Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do ...Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.展开更多
Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive...Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive. For the inorganic adhesive at normal temperature and different high temperatures, the microstructure and phase composition are investigated by means of X-ray diffraction (XRD) and SEM respectively. Results show that inorganic adhesive can resist at least 600 ℃ high temperature. Fire-resistance performance of inorganic adhesive can meet the requirements of fiber reinforced polymer (FRP) strengthened RC structures.展开更多
Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. Th...Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.展开更多
Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media...Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.展开更多
Multifunctional,wearable,and durable textiles integrated with smart electronics have attracted tremendous attention.However,it remains a great challenge to balance new functionalities with high-temperature stability.H...Multifunctional,wearable,and durable textiles integrated with smart electronics have attracted tremendous attention.However,it remains a great challenge to balance new functionalities with high-temperature stability.Herein,textile-based pressure sensors with excellent electromagnetic interference(EMI)shielding,Joule heating,and high-temperature resistance were fabricated by constructing graphene/SiC(G/SiC)heterostructures on carbon cloth via laser chemical vapor deposition(LCVD).The resultant textiles exhibited excellent EMI efficiency of 74.2 dB with a thickness of 0.45 mm,Joule heating performance within a low working voltage(V)range of 1-3 V,and fast response time within 20 s.These properties arose from multiple reflections,interfacial polarization,and high conductivity due to the numerous amounts of nanoscale G/SiC heterostructures.More importantly,G/SiC/carbon fibers(CFs)demonstrated well high-temperature resistance with a heat resistance index(THri)of 380.2 C owing to the protection of a coating layer on the CFs upon oxidation.Meanwhile,the G/SiC/CFs presented good pressure-sensing performance with high sensitivity(S)of 52.93 kPal,fast response time of 85 ms,and a wide pressure range of up to 186 kPa.These features imply the potential of the G/SiC/CFs as efficient EMI shielding,electrical heater,and piezoresistive sensor textiles.展开更多
Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the...Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.展开更多
Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection ...Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection neurons are at greater risk in AD whereas other regions display resistance to neurodegeneration.Interestingly,the cerebellum,a phylogenetically very old region,is affected only very late in the disease progression.展开更多
High-temperature adult-plant (HTAP) resistance expresses when plants grow old and the weather becomes warm. This non-race specific and durable type of resistance has been used successfully in control of wheat stripe r...High-temperature adult-plant (HTAP) resistance expresses when plants grow old and the weather becomes warm. This non-race specific and durable type of resistance has been used successfully in control of wheat stripe rust in the US since early 1960s. This article describes practical procedures for identification and characterization of HTAP resistance and reviews recent studies on discovery of genes conferring HTAP resistance. Recent studies providing insights to the molecular basis for the durability of HTAP resistance will be presented. Strategies for improving levels of HTAP resistance and improving control of stripe rust through combining HTAP resistance with effective all-stage resistance will be discussed.展开更多
To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more ...To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.展开更多
Interactions of the stripe rust pathogen (Puccinia striiformis f. sp responses. Among various genes involved in the plant-pathogen related (PR) protein genes determine different defense responses tritici) with wh...Interactions of the stripe rust pathogen (Puccinia striiformis f. sp responses. Among various genes involved in the plant-pathogen related (PR) protein genes determine different defense responses tritici) with wheat plants activate a w^ae range OT nost nteractions, the expressions of particular pathogenesis-Different types of resistance have been recognized and utilized for developing wheat cultivars for resistance to stripe rust. All-stage resistance can be detected in seedling stage and remains at high levels throughout the plant growth stages. This type of resistance is race-specific and not durable. In contrast, plants with only high-temperature adult-plant (HTAP) resistance are susceptible in seedling stage, but become resistant when plants grow older and the weather becomes warmer. HTAP resistance controlled by a single gene is partial, but usually non-race specific and durable. The objective of this study was to analyze the expression of PR protein genes involved in different types of wheat resistance to stripe rust. The expression levels of 8 PR protein genes (PR1, PRI.2, PR2, PR3, PR4, PR5, PR9 and PRIO) were quantitatively evaluated at 0, 1, 2, 7 and 14 days after inoculation in single resistance gene lines of wheat with all-stage resistance genes YrTrl, Yr76, YrSP and YrExp2 and lines carrying HTAP resistance genes Yr52, Yr59, Yr62 and Yr7B. Races PSTv-4 and PSTv-37 for compatible and incompatible interactions were used in evaluation of PR protein gene expression in wheat lines carrying all-stage resistance genes in the seedling- stage experiment while PSTv-37 was used in the HTAP experiment. Analysis of quantitative real-time polymerase chain reaction (qRT-PCR) revealed that all of the PR protein genes were involved in the different types of resistance controlled by different Yr genes. However, these genes were upregulated at different time points and at different levels during the infection process among the wheat lines with different Yr genes for either all-stage resistance or HTAP resistance. Some of the genes were also induced in compatible interactions, but the levels were almost always higher in the incompatible interaction than in the compatible interaction at the same time point for each Yr gene. These results indicate that both salicylic acid and jasmonate signaling pathways are involved in both race-specific all-stage resistance and non-race specific HTAP resistance. Although expressing at different stages of infection and at different levels, these PR protein genes work in concert for contribution to different types of resistance controlled by different Yr genes.展开更多
Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxida...Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.展开更多
Y-modified Cr-Al coatings were co-deposited on DZ125 alloy by a pack cementation process,and the microstructures,constituent phases,and formation mechanisms of the obtained coatings were studied.The oxidation resistan...Y-modified Cr-Al coatings were co-deposited on DZ125 alloy by a pack cementation process,and the microstructures,constituent phases,and formation mechanisms of the obtained coatings were studied.The oxidation resistance of the coatings was also investigated.The experimental results show that the coating prepared by co-depositing Cr-Al-Y at 1050℃for 2 h has a multi-layered structure with an outer layer composed of Cr and Ni_(3)Cr_(2),a middle layer composed of Ni_(3)Cr_(2) and Al_(13)Co_(4),and an inner layer composed of Ni_(3)Al.The co-deposited Y is mainly present in the outer and middle layers of the coating.The coating formation process follows a sequential deposition mechanism in which Al is deposited during the initial stage,followed by Cr deposition.After oxidation at 1100℃for 100 h,a dense Cr_(2)O_(3)·Al_(2)O_(3) scale forms on the obtained coating,which effectively protects the DZ125 alloy from oxidation by preventing the inward diffusion of oxygen.展开更多
18CrNbTi ferritic stainless steel is a low-cost material mainly used for the fabrication of manifolds, which usually work at temperatures below 950℃. With the development of engine technology, exhaust manifolds tend ...18CrNbTi ferritic stainless steel is a low-cost material mainly used for the fabrication of manifolds, which usually work at temperatures below 950℃. With the development of engine technology, exhaust manifolds tend to work above 1 000 ℃ and this may be even higher in the future. For developing a new kind of steel to satisfy these requirements,the effects of tungsten (W)addition on the high-temperature strength and oxidation resistance of 18CrNbTi ferritic stainless steel are discussed in this study. The test results show that W enhances high-temperature strength at 1 000 ℃ and significantly improves oxidation resistance. However, W addition tends to degrade oxide layer adhesion,causing spalling during alternate hot and cold conditions.展开更多
In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unb...In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unbonded prestressed composite beams encased circular steel tube truss after ultimate limit state.Test on flexural behavior of these four beams was performed.Moreover,normal section load-bearing capacity of these beams and the curve load-deflection at mid-span were obtained.Experimental results show that it is feasible to strengthen concrete members with CFRP sheets bonded with AASCM.Based on the experimental results and theoretical study,computational method of stiffness is proposed for calculating bending rigidity and normal section load-bearing capacity of concrete simply supported beams strengthened with CFRP sheets bonded with AASCM.Formula of bending rigidity calculation was founded which results are in good agreement with testing data.展开更多
As a new spraying technology used in the remanufacturing engineering, electro-thermal explosion spraying holds a lot of advantages. Electro-thermal explosion spraying coating aliquation phenomena are reduced and non-c...As a new spraying technology used in the remanufacturing engineering, electro-thermal explosion spraying holds a lot of advantages. Electro-thermal explosion spraying coating aliquation phenomena are reduced and non-crystal, micro-crystal and millimicron-crystal and other microstructure are formed. The corrosion-resistance ability of electro-thermal explosion spraying coating in high temperature environment was surveyed respectively. SEM equipped with EDS was employed to analyze the microstructure of spraying coating before and after corrosion. The corrosion-resistance mechanism of the spraying coating was discussed.展开更多
Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature moni...Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare.展开更多
Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a hi...Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a higher glass transition temperature(T_(g))as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature.However,current high-T_(g)polymers have limitations,and it is difficult to meet the demand for high-temperature energy storage dielectrics with only one polymer.For example,polyetherimide has high-energy storage efficiency,but low breakdown strength at high temperatures.Polyimide has high corona resistance,but low high-temperature energy storage efficiency.In this work,combining the advantages of two polymer,a novel high-T_(g)polymer fiber-reinforced microstructure is designed.Polyimide is designed as extremely fine fibers distributed in the composite dielectric,which will facilitate the reduction of high-temperature conductivity loss for polyimide.At the same time,due to the high-temperature resistance and corona resistance of polyimide,the high-temperature breakdown strength of the composite dielectric is enhanced.After the polyimide content with the best high-temperature energy storage characteristics is determined,molecular semiconductors(ITIC)are blended into the polyimide fibers to further improve the high-temperature efficiency.Ultimately,excellent high-temperature energy storage properties are obtained.The 0.25 vol%ITIC-polyimide/polyetherimide composite exhibits high-energy density and high discharge efficiency at 150℃(2.9 J cm^(-3),90%)and 180℃(2.16 J cm^(-3),90%).This work provides a scalable design idea for high-performance all-organic high-temperature energy storage dielectrics.展开更多
Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following ...Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.展开更多
Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature s...Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature structural materials for aeroengine and gas turbine hot-end components.Our previous work elucidated the influence of Ti and Ta on the high-temperature mechanical properties of alloys.However,the intricate interaction among elements considerably affects the oxidation resistance of alloys.In this paper,Co-35Ni-10Al-2W-5Cr-2Mo-1Nb-xTi-(5−x)Ta alloys(x=1,2,3,4)with varying Ti and Ta contents were designed and compounded,and their oxidation resistance was investigated at the temperature range from 800 to 1000℃.After oxidation at three test conditions,namely,800℃for 200 h,900℃for 200 h,and 1000℃for 50 h,the main structure of the oxide layer of the alloy consisted of spinel,Cr_(2)O_(3),and Al_(2)O_(3)from outside to inside.Oxides consisting of Ta,W,and Mo formed below the Cr_(2)O_(3)layer.The interaction of Ti and Ta imparted the highest oxidation resistance to 3Ti2Ta alloy.Conversely,an excessive amount of Ti or Ta resulted in an adverse effect on the oxidation resistance of the alloys.This study reports the volatilization of W and Mo oxides during the oxidation process of Co-Ni-based cast superalloys with a high Al content for the first time and explains the formation mechanism of holes in the oxide layer.The results provide a basis for gaining insights into the effects of the interaction of alloying elements on the oxidation resistance of the alloys they form.展开更多
Breast cancer is the leading cause of cancer-related deaths in women worldwide,with Hormone Receptor(HR)+being the predominant subtype.Tamoxifen(TAM)serves as the primary treatment for HR+breast cancer.However,drug re...Breast cancer is the leading cause of cancer-related deaths in women worldwide,with Hormone Receptor(HR)+being the predominant subtype.Tamoxifen(TAM)serves as the primary treatment for HR+breast cancer.However,drug resistance often leads to recurrence,underscoring the need to develop new therapies to enhance patient quality of life and reduce recurrence rates.Artemisinin(ART)has demonstrated efficacy in inhibiting the growth of drug-resistant cells,positioning art as a viable option for counteracting endocrine resistance.This study explored the interaction between artemisinin and tamoxifen through a combined approach of bioinformatics analysis and experimental validation.Five characterized genes(ar,cdkn1a,erbb2,esr1,hsp90aa1)and seven drug-disease crossover genes(cyp2e1,rorc,mapk10,glp1r,egfr,pgr,mgll)were identified using WGCNA crossover analysis.Subsequent functional enrichment analyses were conducted.Our findings confirm a significant correlation between key cluster gene expression and immune cell infiltration in tamoxifen-resistant and-sensitized patients.scRNA-seq analysis revealed high expression of key cluster genes in epithelial cells,suggesting artemisinin’s specific impact on tumor cells in estrogen receptor(ER)-positive BC tissues.Molecular target docking and in vitro experiments with artemisinin on LCC9 cells demonstrated a reversal effect in reducing migratory and drug resistance of drug-resistant cells by modulating relevant drug resistance genes.These results indicate that artemisinin could potentially reverse tamoxifen resistance in ER-positive breast cancer.展开更多
文摘Ultra-deep reservoirs play an important role at present in fossil energy exploitation.Due to the related high temperature,high pressure,and high formation fracture pressure,however,methods for oil well stimulation do not produce satisfactory results when conventional fracturing fluids with a low pumping rate are used.In response to the above problem,a fracturing fluid with a density of 1.2~1.4 g/cm^(3)was developed by using Potassium formatted,hydroxypropyl guanidine gum and zirconium crosslinking agents.The fracturing fluid was tested and its ability to maintain a viscosity of 100 mPa.s over more than 60 min was verified under a shear rate of 1701/s and at a temperature of 175℃.This fluid has good sand-carrying performances,a low viscosity after breaking the rubber,and the residue content is less than 200 mg/L.Compared with ordinary reconstruction fluid,it can increase the density by 30%~40%and reduce the wellhead pressure of 8000 m level reconstruction wells.Moreover,the new fracturing fluid can significantly mitigate safety risks.
基金Funded by the National Natural Science Foundation of China(No.50678050)
文摘Organic epoxy matrices have been widely used in the FRP reinforcing technique, but they have serious disadvantages of poor high-temperature resistance. An inorganic adhesive is invented to replace the organic adhesive. For the inorganic adhesive at normal temperature and different high temperatures, the microstructure and phase composition are investigated by means of X-ray diffraction (XRD) and SEM respectively. Results show that inorganic adhesive can resist at least 600 ℃ high temperature. Fire-resistance performance of inorganic adhesive can meet the requirements of fiber reinforced polymer (FRP) strengthened RC structures.
基金support of the 111 Project from the Ministryof Education of China(B07049)the Key Technologies R&D Program of China during the 11th Five-Year Plan period(2006BAD08A05)the project of Toxicity Variation of Wheat Stripe Rust Pathogen and Demonstration of Integrated Management of Stripe Rust,China(200903035-02)are thankfully acknowledged
文摘Stripe rust, caused by Puccinia striiformis Westend. f. sp. tritici (Pst), is a severe foliar disease of common wheat (Triticum aestivum L.) in the world. Resistance is the best approach to control the disease. The winter wheat cultivar Lantian 1 has high-temperature resistance to stripe rust. To determing the gene(s) for the stripe rust resistance, Lantian 1 was crossed with Mingxian 169 (M169). Seedlings of the parents, and F 1 , F 2 and F 2-3 progenies were tested with races CYR32 of Pst under controlled greenhouse conditions. Lantian 1 has a single partially dominant gene conferred resistance to race CYR32, designated as YrLT1. Simple sequence repeat (SSR) techniques were used to identify molecular markers linked to YrLT1. A linkage group of five SSR markers was constructed for YrLT1 using 166 F 2 plants. Based on the SSR marker consensus map and the position on wheat chromosome, the resistance gene was assigned on chromosome 2DL. Amplification of a set of nulli-tetrasomic Chinese Spring lines with SSR marker Xwmc797 confirmed that the resistance gene was located on the long arm of chromosome 2D. Because of its chromosomal location and the high-temperature resistance, this gene is different from previously described genes. The molecular map spanned 29.9 cM, and the genetic distance of two close markers Xbarc228 and Xcfd16 to resistance gene locus was 4.0 and 5.7 cM, respectively. The polymorphism rates of the flanking markers in 46 wheat lines were 2.1 and 2.1%, respectively; and the two markers in combination could distinguish the alleles at the resistance locus in 97.9% of tested genotypes. This new gene and flanking markers should be useful in developing wheat cultivars with high level and possible durable resistance to stripe rust.
基金supported by the National Natural Science Foundation of China(52272022)Key Program of Natural Science Foundation of Hubei Province(2021CFA071).
文摘Refractory materials,as the crucial foundational materials in high-temperature industrial processes such as metallurgy and construction,are inevitably subjected to corrosion and penetration from high-temperature media during their service.Traditionally,observing the in-situ degradation process of refractory materials in complex high-temperature environments has presented challenges.Post-corrosion analysis are commonly employed to assess the slag resistance of refractory materials and understand the corrosion mechanisms.However,these methods often lack information on the process under the conditions of thermal-chemical-mechanical coupling,leading to potential biases in the analysis results.In this work,we developed a non-contact high-temperature machine vision technology by the integrating Digital Image Correlation(DIC)with a high-temperature visualization system to explore the corrosion behavior of Al2O3-SiO2 refractories against molten glass and Al2O3-MgO dry ramming refractories against molten slag at different temperatures.This technology enables realtime monitoring of the 2D or 3D overall strain and average strain curves of the refractory materials and provides continuous feedback on the progressive corrosion of the materials under the coupling conditions of thermal,chemical,and mechanical factors.Therefore,it is an innovative approach for evaluating the service behavior and performance of refractory materials,and is expected to promote the digitization and intelligence of the refractory industry,contributing to the optimization and upgrading of product performance.
基金supported by the National Natural Science Foundation of China(51872212,51972244,52102066,and 62204179)the National Key R&D Program of China(2018YFE0103600,2021YFB3703100)+7 种基金the International Science&Technology Cooperation Program of Hubei Province,China(2022EHB024)the 111 Project(B13035)supported by the Guangdong Major Project of Basic and Applied Basic Research(2021B0301030001)Key-Area Research and Development Program of Guangdong Province(2021B0707050001,2019B121204001,and 2020B010181001)the Chaozhou Science and Technology Project(2019PT01)the Self-innovation Research Funding Project of Hanjiang Laboratory(HJL202012A001,HJL202012A002,HJL202012A003)the Major Science and Technology Project in Zhongshan City,Guangdong Province(2019AG029)the Fundamental Research Funds for the Central Universities(WUT:2022IVA093).
文摘Multifunctional,wearable,and durable textiles integrated with smart electronics have attracted tremendous attention.However,it remains a great challenge to balance new functionalities with high-temperature stability.Herein,textile-based pressure sensors with excellent electromagnetic interference(EMI)shielding,Joule heating,and high-temperature resistance were fabricated by constructing graphene/SiC(G/SiC)heterostructures on carbon cloth via laser chemical vapor deposition(LCVD).The resultant textiles exhibited excellent EMI efficiency of 74.2 dB with a thickness of 0.45 mm,Joule heating performance within a low working voltage(V)range of 1-3 V,and fast response time within 20 s.These properties arose from multiple reflections,interfacial polarization,and high conductivity due to the numerous amounts of nanoscale G/SiC heterostructures.More importantly,G/SiC/carbon fibers(CFs)demonstrated well high-temperature resistance with a heat resistance index(THri)of 380.2 C owing to the protection of a coating layer on the CFs upon oxidation.Meanwhile,the G/SiC/CFs presented good pressure-sensing performance with high sensitivity(S)of 52.93 kPal,fast response time of 85 ms,and a wide pressure range of up to 186 kPa.These features imply the potential of the G/SiC/CFs as efficient EMI shielding,electrical heater,and piezoresistive sensor textiles.
基金Project(GC13A113)supported by the Technology Research and Development Program of Heilongjiang Provincial Science and Technology DepartmentProject(12511469)supported by Heilongjiang Provincial Science and Technology Department
文摘Ni-La2O3/CeO2 composite films were prepared by electrodeposition from a nickel sulfate bath containing certain content of micrometer and nanometer La2O3/CeO2 particles. The effect of La2O3 or CeO2 particle size on the oxidation resistance of the electrodeposited Ni-La2O3/CeO2 composites in air at 1000 °C was studied. The results indicate that, compared with the electrodeposited Ni-film, Ni-La2O3/CeO2 composites exhibit a superior oxidation resistance due to the codeposited La2O3 or CeO2 particles blocking the outward diffusion of nickel. Moreover, compared with nanoparticles, La2O3 or CeO2 microparticles have stronger effect because La2O3 or CeO2 microparticles also act as a diffusion barrier layer at the onset of oxidation.
基金supported by a grant of the Deutsche Forschungsgemeinschaft(DFGCRC1177 and joint DFG/ANR grant)(to CB)a fellowship of the Deutscher Akademischer Austauschdienst(DAAD)(to TNMP)。
文摘Alzheimer's disease(AD),the most common form of neurodegeneration,is characterized by selective neuronal vulnerability and brain regionselective neuron demise.The entorhinal cortex and hippoc,ampal CA1 projection neurons are at greater risk in AD whereas other regions display resistance to neurodegeneration.Interestingly,the cerebellum,a phylogenetically very old region,is affected only very late in the disease progression.
文摘High-temperature adult-plant (HTAP) resistance expresses when plants grow old and the weather becomes warm. This non-race specific and durable type of resistance has been used successfully in control of wheat stripe rust in the US since early 1960s. This article describes practical procedures for identification and characterization of HTAP resistance and reviews recent studies on discovery of genes conferring HTAP resistance. Recent studies providing insights to the molecular basis for the durability of HTAP resistance will be presented. Strategies for improving levels of HTAP resistance and improving control of stripe rust through combining HTAP resistance with effective all-stage resistance will be discussed.
文摘To further improve the oxidation-resistance of materials and reduce the cost of grid plates in grate-kiln, a new kind of heat-resistant grid plate was developed. The microstructure of this grid plate with a life more than 18 months was studied by XRD, SEM and EDS techniques. The results show that high hardness, high intensity and good impact property make the new kind of heat-resistant grid plate and its oxide film have a higher resistance to deformation and abrasion at 900-1000℃ Besides, small grain size is beneficial to form a complete protective oxide film. The oxide film composed of SiO2 layer, Cr2O3 layer and Fe2O3 layer is rather thin and bonds closely with the backing. The forming of the chemical stable nickel-rich layer increases the density of Cr2O3 layer.
基金supported by the U.S. Department of Agriculture, Agricultural Research Service (2090-22000018-00D)the Washington Grain Commission, USA (13C3061-5665)+2 种基金the Idaho Wheat Commission, USA (13C3061-5665 13C-3061-4232)The Fulbright fellowship
文摘Interactions of the stripe rust pathogen (Puccinia striiformis f. sp responses. Among various genes involved in the plant-pathogen related (PR) protein genes determine different defense responses tritici) with wheat plants activate a w^ae range OT nost nteractions, the expressions of particular pathogenesis-Different types of resistance have been recognized and utilized for developing wheat cultivars for resistance to stripe rust. All-stage resistance can be detected in seedling stage and remains at high levels throughout the plant growth stages. This type of resistance is race-specific and not durable. In contrast, plants with only high-temperature adult-plant (HTAP) resistance are susceptible in seedling stage, but become resistant when plants grow older and the weather becomes warmer. HTAP resistance controlled by a single gene is partial, but usually non-race specific and durable. The objective of this study was to analyze the expression of PR protein genes involved in different types of wheat resistance to stripe rust. The expression levels of 8 PR protein genes (PR1, PRI.2, PR2, PR3, PR4, PR5, PR9 and PRIO) were quantitatively evaluated at 0, 1, 2, 7 and 14 days after inoculation in single resistance gene lines of wheat with all-stage resistance genes YrTrl, Yr76, YrSP and YrExp2 and lines carrying HTAP resistance genes Yr52, Yr59, Yr62 and Yr7B. Races PSTv-4 and PSTv-37 for compatible and incompatible interactions were used in evaluation of PR protein gene expression in wheat lines carrying all-stage resistance genes in the seedling- stage experiment while PSTv-37 was used in the HTAP experiment. Analysis of quantitative real-time polymerase chain reaction (qRT-PCR) revealed that all of the PR protein genes were involved in the different types of resistance controlled by different Yr genes. However, these genes were upregulated at different time points and at different levels during the infection process among the wheat lines with different Yr genes for either all-stage resistance or HTAP resistance. Some of the genes were also induced in compatible interactions, but the levels were almost always higher in the incompatible interaction than in the compatible interaction at the same time point for each Yr gene. These results indicate that both salicylic acid and jasmonate signaling pathways are involved in both race-specific all-stage resistance and non-race specific HTAP resistance. Although expressing at different stages of infection and at different levels, these PR protein genes work in concert for contribution to different types of resistance controlled by different Yr genes.
文摘Satellited CoNiCrAlY–Al_(2)O_(3)feedstocks with 2wt%, 4wt%, and 6wt% oxide nanoparticles and pure CoNiCrAlY powder were deposited by the high-velocity oxy fuel process on an Inconel738 superalloy substrate. The oxidation test was performed at 1050℃ for 5, 50, 100,150, 200, and 400 h. The microstructure and phase composition of powders and coatings were characterized by scanning electron microscopy and X-ray diffraction, respectively. The bonding strength of the coatings was also evaluated. The results proved that with the increase in the percentage of nanoparticles(from 2wt% to 6wt%), the amount of porosity(from 1vol% to 4.7vol%), unmelted particles, and roughness of the coatings(from 4.8 to 8.8 μm) increased, and the bonding strength decreased from 71 to 48 MPa. The thicknesses of the thermally grown oxide layer of pure and composite coatings(2wt%, 4wt%, and 6wt%) after 400 h oxidation were measured as 6.5, 5.5, 7.6, and 8.1 μm, respectively.The CoNiCrAlY–2wt% Al_(2)O_(3)coating showed the highest oxidation resistance due to the diffusion barrier effect of well-dispersed nanoparticles. The CoNiCrAlY–6wt% Al_(2)O_(3)coating had the lowest oxidation resistance due to its rough surface morphology and porous microstructure.
基金Funded by the Basic Scientific Research of the North Minzu University(FWNX42)the Natural Science Foundation of Ningxia(2020AAC02025)+1 种基金the National Natural Science Foundation of China(51961003 and 52161009)the Ningxia Youth Talents Supporting Program(TJGC2019040)。
文摘Y-modified Cr-Al coatings were co-deposited on DZ125 alloy by a pack cementation process,and the microstructures,constituent phases,and formation mechanisms of the obtained coatings were studied.The oxidation resistance of the coatings was also investigated.The experimental results show that the coating prepared by co-depositing Cr-Al-Y at 1050℃for 2 h has a multi-layered structure with an outer layer composed of Cr and Ni_(3)Cr_(2),a middle layer composed of Ni_(3)Cr_(2) and Al_(13)Co_(4),and an inner layer composed of Ni_(3)Al.The co-deposited Y is mainly present in the outer and middle layers of the coating.The coating formation process follows a sequential deposition mechanism in which Al is deposited during the initial stage,followed by Cr deposition.After oxidation at 1100℃for 100 h,a dense Cr_(2)O_(3)·Al_(2)O_(3) scale forms on the obtained coating,which effectively protects the DZ125 alloy from oxidation by preventing the inward diffusion of oxygen.
文摘18CrNbTi ferritic stainless steel is a low-cost material mainly used for the fabrication of manifolds, which usually work at temperatures below 950℃. With the development of engine technology, exhaust manifolds tend to work above 1 000 ℃ and this may be even higher in the future. For developing a new kind of steel to satisfy these requirements,the effects of tungsten (W)addition on the high-temperature strength and oxidation resistance of 18CrNbTi ferritic stainless steel are discussed in this study. The test results show that W enhances high-temperature strength at 1 000 ℃ and significantly improves oxidation resistance. However, W addition tends to degrade oxide layer adhesion,causing spalling during alternate hot and cold conditions.
基金Sponsored by the Changjiang Scholars Program of China(Grant No.2009-37)the National Natural Science Foundation of China(Grant No.50678050)
文摘In this paper the alkali-activated slag cementitious materials(AASCM)which strength at 600 ℃ is larger than that of AASCM at room temperature,were prepared to paste CFRP sheets to strengthen four simply supported unbonded prestressed composite beams encased circular steel tube truss after ultimate limit state.Test on flexural behavior of these four beams was performed.Moreover,normal section load-bearing capacity of these beams and the curve load-deflection at mid-span were obtained.Experimental results show that it is feasible to strengthen concrete members with CFRP sheets bonded with AASCM.Based on the experimental results and theoretical study,computational method of stiffness is proposed for calculating bending rigidity and normal section load-bearing capacity of concrete simply supported beams strengthened with CFRP sheets bonded with AASCM.Formula of bending rigidity calculation was founded which results are in good agreement with testing data.
文摘As a new spraying technology used in the remanufacturing engineering, electro-thermal explosion spraying holds a lot of advantages. Electro-thermal explosion spraying coating aliquation phenomena are reduced and non-crystal, micro-crystal and millimicron-crystal and other microstructure are formed. The corrosion-resistance ability of electro-thermal explosion spraying coating in high temperature environment was surveyed respectively. SEM equipped with EDS was employed to analyze the microstructure of spraying coating before and after corrosion. The corrosion-resistance mechanism of the spraying coating was discussed.
基金financially supported by the Guangdong Basic and Applied Basic Research Foundation(2022A1515110296,2022A1515110432)the Shenzhen Science and Technology Program(20231120171032001)the National Natural Science Foundation of China(No.52242305).
文摘Despite notable progress in thermoelectric(TE)materials and devices,developing TE aerogels with high-temperature resistance,superior TE performance and excellent elasticity to enable self-powered high-temperature monitoring/warning in industrial and wearable applications remains a great challenge.Herein,a highly elastic,flame-retardant and high-temperature-resistant TE aerogel,made of poly(3,4-ethylene dioxythiophene):poly(styrenesulfonate)/single-walled carbon nanotube(PEDOT:PSS/SWCNT)composites,has been fabricated,displaying attractive compression-induced power factor enhancement.The as-fabricated sensors with the aerogel can achieve accurately pressure stimuli detection and wide temperature range monitoring.Subsequently,a flexible TE generator is assembled,consisting of 25 aerogels connected in series,capable of delivering a maximum output power of 400μW when subjected to a temperature difference of 300 K.This demonstrates its outstanding high-temperature heat harvesting capability and promising application prospects for real-time temperature monitoring on industrial high-temperature pipelines.Moreover,the designed self-powered wearable sensing glove can realize precise wide-range temperature detection,high-temperature warning and accurate recognition of human hand gestures.The aerogel-based intelligent wearable sensing system developed for firefighters demonstrates the desired self-powered and highly sensitive high-temperature fire warning capability.Benefitting from these desirable properties,the elastic and high-temperature-resistant aerogels present various promising applications including self-powered high-temperature monitoring,industrial overheat warning,waste heat energy recycling and even wearable healthcare.
基金funded by National Natural Science Foundation of China(No.U20A20308,52177017 and 51977050)Heilongjiang Province Natural Science Foundation of China(No.ZD2020E009)+3 种基金China Postdoctoral Science Foundation(No.2020T130156)Heilongjiang Postdoctoral Financial Assistance(No.LBHZ18098)Fundamental Research Foundation for Universities of Heilongjiang Province(No.2019-KYYWF-0207 and 2018-KYYWF-1624)University Nursing Program for Young Scholars with Creative Talents in Heilongjiang Province(No.UNPYSCT-2020177)
文摘Optimizing the high-temperature energy storage characteristics of energy storage dielectrics is of great significance for the development of pulsed power devices and power control systems.Selecting a polymer with a higher glass transition temperature(T_(g))as the matrix is one of the effective ways to increase the upper limit of the polymer operating temperature.However,current high-T_(g)polymers have limitations,and it is difficult to meet the demand for high-temperature energy storage dielectrics with only one polymer.For example,polyetherimide has high-energy storage efficiency,but low breakdown strength at high temperatures.Polyimide has high corona resistance,but low high-temperature energy storage efficiency.In this work,combining the advantages of two polymer,a novel high-T_(g)polymer fiber-reinforced microstructure is designed.Polyimide is designed as extremely fine fibers distributed in the composite dielectric,which will facilitate the reduction of high-temperature conductivity loss for polyimide.At the same time,due to the high-temperature resistance and corona resistance of polyimide,the high-temperature breakdown strength of the composite dielectric is enhanced.After the polyimide content with the best high-temperature energy storage characteristics is determined,molecular semiconductors(ITIC)are blended into the polyimide fibers to further improve the high-temperature efficiency.Ultimately,excellent high-temperature energy storage properties are obtained.The 0.25 vol%ITIC-polyimide/polyetherimide composite exhibits high-energy density and high discharge efficiency at 150℃(2.9 J cm^(-3),90%)and 180℃(2.16 J cm^(-3),90%).This work provides a scalable design idea for high-performance all-organic high-temperature energy storage dielectrics.
基金suppoited by an Alexander Graliam Bell Canada Graduate Scholarship-Doctoralsupported by an Ontario Graduate Scholarshipsupported by the Canada Research Chairs programme。
文摘Purpose:The aim of this umbrella review was to determine the impact of resistance training(RT)and individual RT prescription variables on muscle mass,strength,and physical function in healthy adults.Methods:Following Preferred Reporting Items for Systematic Reviews and Meta-Analyses(PRISMA)guidelines,we systematically searched and screened eligible systematic reviews reporting the effects of differing RT prescription variables on muscle mass(or its proxies),strength,and/or physical function in healthy adults aged>18 years.Results:We identified 44 systematic reviews that met our inclusion criteria.The methodological quality of these reviews was assessed using A Measurement Tool to Assess Systematic Reviews;standardized effectiveness statements were generated.We found that RT was consistently a potent stimulus for increasing skeletal muscle mass(4/4 reviews provide some or sufficient evidence),strength(4/6 reviews provided some or sufficient evidence),and physical function(1/1 review provided some evidence).RT load(6/8 reviews provided some or sufficient evidence),weekly frequency(2/4 reviews provided some or sufficient evidence),volume(3/7 reviews provided some or sufficient evidence),and exercise order(1/1 review provided some evidence)impacted RT-induced increases in muscular strength.We discovered that 2/3 reviews provided some or sufficient evidence that RT volume and contraction velocity influenced skeletal muscle mass,while 4/7 reviews provided insufficient evidence in favor of RT load impacting skeletal muscle mass.There was insufficient evidence to conclude that time of day,periodization,inter-set rest,set configuration,set end point,contraction velocity/time under tension,or exercise order(only pertaining to hypertrophy)influenced skeletal muscle adaptations.A paucity of data limited insights into the impact of RT prescription variables on physical function.Conclusion:Overall,RT increased muscle mass,strength,and physical function compared to no exercise.RT intensity(load)and weekly frequency impacted RT-induced increases in muscular strength but not muscle hypertrophy.RT volume(number of sets)influenced muscular strength and hypertrophy.
基金the National Major Science and Technology Projects of China(Nos.J2019-VII-0010-0150 and J2019-VI-0009-0123)National Natural Science Foundation of China(Nos.52022011 and 52090041)+3 种基金Beijing Nova Program(No.Z211100002121170)Science Center for Gas Turbine Project(No.P2021-A-IV-001-002)Science and Technology on Advanced High Temperature Structural Materials Laboratory(No.6142903210306)Xiaomi Young Scholars Program.
文摘Co-Ni-based superalloys are known for their capability to function at elevated temperatures and superior hot corrosion and thermal fatigue resistance.Therefore,these alloys show potential as crucial high-temperature structural materials for aeroengine and gas turbine hot-end components.Our previous work elucidated the influence of Ti and Ta on the high-temperature mechanical properties of alloys.However,the intricate interaction among elements considerably affects the oxidation resistance of alloys.In this paper,Co-35Ni-10Al-2W-5Cr-2Mo-1Nb-xTi-(5−x)Ta alloys(x=1,2,3,4)with varying Ti and Ta contents were designed and compounded,and their oxidation resistance was investigated at the temperature range from 800 to 1000℃.After oxidation at three test conditions,namely,800℃for 200 h,900℃for 200 h,and 1000℃for 50 h,the main structure of the oxide layer of the alloy consisted of spinel,Cr_(2)O_(3),and Al_(2)O_(3)from outside to inside.Oxides consisting of Ta,W,and Mo formed below the Cr_(2)O_(3)layer.The interaction of Ti and Ta imparted the highest oxidation resistance to 3Ti2Ta alloy.Conversely,an excessive amount of Ti or Ta resulted in an adverse effect on the oxidation resistance of the alloys.This study reports the volatilization of W and Mo oxides during the oxidation process of Co-Ni-based cast superalloys with a high Al content for the first time and explains the formation mechanism of holes in the oxide layer.The results provide a basis for gaining insights into the effects of the interaction of alloying elements on the oxidation resistance of the alloys they form.
基金supported by the National Natural Science Foundation of China(81973839)High Level Chinese Medical Hospital Promotion Project-Special Project on Formulation R&D and New Drug Translation for Medical Institutions(HLCMHPP2023037)Upgrading the Development and Promotion of about 30 Integrated Chinese and Western Medicine Diagnosis and Treatment Programs(Guidelines for the Diagnosis and Treatment of Breast Cancer with the Combination of Traditional Chinese Medicine and Western Medicine)(ZYZB-2022-798).
文摘Breast cancer is the leading cause of cancer-related deaths in women worldwide,with Hormone Receptor(HR)+being the predominant subtype.Tamoxifen(TAM)serves as the primary treatment for HR+breast cancer.However,drug resistance often leads to recurrence,underscoring the need to develop new therapies to enhance patient quality of life and reduce recurrence rates.Artemisinin(ART)has demonstrated efficacy in inhibiting the growth of drug-resistant cells,positioning art as a viable option for counteracting endocrine resistance.This study explored the interaction between artemisinin and tamoxifen through a combined approach of bioinformatics analysis and experimental validation.Five characterized genes(ar,cdkn1a,erbb2,esr1,hsp90aa1)and seven drug-disease crossover genes(cyp2e1,rorc,mapk10,glp1r,egfr,pgr,mgll)were identified using WGCNA crossover analysis.Subsequent functional enrichment analyses were conducted.Our findings confirm a significant correlation between key cluster gene expression and immune cell infiltration in tamoxifen-resistant and-sensitized patients.scRNA-seq analysis revealed high expression of key cluster genes in epithelial cells,suggesting artemisinin’s specific impact on tumor cells in estrogen receptor(ER)-positive BC tissues.Molecular target docking and in vitro experiments with artemisinin on LCC9 cells demonstrated a reversal effect in reducing migratory and drug resistance of drug-resistant cells by modulating relevant drug resistance genes.These results indicate that artemisinin could potentially reverse tamoxifen resistance in ER-positive breast cancer.