Nos.NS2023028 and NG2024015)。
文摘Gamma titanium-aluminum intermetallic compounds(γ-TiAl)have gained considerable attentions in the aerospace industry due to their exceptional thermal resilience and comprehensive attributes,making them a prime example of lightweight and advanced materials.To address the frequent occurrence of burns and severe tool deterioration during the process of high-efficiency deep grinding(HEDG)onγ-TiAl alloys,ultrasonic vibration-assisted high-efficiency deep grinding(UVHEDG)has been emerged.Results indicate that in UVHEDG,the grinding temperature is on average 15.4%lower than HEDG due to the employment of ultrasonic vibrations,enhancing coolant penetration into the grinding area and thus reducing heat generation.Besides,UVHEDG possesses superior performance in terms of grinding forces compared to HEDG.As the material removal volume(MRV)increases,the tangential grinding force(F_(t))and normal grinding force(F_(n))of UVHEDG increase but to a lesser extent than in HEDG,with an average reduction of16.25%and 14.7%,respectively.UVHEDG primarily experiences microfracture of grains,whereas HEDG undergoes large-scale wear later in the process due to increased grinding forces.The surface roughness(R_(a))characteristics of UVHEDG are superior,with the average value of R_(a)decreasing by 46.5%compared to HEDG as MRV increases.The surface morphology in UVHEDG exhibits enhanced smoothness and a shallower layer of plastic deformation.Grinding chips generated by UVHEDG show a more shear-like shape,with the applied influence of ultrasonic vibration on chip morphology,thereby impacting material removal behaviors.These aforementioned findings contribute to enhanced machining efficiency and product quality ofγ-TiAl alloys after employing ultrasonic vibrations into HEDG.
基金supported by the National Natural Science Foundation of China(No.51675164)。
文摘Addressing the challenges of high grinding temperature,poor hole quality,and tool rod blocking in core drilling of carbon fiber reinforced plastics(CFRP),this study investigates the material removal characteristic of rotary longitudinal-torsional ultrasonic machining(RLTUM)of CFRP based on the Hertz contact theory.The study also conducts relevant experiments to compare and analyze the grinding force,grinding temperature,hole wall quality,exit quality,and tool wear in ordinary core drilling(OCD),rotary ultrasonic machining(RUM),and RLTUM of CFRP.The results demonstrate that RLTUM significantly reduces the grinding force,grinding temperature,hole exit damage and improves the surface smoothness of the CFRP hole walls.By utilizing intermittent cutting in circumferential direction for torsional vibration,RLTUM enables automatic removal of rod chips while restraining tool chip adhesion and reducing heat generation as well as tool wear.Therefore,RLTUM shows great potential for enhancing the quality of holemaking in CFRP.