为了实现干旱半干旱灌区地表信息低成本、高效率的动态监测,利用HJ-CCD数据的多时相和多光谱信息,探讨了平罗县土地利用遥感分类方法。首先建立研究区内典型地物的NDVI时间序列曲线,提取反映该区物候模式的时序特征参数;然后对土壤信息...为了实现干旱半干旱灌区地表信息低成本、高效率的动态监测,利用HJ-CCD数据的多时相和多光谱信息,探讨了平罗县土地利用遥感分类方法。首先建立研究区内典型地物的NDVI时间序列曲线,提取反映该区物候模式的时序特征参数;然后对土壤信息丰富的3月份多光谱影像进行主成分变换,选取第1主成分(PC1)作为光谱特征参数,最后基于分类回归树(classification and regression tree,CART)算法进行决策树监督分类。总体分类精度达到92.26%,Kappa系数为0.91,比最大似然法分类结果精度提高了2.58%。研究表明:构建的NDVI时间序列曲线对研究区内的地类具有较强的代表性,提取的时间维和光谱维的分类参数对各地类均有很好地区分性,CART决策树算法分类结果清晰准确且精度较高。该方法为HJ小卫星在干旱半干旱区等区域的深入应用提供科学依据和实证基础。展开更多
高时空分辨率叶面积指数(leaf area index,LAI)数据能反映作物的长势动态变化,为作物长势评估和产量预测提供有效的生长指标依据。该文综合利用混合像元线性分解与数据同化算法,以高空间分辨率SPOT-5数据反演的LAI修正高时间分辨率HJ-CC...高时空分辨率叶面积指数(leaf area index,LAI)数据能反映作物的长势动态变化,为作物长势评估和产量预测提供有效的生长指标依据。该文综合利用混合像元线性分解与数据同化算法,以高空间分辨率SPOT-5数据反演的LAI修正高时间分辨率HJ-CCD数据反演的LAI序列,生成了覆盖冬小麦主要生育期的高空间分辨率LAI序列,并结合SPOT-5反演的LAI和实测LAI值分析了像元纯度、高空间分辨率遥感数据同化景数对融合效果的影响。结果表明,采用数据融合方法生成的LAI与检验LAI具有较高的一致性,但像元纯度对融合效果影响较大;基于2景SPOT-5影像能够提高LAI序列估测精度,且优于基于1景SPOT-5影像的融合效果。该研究结果可为冬小麦生长监测提供技术支撑。展开更多
利用环境星HJ-CCD影像与同步获取的LAI实测数据生成江苏省江淮之间西部和里下河地区水稻的30 m HJ/LAI,对MODIS/LAI数据产品和利用MODIS数据与4尺度几何光学模型反演的LAI数据集进行质量评价,结果表明,不同植被指数与研究区水稻LAI的相...利用环境星HJ-CCD影像与同步获取的LAI实测数据生成江苏省江淮之间西部和里下河地区水稻的30 m HJ/LAI,对MODIS/LAI数据产品和利用MODIS数据与4尺度几何光学模型反演的LAI数据集进行质量评价,结果表明,不同植被指数与研究区水稻LAI的相关性差别很大,其中GNDVI与水稻LAI的相关性最好,R2为0.72,估算精度达70.89%,而RMSE仅为1.38,适于该区水稻LAI的遥感估算;研究区MODIS/LAI和基于4尺度几何光学模型反演的LAI与HJ/LAI的变化趋势较为一致,均呈现出西南和东北部LAI值较低、北部和中部LAI值较高的特征,但MODIS/LAI和基于4尺度几何光学模型反演的LAI不仅变化范围较小,而且偏低明显,MODIS/LAI的低估现象更为严重;在1 km尺度上,MODIS/LAI和基于4尺度几何光学模型反演的LAI的精度分别为60.21%和66.56%,与HJ/LAI比较的R2分别为0.09和0.28(N=2 585),在0.01水平上显著相关。展开更多
文摘为了实现干旱半干旱灌区地表信息低成本、高效率的动态监测,利用HJ-CCD数据的多时相和多光谱信息,探讨了平罗县土地利用遥感分类方法。首先建立研究区内典型地物的NDVI时间序列曲线,提取反映该区物候模式的时序特征参数;然后对土壤信息丰富的3月份多光谱影像进行主成分变换,选取第1主成分(PC1)作为光谱特征参数,最后基于分类回归树(classification and regression tree,CART)算法进行决策树监督分类。总体分类精度达到92.26%,Kappa系数为0.91,比最大似然法分类结果精度提高了2.58%。研究表明:构建的NDVI时间序列曲线对研究区内的地类具有较强的代表性,提取的时间维和光谱维的分类参数对各地类均有很好地区分性,CART决策树算法分类结果清晰准确且精度较高。该方法为HJ小卫星在干旱半干旱区等区域的深入应用提供科学依据和实证基础。
文摘高时空分辨率叶面积指数(leaf area index,LAI)数据能反映作物的长势动态变化,为作物长势评估和产量预测提供有效的生长指标依据。该文综合利用混合像元线性分解与数据同化算法,以高空间分辨率SPOT-5数据反演的LAI修正高时间分辨率HJ-CCD数据反演的LAI序列,生成了覆盖冬小麦主要生育期的高空间分辨率LAI序列,并结合SPOT-5反演的LAI和实测LAI值分析了像元纯度、高空间分辨率遥感数据同化景数对融合效果的影响。结果表明,采用数据融合方法生成的LAI与检验LAI具有较高的一致性,但像元纯度对融合效果影响较大;基于2景SPOT-5影像能够提高LAI序列估测精度,且优于基于1景SPOT-5影像的融合效果。该研究结果可为冬小麦生长监测提供技术支撑。
文摘利用环境星HJ-CCD影像与同步获取的LAI实测数据生成江苏省江淮之间西部和里下河地区水稻的30 m HJ/LAI,对MODIS/LAI数据产品和利用MODIS数据与4尺度几何光学模型反演的LAI数据集进行质量评价,结果表明,不同植被指数与研究区水稻LAI的相关性差别很大,其中GNDVI与水稻LAI的相关性最好,R2为0.72,估算精度达70.89%,而RMSE仅为1.38,适于该区水稻LAI的遥感估算;研究区MODIS/LAI和基于4尺度几何光学模型反演的LAI与HJ/LAI的变化趋势较为一致,均呈现出西南和东北部LAI值较低、北部和中部LAI值较高的特征,但MODIS/LAI和基于4尺度几何光学模型反演的LAI不仅变化范围较小,而且偏低明显,MODIS/LAI的低估现象更为严重;在1 km尺度上,MODIS/LAI和基于4尺度几何光学模型反演的LAI的精度分别为60.21%和66.56%,与HJ/LAI比较的R2分别为0.09和0.28(N=2 585),在0.01水平上显著相关。