We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sectio...We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sections at several impact energies in the scattering,perpendicular and azimuthal planes.Moreover,the three-body formalism of three-Coulomb,two-Coulomb and first Born approximation models has also been used to study the many-body effect on electron emission and the validity of the models.In the three-Coulomb wave model,the final state wave function incorporates distortion due to the three-body mutual Coulombic interaction.In this formalism,we use an uncorrelated and correlated Born initial state,which consists of a plane wave for the incoming projectile times a two-electron bound state wavefunction of the helium atom representing the 1s2(1S)state.But,in the case of the three-body formalism,the initial state wavefunction consists of a long-range Coulomb distortion for the incoming projectile and one active electron of the He atom described by the Roothaan–Hartree–Fock wavefunction.The structure with a single or two peaks with unequal intensity is observed in the angular distributions of the triple differential cross sections for the different kinematic conditions.In addition,the influence of static electron correlations is investigated using different bound state wavefunctions for the ground state of the He target.In the four-body formalism,the present computations are very fast by reducing a nine-dimensional integral to a two-dimensional real integral.Despite the simplicity and speed of the proposed quadrature,the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other theories.展开更多
Polyanion-based materials are considered one of the most attractive and promising cathode materials for lithiumion batteries(LIBs)due to their good stability,safety,cost-effectiveness,suitable voltages,and minimal env...Polyanion-based materials are considered one of the most attractive and promising cathode materials for lithiumion batteries(LIBs)due to their good stability,safety,cost-effectiveness,suitable voltages,and minimal environmental impact.However,these materials suffer from poor rate capability and low-temperature performance owing to limited electronic and ionic conductivity,which restricts their practical applicability.Recent developments,such as coating material particles with carbon or a conductive polymer,crystal deformation through the doping of foreign metal ions,and the production of nanostructured materials,have significantly enhanced the electrochemical performances of these materials.The successful applications of polyanion-based materials,especially in lithium-ion batteries,have been extensively reported.This comprehensive review discusses the current progress in crystal deformation in polyanion-based cathode materials,including phosphates,fluorophosphates,pyrophosphates,borates,silicates,sulfates,fluorosilicates,and oxalates.Therefore,this review provides detailed discussions on their synthesis strategies,electrochemical performance,and the doping of various ions.展开更多
Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^...Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.展开更多
Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonethel...Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.展开更多
In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed t...In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials.展开更多
Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate ...Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.展开更多
The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first ti...The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.展开更多
The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))a...The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.展开更多
Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-st...Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.展开更多
Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetabl...Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetables, and fruits. Understanding the isotopic compositions in organic compounds is crucial for comprehending various biochemical processes and the nature of substances present in different natural products. Tartaric acid, oxalic acid, glucose, and fructose are widely distributed compounds, including in vegetables and fruits. Tartaric acid plays a significant role in determining the quality and taste properties of wine, while oxalic acid is also prevalent but holds great interest for further research, especially in terms of carbon isotopic composition. We can unveil the mechanisms of processes that were previously impossible to study. Glucose and fructose are the most common monosaccharides in the hexose group, and both are found in fruits, with sweeter fruits containing higher amounts of these substances. In addition to fruits, wheat, barley, rye, onions, garlic, lentils, peppers, dried fruits, beans, broccoli, cabbage, tomatoes, and other foods are also rich sources of fructose and glucose. To determine the mass fraction of the carbon-13 isotope in these compounds, it is important to study their changes during natural synthesis. These compounds can be modified with a carbon center. According to the existing isotopic analysis method, these compounds are converted into carbon oxide or dioxide [1]. At this point, the average carbon content in the given compound is determined, but information about isotope-modified centers is lost. Dilution may occur through the transfer of other carbon-containing organic compounds in the sample or by dilution with natural carbon or carbon dioxide during the transfer process. This article discusses the possibility of carbon-13 isotope propagation directly in these compounds, both completely modified and modified with individual carbon centers. The literature provides information on determining carbon-13 substance in organic compounds, both with a general approach and for individual compounds [2] [3].展开更多
The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction ...The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction mechanism of Cu2+,Fe3+ and EPS during bioleaching chalcopyrite.Generally,Cu2+ ions can stimulate bacteria to produce more EPS than Fe3+ ions.The mass ratio of Fe3+/Cu2+ enclosed in EPS decreased gradually from about 4:1 to about 2:1 when the concentration of Cu2+ ions increased from 0.01 to 0.04 mol/L.The amount of iron and copper bound together by EPS in ferrous-free 9K medium containing 1% chalcopyrite was about 2 times of that in 9K medium containing 0.04 mol/L Cu2+ ions.It was inferred that the EPS with jarosites on the surface of chalcopyrite gradually acted as a weak diffusion barrier for Cu2+,Fe3+ ions transference during bioleaching chalcopyrite.展开更多
The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-pre...The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-precipitation experiments.The results show that the electrostatic repulsion between the CMC molecules and the chlorite surfaces hinders the approach of the CMC to the chlorite while the presence of copper ions and calcium ions enhances the adsorption density of CMC.The action mechanisms of these two types of ions are different.Calcium ions can not adsorb onto the mineral surfaces,but they can interact with the CMC molecules,thus reducing the charge of the CMC and enhancing adsorption density.Copper ions can adsorb onto the mineral surfaces,which facilitates the CMC adsorption through acid/base interaction.The enhanced adsorption density is also attributed to the decreased electrostatic repulsion between the CMC and mineral surfaces as copper ions reduce the surface charge of both the mineral surfaces and the CMC molecules.展开更多
We report in this paper energy positions of the 2P˚_2s^(2)2p^(2)(^(1)D)nd 2P,2P˚_2s^(2)2p^(2)(^(1)D)nd 2S,2P˚_2s^(2)2p^(2)(^(1)D)ns^(2)D,2P˚_2s^(2)2p^(2)(^(1)S)nd ^(2)D,and 2P˚_2s^(2)2p^(3)(^(3)P)np ^(2)D Rydberg seri...We report in this paper energy positions of the 2P˚_2s^(2)2p^(2)(^(1)D)nd 2P,2P˚_2s^(2)2p^(2)(^(1)D)nd 2S,2P˚_2s^(2)2p^(2)(^(1)D)ns^(2)D,2P˚_2s^(2)2p^(2)(^(1)S)nd ^(2)D,and 2P˚_2s^(2)2p^(3)(^(3)P)np ^(2)D Rydberg series in the photoionization spectra originating from 2P˚metastable state of O+ions.Calculations are performed up to n=30 using the Modified Orbital Atomic Theory(MAOT).The present results are compared to the experimental data of Aguilar which are the only available values.The accurate data presented in this work may be a useful guideline for future experimental and other theoretical studies.展开更多
The relative partial cross sections for ^13C^6+ -Ar collisions at 4.15-11.08 ke V/u incident energy are measured. The cross-section ratios σ^2E/σ^SC, σ^3E/σ^SC, σ^4E/σ^SC and σ^SE/σ^SC are approximately the c...The relative partial cross sections for ^13C^6+ -Ar collisions at 4.15-11.08 ke V/u incident energy are measured. The cross-section ratios σ^2E/σ^SC, σ^3E/σ^SC, σ^4E/σ^SC and σ^SE/σ^SC are approximately the constants of 0.514-0.05, 0.204-0.03, 0.064-0.03 and 0.024-0.01 in this region. The significance of the multi-electron process in highly charged ions (HCIs) with argon collisions is demonstrated (σ^ME/σ^SC as high as 0.794-0.06). In multi-electron processes, it is shown that transfer ionization is dominant while pure electron capture is weak and negligible. For all reaction channels, the cross-sections are independent of the incident energy in the present energy region, which is in agreement with the static characteristic of classic models, i.e. the molecular Coulomb over-the-barrier model (MCBM), the extended classical over-the-barrier model (ECBM) and the semiempirical scaling laws (SL). The result is compared with these classical models and with our previous work of ^13C^6+ -Ne collisions [Chin. Phys. Lett. 23 (2006) 95].展开更多
The Schrödinger equation for the 2S and 2P states of the lithium-like ions Z=5–7,9–10 is solved by using the Rayleigh-Ritz variational method in Hylleraas coordinates.The leading-order relativistic and QED corr...The Schrödinger equation for the 2S and 2P states of the lithium-like ions Z=5–7,9–10 is solved by using the Rayleigh-Ritz variational method in Hylleraas coordinates.The leading-order relativistic and QED corrections are calculated perturbatively and higher-order corrections are estimated.The transition frequencies between the 2S_(1/2)and 2P_(J)(J=1/2,3/2)states are determined and compared with experimental and other theoretical results.Specifically,isotope shifts are also calculated for B^(2+).展开更多
Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages...Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages.These remarkable properties have sparked extensive research in the field of energy storage.This review paper presents the latest advances in the utilization of g‐C_(3)N_(4)in various energy storage technologies,including lithium‐ion batteries,lithium‐sulfur batteries,sodium‐ion batteries,potassium‐ion batteries,and supercapacitors.One of the key strengths of g‐C_(3)N_(4)lies in its simple preparation process along with the ease of optimizing its material structure.It possesses abundant amino and Lewis basic groups,as well as a high density of nitrogen,enabling efficient charge transfer and electrolyte solution penetration.Moreover,the graphite‐like layered structure and the presence of largeπbonds in g‐C_(3)N_(4)contribute to its versatility in preparing multifunctional materials with different dimensions,element and group doping,and conjugated systems.These characteristics open up possibilities for expanding its application in energy storage devices.This article comprehensively reviews the research progress on g‐C_(3)N_(4)in energy storage and highlights its potential for future applications in this field.By exploring the advantages and unique features of g‐C_(3)N_(4),this paper provides valuable insights into harnessing the full potential of this material for energy storage applications.展开更多
Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials...Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs.展开更多
As a nonmetallic charge carrier,ammonium ion(NH_(4)^(+))has garnered significant attention in the construction of aqueous batteries due to its advantages of low molar mass,small hydration size and rapid diffusion in a...As a nonmetallic charge carrier,ammonium ion(NH_(4)^(+))has garnered significant attention in the construction of aqueous batteries due to its advantages of low molar mass,small hydration size and rapid diffusion in aqueous solutions.Polymers are a kind of potential electro-active materials for aqueous NH_(4)^(+)storage.However,traditional polymer electrodes are typically created by covering the bulky collectors with excessive additives,which could lead to low volume capacity and unsatisfactory stability.Herein,a nanoparticle-like polyimide(PI)was synthesized and then combined with MXene nanosheets to synergistically construct an additive-free and self-standing PI@MXene composite electrode.Significantly,the redox-active PI nanoparticles are enclosed between conductive MXene flakes to create a 3D lamination-like network that promotes electron transmission,while theπ-πinteractions existing between PI and MXene contribute to the enhanced structural integrity and stability within the composite electrode.As such,it delivers superior aqueous NH_(4)^(+)storage behaviors in terms of a notable specific capacity of 110.7 mA·h·cm^(–3) and a long lifespan with only 0.0064%drop each cycle.Furthermore,in-situ Raman and UV–Vis examinations provide evidence of reversible and stable redox mechanism of the PI@MXene composite electrode during NH_(4)^(+)uptake/removal,highlighting its significance in the area of electrochemical energy storage.展开更多
Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within...Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within the material.The energies of H^(+)were set to 500 keV,640 keV and 2 MeV,the Bragg peaks of which correspond to the GaN film,GaN/Al_(2)O_(3) heterojunction and Al_(2)O_(3) substrate,respectively.A photoluminescence measurement at 250 K was also performed for comparison,during which only near band edge(NBE) and yellow band luminescence in the GaN film were observed.The evolution of the luminescence of the NBE and yellow band in the GaN film was discussed,and both exhibited a decrease with the fluence of H^(+).Additionally,the luminescence of F centers,induced by oxygen vacancies,and Cr^(3+),resulting from the ^(2)E →^(4)A_(2) radiative transition in Al_(2)O_(3),were measured using 2 MeV H^(+).The luminescence intensity of F centers increases gradually with the fluence of H^(+).The luminescence evolution of Cr^(3+)is consistent with a yellow band center,attributed to its weak intensity,and it is situated within the emission band of the yellow band in the GaN film.Our results show that IBIL measurement can effectively detect the luminescence behavior of multilayer films by adjusting the ion energy.Luminescence measurement can be excited by various techniques,but IBIL can satisfy in situ luminescence measurement,and multilayer structural materials of tens of micrometers can be measured through IBIL by adjusting the energy of the inducing ions.The evolution of defects at different layers with ion fluence can be obtained.展开更多
MoS_(2)targets were irradiated by infra-red(IR)pulsed laser in a high vacuum to determine hot plasma parameters,atomic,molecular and ion emission,and angular and charge state distributions.In this way,pulsed laser dep...MoS_(2)targets were irradiated by infra-red(IR)pulsed laser in a high vacuum to determine hot plasma parameters,atomic,molecular and ion emission,and angular and charge state distributions.In this way,pulsed laser deposition(PLD)of thin films on graphene oxide substrates was also realized.An Nd:YAG laser,operating at the 1064 nm wavelength with a 5 ns pulse duration and up to a 1 J pulse energy,in a single pulse or at a 10 Hz repetition rate,was employed.Ablation yield was measured as a function of the laser fluence.Plasma was characterized using different analysis techniques,such as time-of-flight measurements,quadrupole mass spectrometry and fast CCD visible imaging.The so-produced films were characterized by composition,thickness,roughness,wetting ability,and morphology.When compared to the MoS_(2)targets,they show a slight decrease of S with respect to Mo,due to higher ablation yield,low fusion temperature and high sublimation in vacuum.The pulsed IR laser deposited Mo Sx(with 1<x<2)films are uniform,with a thickness of about 130 nm,a roughness of about 50 nm and a higher wettability than the MoS_(2)targets.Some potential applications of the pulsed IR laser-deposited Mo Sx films are also presented and discussed.展开更多
基金Project supported by the Science and Engineering Research Board(SERB),New Delhi,India(Grant No.CRG/2022/001668).
文摘We present the angular distribution of the ejected electron for single ionization of He by fast proton impact.A fourbody formalism of the three-Coulomb wave is applied to calculate the triple differential cross sections at several impact energies in the scattering,perpendicular and azimuthal planes.Moreover,the three-body formalism of three-Coulomb,two-Coulomb and first Born approximation models has also been used to study the many-body effect on electron emission and the validity of the models.In the three-Coulomb wave model,the final state wave function incorporates distortion due to the three-body mutual Coulombic interaction.In this formalism,we use an uncorrelated and correlated Born initial state,which consists of a plane wave for the incoming projectile times a two-electron bound state wavefunction of the helium atom representing the 1s2(1S)state.But,in the case of the three-body formalism,the initial state wavefunction consists of a long-range Coulomb distortion for the incoming projectile and one active electron of the He atom described by the Roothaan–Hartree–Fock wavefunction.The structure with a single or two peaks with unequal intensity is observed in the angular distributions of the triple differential cross sections for the different kinematic conditions.In addition,the influence of static electron correlations is investigated using different bound state wavefunctions for the ground state of the He target.In the four-body formalism,the present computations are very fast by reducing a nine-dimensional integral to a two-dimensional real integral.Despite the simplicity and speed of the proposed quadrature,the comparison shows that the obtained results are in reasonable agreement with the experiment and are compatible with those of other theories.
文摘Polyanion-based materials are considered one of the most attractive and promising cathode materials for lithiumion batteries(LIBs)due to their good stability,safety,cost-effectiveness,suitable voltages,and minimal environmental impact.However,these materials suffer from poor rate capability and low-temperature performance owing to limited electronic and ionic conductivity,which restricts their practical applicability.Recent developments,such as coating material particles with carbon or a conductive polymer,crystal deformation through the doping of foreign metal ions,and the production of nanostructured materials,have significantly enhanced the electrochemical performances of these materials.The successful applications of polyanion-based materials,especially in lithium-ion batteries,have been extensively reported.This comprehensive review discusses the current progress in crystal deformation in polyanion-based cathode materials,including phosphates,fluorophosphates,pyrophosphates,borates,silicates,sulfates,fluorosilicates,and oxalates.Therefore,this review provides detailed discussions on their synthesis strategies,electrochemical performance,and the doping of various ions.
基金supported by the National Natural Science Foundation of China,No.82173800 (to JB)Shenzhen Science and Technology Program,No.KQTD20200820113040070 (to JB)。
文摘Na^(+)/K^(+)-ATPase is a transmembrane protein that has important roles in the maintenance of electrochemical gradients across cell membranes by transporting three Na^(+)out of and two K^(+)into cells.Additionally,Na^(+)/K^(+)-ATPase participates in Ca^(2+)-signaling transduction and neurotransmitter release by coordinating the ion concentration gradient across the cell membrane.Na^(+)/K^(+)-ATPase works synergistically with multiple ion channels in the cell membrane to form a dynamic network of ion homeostatic regulation and affects cellular communication by regulating chemical signals and the ion balance among different types of cells.Therefo re,it is not surprising that Na^(+)/K^(+)-ATPase dysfunction has emerged as a risk factor for a variety of neurological diseases.However,published studies have so far only elucidated the important roles of Na^(+)/K^(+)-ATPase dysfunction in disease development,and we are lacking detailed mechanisms to clarify how Na^(+)/K^(+)-ATPase affects cell function.Our recent studies revealed that membrane loss of Na^(+)/K^(+)-ATPase is a key mechanism in many neurological disorders,particularly stroke and Parkinson's disease.Stabilization of plasma membrane Na^(+)/K^(+)-ATPase with an antibody is a novel strategy to treat these diseases.For this reason,Na^(+)/K^(+)-ATPase acts not only as a simple ion pump but also as a sensor/regulator or cytoprotective protein,participating in signal transduction such as neuronal autophagy and apoptosis,and glial cell migration.Thus,the present review attempts to summarize the novel biological functions of Na^(+)/K^(+)-ATPase and Na^(+)/K^(+)-ATPase-related pathogenesis.The potential for novel strategies to treat Na^(+)/K^(+)-ATPase-related brain diseases will also be discussed.
基金This work was supported by the National Natural Science Foundation of China(52373306,52172233,and 51832004)the Natural Science Foundation of Hubei Province(2023AFA053)the Hainan Provincial Joint Project of Sanya Yazhou Bay Science and Technology City(2021CXLH0007).
文摘Aqueous sodium-ion batteries(ASIBs)and aqueous potassium-ion batteries(APIBs)present significant potential for large-scale energy storage due to their cost-effectiveness,safety,and environmental compatibility.Nonetheless,the intricate energy storage mechanisms in aqueous electrolytes place stringent require-ments on the host materials.Prussian blue analogs(PBAs),with their open three-dimensional framework and facile synthesis,stand out as leading candidates for aqueous energy storage.However,PBAs possess a swift capacity fade and limited cycle longevity,for their structural integrity is compromised by the pronounced dis-solution of transition metal(TM)ions in the aqueous milieu.This manuscript provides an exhaustive review of the recent advancements concerning PBAs in ASIBs and APIBs.The dissolution mechanisms of TM ions in PBAs,informed by their structural attributes and redox processes,are thoroughly examined.Moreover,this study delves into innovative design tactics to alleviate the dissolution issue of TM ions.In conclusion,the paper consolidates various strategies for suppressing the dissolution of TM ions in PBAs and posits avenues for prospective exploration of high-safety aqueous sodium-/potassium-ion batteries.
基金supported by National Natural Science Foundation of China(Nos.12305224,U23B2099 and 11975065)the Natural Science Foundation of Liaoning Province(No.2021-BS-223)+1 种基金the Liaoning Provincial Department of Education Youth Fund Project(No.LJKQZ20222309)supports from the National Laboratory of Heavy-ion Research Facility(HIRFL)in the Institute of Modern Physics in Lanzhou,China.
文摘In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials.
基金supported by CNPC-CZU Innovation Alliancethe Research Start-Up Fund of Changzhou University.
文摘Low salinity water containing sulfate ions can significantly alter the surface wettability of carbonate rocks.Nevertheless,the impact of sulfate concentration on the desorption of oil film on the surface of carbonate rock is still unknown.This study examines the variations in the wettability of the surface of carbonate rocks in solutions containing varying amounts of sodium sulfate and pure water.The problem is addressed in the framework of molecular dynamics simulation(Material Studio software)and experiments.The experiment’s findings demonstrate that sodium sulfate can increase the rate at which oil moisture is turned into water moisture.The final contact angle is smaller than that of pure water.The results of the simulations show that many water molecules travel down the water channel under the influence of several powerful forces,including the electrostatic force,the van der Waals force and hydrogen bond,crowding out the oil molecules on the calcite’s surface and causing the oil film to separate.The relative concentration curve of water and oil molecules indicates that the separation rate of the oil film on the surface of calcite increases with the number of sulfate ions.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0402400)the National Natural Science Foundation of China(Grant Nos.11974358 and 11934004)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB34020000)the Heavy Ion Research Facility in Lanzhou(HIRFL).
文摘The state-selective cross section data are useful for understanding and modeling the x-ray emission in celestial observations.In the present work,using the cold target recoil ion momentum spectroscopy,for the first time we investigated the state-selective single electron capture processes for S^(q+)–He and H_(2)(q=11–15)collision systems at an impact energy of q×20 keV and obtained the relative state-selective cross sections.The results indicate that only a few principal quantum states of the projectile energy level are populated in a single electron capture process.In particular,the increase of the projectile charge state leads to the population of the states with higher principal quantum numbers.It is also shown that the experimental averaged n-shell populations are reproduced well by the over-barrier model.The database is openly available in Science Data Bank at 10.57760/sciencedb.j00113.00091.
基金Project supported by the National Key Research and Development Program of China (Grant No.2022YFA1602502)the National Natural Science Foundation of China (Grant No.12127804)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant Nos.XDB34000000)。
文摘The absolute partial and total cross sections for electron impact ionization of carbon monoxide are reported for electron energies from 350 eV to 8000 eV.The product ions(CO^(+),C^(+),O^(+),CO^(2+),C^(2+),and O^(2+))are measured by employing an ion imaging mass spectrometer and two ion-pair dissociation channels(C^(+)+O^(+)and C^(2+)+O^(+))are identified.The absolute cross sections for producing individual ions and their total,as well as for the ion-pair dissociation channels are obtained by normalizing the data of CO^(+)to that of Ar^(+)from CO-Ar mixture target with a fixed 1:1 ratio.The overall errors are evaluated by considering various kinds of uncertainties.A comprehensive comparison is made with the available data,which shows a good agreement with each other over the energy ranges that are overlapped.This work presents new cross-section data with electron energies above 1000 eV.
基金supported by the National Key R&D Program of China(No.2022YFA1203400)the National Natural Science Foundation of China under Grant(Nos.62174093 and 12075307)+7 种基金the Ningbo Youth Science and Technology Innovation Leading Talent Project under Grant(No.2023QL006)the Open Research Fund of China National Key Laboratory of Materials for Integrated Circuits(No.NKLJC-K2023-01)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515110628)the support by LDRD Seedling ER project at Los Alamos National Laboratory,NM,USA(No.20210867ER)partially supported by Guangdong Provincial Key Laboratory of Computational Science and Material Design(No.2019B030301001)supported by Center for Computational Science and Engineering at Southern University of Science and TechnologyShanghai Rising-Star Program(No.21QA1410900)the support from the Youth Innovation Promotion Association CAS
文摘Direct synthesis of layer-tunable and transfer-free graphene on technologically important substrates is highly valued for various electronics and device applications.State of the art in the field is currently a two-step process:a high-quality graphene layer synthesis on metal substrate through chemical vapor deposition(CVD)followed by delicate layer transfer onto device-relevant substrates.Here,we report a novel synthesis approach combining ion implantation for a precise graphene layer control and dual-metal smart Janus substrate for a diffusion-limiting graphene formation to directly synthesize large area,high quality,and layer-tunable graphene films on arbitrary substrates without the post-synthesis layer transfer process.Carbon(C)ion implantation was performed on Cu-Ni film deposited on a variety of device-relevant substrates.A well-controlled number of layers of graphene,primarily monolayer and bilayer,is precisely controlled by the equivalent fluence of the implanted C-atoms(1 monolayer~4×10^(15)C-atoms/cm^(2)).Upon thermal annealing to promote Cu-Ni alloying,the pre-implanted C-atoms in the Ni layer are pushed toward the Ni/substrate interface by the top Cu layer due to the poor C-solubility in Cu.As a result,the expelled C-atoms precipitate into a graphene structure at the interface facilitated by the Cu-like alloy catalysis.After removing the alloyed Cu-like surface layer,the layer-tunable graphene on the desired substrate is directly realized.The layer-selectivity,high quality,and uniformity of the graphene films are not only confirmed with detailed characterizations using a suite of surface analysis techniques but more importantly are successfully demonstrated by the excellent properties and performance of several devices directly fabricated from these graphene films.Molecular dynamics(MD)simulations using the reactive force field(ReaxFF)were performed to elucidate the graphene formation mechanisms in this novel synthesis approach.With the wide use of ion implantation technology in the microelectronics industry,this novel graphene synthesis approach with precise layer-tunability and transfer-free processing has the promise to advance efficient graphene-device manufacturing and expedite their versatile applications in many fields.
文摘Tartaric acid, oxalic acid, glucose, and fructose are highly important compounds. A comprehensive study of these substances is fascinating from a scientific perspective. They are key components found in wine, vegetables, and fruits. Understanding the isotopic compositions in organic compounds is crucial for comprehending various biochemical processes and the nature of substances present in different natural products. Tartaric acid, oxalic acid, glucose, and fructose are widely distributed compounds, including in vegetables and fruits. Tartaric acid plays a significant role in determining the quality and taste properties of wine, while oxalic acid is also prevalent but holds great interest for further research, especially in terms of carbon isotopic composition. We can unveil the mechanisms of processes that were previously impossible to study. Glucose and fructose are the most common monosaccharides in the hexose group, and both are found in fruits, with sweeter fruits containing higher amounts of these substances. In addition to fruits, wheat, barley, rye, onions, garlic, lentils, peppers, dried fruits, beans, broccoli, cabbage, tomatoes, and other foods are also rich sources of fructose and glucose. To determine the mass fraction of the carbon-13 isotope in these compounds, it is important to study their changes during natural synthesis. These compounds can be modified with a carbon center. According to the existing isotopic analysis method, these compounds are converted into carbon oxide or dioxide [1]. At this point, the average carbon content in the given compound is determined, but information about isotope-modified centers is lost. Dilution may occur through the transfer of other carbon-containing organic compounds in the sample or by dilution with natural carbon or carbon dioxide during the transfer process. This article discusses the possibility of carbon-13 isotope propagation directly in these compounds, both completely modified and modified with individual carbon centers. The literature provides information on determining carbon-13 substance in organic compounds, both with a general approach and for individual compounds [2] [3].
基金Project(50621063) supported by the National Natural Science Foundation of ChinaProject(2010CB630903) supported by the National Basic Research Program of China
文摘The extracellular polymeric substances(EPS) of Acidithiobacillus ferrooxidans ATCC 23270,and iron and copper enclosed in EPS were extracted by ultrasonication and centrifugation methods to determine the interaction mechanism of Cu2+,Fe3+ and EPS during bioleaching chalcopyrite.Generally,Cu2+ ions can stimulate bacteria to produce more EPS than Fe3+ ions.The mass ratio of Fe3+/Cu2+ enclosed in EPS decreased gradually from about 4:1 to about 2:1 when the concentration of Cu2+ ions increased from 0.01 to 0.04 mol/L.The amount of iron and copper bound together by EPS in ferrous-free 9K medium containing 1% chalcopyrite was about 2 times of that in 9K medium containing 0.04 mol/L Cu2+ ions.It was inferred that the EPS with jarosites on the surface of chalcopyrite gradually acted as a weak diffusion barrier for Cu2+,Fe3+ ions transference during bioleaching chalcopyrite.
基金Project(51174229) supported by the National Natural Science Foundation of China
文摘The effects of copper ions and calcium ions on the depression of chlorite using CMC(carboxymethyl cellulose) as a depressant were studied through flotation tests,adsorption measurements,ζ potential tests and co-precipitation experiments.The results show that the electrostatic repulsion between the CMC molecules and the chlorite surfaces hinders the approach of the CMC to the chlorite while the presence of copper ions and calcium ions enhances the adsorption density of CMC.The action mechanisms of these two types of ions are different.Calcium ions can not adsorb onto the mineral surfaces,but they can interact with the CMC molecules,thus reducing the charge of the CMC and enhancing adsorption density.Copper ions can adsorb onto the mineral surfaces,which facilitates the CMC adsorption through acid/base interaction.The enhanced adsorption density is also attributed to the decreased electrostatic repulsion between the CMC and mineral surfaces as copper ions reduce the surface charge of both the mineral surfaces and the CMC molecules.
文摘We report in this paper energy positions of the 2P˚_2s^(2)2p^(2)(^(1)D)nd 2P,2P˚_2s^(2)2p^(2)(^(1)D)nd 2S,2P˚_2s^(2)2p^(2)(^(1)D)ns^(2)D,2P˚_2s^(2)2p^(2)(^(1)S)nd ^(2)D,and 2P˚_2s^(2)2p^(3)(^(3)P)np ^(2)D Rydberg series in the photoionization spectra originating from 2P˚metastable state of O+ions.Calculations are performed up to n=30 using the Modified Orbital Atomic Theory(MAOT).The present results are compared to the experimental data of Aguilar which are the only available values.The accurate data presented in this work may be a useful guideline for future experimental and other theoretical studies.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10304019,10134010 and 10375080.
文摘The relative partial cross sections for ^13C^6+ -Ar collisions at 4.15-11.08 ke V/u incident energy are measured. The cross-section ratios σ^2E/σ^SC, σ^3E/σ^SC, σ^4E/σ^SC and σ^SE/σ^SC are approximately the constants of 0.514-0.05, 0.204-0.03, 0.064-0.03 and 0.024-0.01 in this region. The significance of the multi-electron process in highly charged ions (HCIs) with argon collisions is demonstrated (σ^ME/σ^SC as high as 0.794-0.06). In multi-electron processes, it is shown that transfer ionization is dominant while pure electron capture is weak and negligible. For all reaction channels, the cross-sections are independent of the incident energy in the present energy region, which is in agreement with the static characteristic of classic models, i.e. the molecular Coulomb over-the-barrier model (MCBM), the extended classical over-the-barrier model (ECBM) and the semiempirical scaling laws (SL). The result is compared with these classical models and with our previous work of ^13C^6+ -Ne collisions [Chin. Phys. Lett. 23 (2006) 95].
基金Project supported by the National Natural Science Foundation of China (Grant No. 11774080)supported by NSERC of Canada
文摘The Schrödinger equation for the 2S and 2P states of the lithium-like ions Z=5–7,9–10 is solved by using the Rayleigh-Ritz variational method in Hylleraas coordinates.The leading-order relativistic and QED corrections are calculated perturbatively and higher-order corrections are estimated.The transition frequencies between the 2S_(1/2)and 2P_(J)(J=1/2,3/2)states are determined and compared with experimental and other theoretical results.Specifically,isotope shifts are also calculated for B^(2+).
基金Science Development Foundation of Hubei University of Science&Technology,Grant/Award Numbers:2021F005,2021ZX14,2020TD01,2021ZX0Xianning City Program of Science&Technology,Grant/Award Number:2022ZRKX051Hubei University of Science and Technology Doctoral Research Initiation Project,Grant/Award Number:BK202217。
文摘Graphitic carbon nitride(g‐C_(3)N_(4))is a highly recognized two‐dimensional semiconductor material known for its exceptional chemical and physical stability,environmental friendliness,and pollution‐free advantages.These remarkable properties have sparked extensive research in the field of energy storage.This review paper presents the latest advances in the utilization of g‐C_(3)N_(4)in various energy storage technologies,including lithium‐ion batteries,lithium‐sulfur batteries,sodium‐ion batteries,potassium‐ion batteries,and supercapacitors.One of the key strengths of g‐C_(3)N_(4)lies in its simple preparation process along with the ease of optimizing its material structure.It possesses abundant amino and Lewis basic groups,as well as a high density of nitrogen,enabling efficient charge transfer and electrolyte solution penetration.Moreover,the graphite‐like layered structure and the presence of largeπbonds in g‐C_(3)N_(4)contribute to its versatility in preparing multifunctional materials with different dimensions,element and group doping,and conjugated systems.These characteristics open up possibilities for expanding its application in energy storage devices.This article comprehensively reviews the research progress on g‐C_(3)N_(4)in energy storage and highlights its potential for future applications in this field.By exploring the advantages and unique features of g‐C_(3)N_(4),this paper provides valuable insights into harnessing the full potential of this material for energy storage applications.
基金supported by the grants from the Chinese Academy of Sciences(124GJHZ2023031MI)the National Natural Science Foundation of China(52173274)+1 种基金the National Key R&D Project from the Ministry of Science and Technology(2021YFA1201603)the Fundamental Research Funds for the Central Universities.
文摘Aqueous Zn-ion batteries(AZIBs)are recognized as a promising energy storage system with intrinsic safety and low cost,but its applications still rely on the design of high-capacity and stable-cycling cathode materials.In this work,we present an intercalation mechanism-based cathode materials for AZIB,i.e.the vanadium oxide with pre-intercalated manganese ions and lattice water(noted as MVOH).The synergistic effect between Mn^(2+)and lattice H_(2)O not only expands the interlayer spacing,but also significantly enhances the structural stability.Systematic in-situ and ex-situ characterizations clarify the Zn^(2+)/H^(+)co–(de)intercalation mechanism of MVOH in aqueous electrolyte.The demonstrated remarkable structure stability,excellent kinetic behaviors and ion-storage mechanism together enable the MVOH to demonstrate satisfactory specific capacity of 450 mA h g^(−1)at 0.2 A g^(−1),excellent rate performance of 288.8 mA h g^(−1)at 10 A g^(−1)and long cycle life over 20,000 cycles at 5 A g^(−1).This work provides a practical cathode material,and contributes to the understanding of the ion-intercalation mechanism and structural evolution of the vanadium-based cathode for AZIBs.
基金supported by the National Natural Science Foundation of China(52002157)the Undergraduate Research&Practice Innovation Program of Jiangsu Province(202310289033Z).
文摘As a nonmetallic charge carrier,ammonium ion(NH_(4)^(+))has garnered significant attention in the construction of aqueous batteries due to its advantages of low molar mass,small hydration size and rapid diffusion in aqueous solutions.Polymers are a kind of potential electro-active materials for aqueous NH_(4)^(+)storage.However,traditional polymer electrodes are typically created by covering the bulky collectors with excessive additives,which could lead to low volume capacity and unsatisfactory stability.Herein,a nanoparticle-like polyimide(PI)was synthesized and then combined with MXene nanosheets to synergistically construct an additive-free and self-standing PI@MXene composite electrode.Significantly,the redox-active PI nanoparticles are enclosed between conductive MXene flakes to create a 3D lamination-like network that promotes electron transmission,while theπ-πinteractions existing between PI and MXene contribute to the enhanced structural integrity and stability within the composite electrode.As such,it delivers superior aqueous NH_(4)^(+)storage behaviors in terms of a notable specific capacity of 110.7 mA·h·cm^(–3) and a long lifespan with only 0.0064%drop each cycle.Furthermore,in-situ Raman and UV–Vis examinations provide evidence of reversible and stable redox mechanism of the PI@MXene composite electrode during NH_(4)^(+)uptake/removal,highlighting its significance in the area of electrochemical energy storage.
文摘Ion beam-induced luminescence(IBIL) experiments were performed to investigate the in situ luminescence of GaN/Al_(2)O_(3) at varying ion energies,which allowed for the measurement of defects at different depths within the material.The energies of H^(+)were set to 500 keV,640 keV and 2 MeV,the Bragg peaks of which correspond to the GaN film,GaN/Al_(2)O_(3) heterojunction and Al_(2)O_(3) substrate,respectively.A photoluminescence measurement at 250 K was also performed for comparison,during which only near band edge(NBE) and yellow band luminescence in the GaN film were observed.The evolution of the luminescence of the NBE and yellow band in the GaN film was discussed,and both exhibited a decrease with the fluence of H^(+).Additionally,the luminescence of F centers,induced by oxygen vacancies,and Cr^(3+),resulting from the ^(2)E →^(4)A_(2) radiative transition in Al_(2)O_(3),were measured using 2 MeV H^(+).The luminescence intensity of F centers increases gradually with the fluence of H^(+).The luminescence evolution of Cr^(3+)is consistent with a yellow band center,attributed to its weak intensity,and it is situated within the emission band of the yellow band in the GaN film.Our results show that IBIL measurement can effectively detect the luminescence behavior of multilayer films by adjusting the ion energy.Luminescence measurement can be excited by various techniques,but IBIL can satisfy in situ luminescence measurement,and multilayer structural materials of tens of micrometers can be measured through IBIL by adjusting the energy of the inducing ions.The evolution of defects at different layers with ion fluence can be obtained.
基金supported by OP RDE,MEYS,Czech Republic under the project CANAM OP(No.CZ.02.1.01/0.0/0.0/16_013/0001812)by the Czech Science Foundation GACR(No.23-06702S)。
文摘MoS_(2)targets were irradiated by infra-red(IR)pulsed laser in a high vacuum to determine hot plasma parameters,atomic,molecular and ion emission,and angular and charge state distributions.In this way,pulsed laser deposition(PLD)of thin films on graphene oxide substrates was also realized.An Nd:YAG laser,operating at the 1064 nm wavelength with a 5 ns pulse duration and up to a 1 J pulse energy,in a single pulse or at a 10 Hz repetition rate,was employed.Ablation yield was measured as a function of the laser fluence.Plasma was characterized using different analysis techniques,such as time-of-flight measurements,quadrupole mass spectrometry and fast CCD visible imaging.The so-produced films were characterized by composition,thickness,roughness,wetting ability,and morphology.When compared to the MoS_(2)targets,they show a slight decrease of S with respect to Mo,due to higher ablation yield,low fusion temperature and high sublimation in vacuum.The pulsed IR laser deposited Mo Sx(with 1<x<2)films are uniform,with a thickness of about 130 nm,a roughness of about 50 nm and a higher wettability than the MoS_(2)targets.Some potential applications of the pulsed IR laser-deposited Mo Sx films are also presented and discussed.