Human serum albumin(HSA)is the most abundant protein in plasma and plays an essential physiological role in the human body.Ethanol precipitation is the most widely used way to obtain HSA,and pH and ethanol are crucial...Human serum albumin(HSA)is the most abundant protein in plasma and plays an essential physiological role in the human body.Ethanol precipitation is the most widely used way to obtain HSA,and pH and ethanol are crucial factors affecting the process.In this study,infrared(IR)spectroscopy and near-infrared(NIR)spectroscopy in combination with chemometrics were used to investigate the changes in the secondary structure and hydration of HSA at acidic pH(5.6-3.2)and isoelectric pH when ethanol concentration was varied from 0%to 40%as a perturbation.IR spectroscopy combined with the two-dimensional correlation spectroscopy(2DCOS)analysis for acid pH system proved that the secondary structure of HSA changed significantly when pH was around 4.5.What's more,the IR spectroscopy and 2DCOS analysis showed different secondary structure forms under different ethanol concentrations at the isoelectric pH.For the hydration effect analysis,NIR spectroscopy combined with the McCabe-Fisher method and aquaphotomics showed that the free hydrogen-bonded water fluctuates dynamically,with ethanol at 0-20%enhancing the hydrogen-bonded water clusters,while weak hydrogen-bonded water clusters were formed when the ethanol concentration increased continuously from 20%to 30%.These measurements provide new insights into the structural changes and changes in the hydration behavior of HSA,revealing the dynamic process of protein purification,and providing a theoretical basis for the selection of HSA alcoholic precipitation process parameters,as well as for further studies of complex biological systems.展开更多
Ion beam irradiation induces important biological effects and it is a long-standing task to acquire both qualitative and quantitative assessment of these effects. One effective way in the investigation is to utilize F...Ion beam irradiation induces important biological effects and it is a long-standing task to acquire both qualitative and quantitative assessment of these effects. One effective way in the investigation is to utilize Fourier transformation infrared (FTIR) spectroscopy because it can offer sensitive and non-invasive measurements. In this paper a novel protocol was employed to prepare biomolecular samples in the form of thin and transversely uniform solid films that were suitable for both infrared and low-energy ion beam irradiation experiments. Under the irradiation of N^+ and Ar^+ ion beams of 25 keV with fluence ranging from 5×10^15 ions/cm^2 to 2.5×10^16 ions/cm^2, the ion radio-sensitivity of four amino acids, namely, glycine, tyrosine, methionine and phenylalanine, were evaluated and compared. The ion beam irradiation caused biomolecular decomposition accompanied by molecular desorption of volatile species and the damage was dependent on ion type, fiuence, energy and types of amino acids. The effectiveness of application of FTIR spectroscopy to the quantitative assessment of biomolecular damage dose effect induced by low-energy ion radiation was thus demonstrated.展开更多
The adsorption of acetonitrile, the co-adsorption of acetonitrile with CO, and hydrogenation of acetonitrile on fresh Mo2C/γ-Al2O3 catalyst were studied by in situ IR spectroscopy. It was found out that CH3CN exhibit...The adsorption of acetonitrile, the co-adsorption of acetonitrile with CO, and hydrogenation of acetonitrile on fresh Mo2C/γ-Al2O3 catalyst were studied by in situ IR spectroscopy. It was found out that CH3CN exhibited strong interaction with the fresh Mo2C/γ-Al2O3 catalyst and was adsorbed mainly on Moδ+ sites of fresh Mo2C/γ-Al2O3 catalyst. Moreover, CH3CN could affect the shifting of IR spectra for CO adsorption towards a lower wave number. The IR spectroscopic study on acetonitrile hydrogenation showed that CH3CN could be easily hydrogenated in the presence of H2 on the Mo2C/γ-Al2O3 catalyst. Furthermore, it was observed that CH3 CN could be selectively hydrogenated to imines on fresh Mo2C/γ-Al2O3 catalyst. Additionally, the active sites of fresh Mo2C/γ-Al2O3 catalyst might be covered with coke during the hydrogenation reaction of acetonitrile. The treatment of catalyst with hydrogen at 673 K could not completely remove coke deposits on the surface of the Mo2C/γ-Al2O3 catalyst.展开更多
Raman and IR spectra of Nb-doped PTC Ba1-xPbxTiO3 semiconducting ceramics (x = 0,0. 28,0. 296,0. 313,0. 330,0. 370) have been measured, and mode assignments of Raman scattering frequencies and infrared absorption peak...Raman and IR spectra of Nb-doped PTC Ba1-xPbxTiO3 semiconducting ceramics (x = 0,0. 28,0. 296,0. 313,0. 330,0. 370) have been measured, and mode assignments of Raman scattering frequencies and infrared absorption peaks have been made at room temperature. The influence of Pb2+ ions content on resistivity temperature characteristics and vibration spectra for the Ea1-xPbxTiO3, ceramics have been discussed,and the temperature dependence of the Raman spectra in tetragonal and cubic phases have been investigated from 25 to 340℃. The results indicated that the Raman spectra of the paraelectric phase above Curie point are obviously different from that of ferroelectric phase below Curie point are obviously different from that of ferroelectric phase below Curie point for all the samples. Curie point of each sample,which is determined by resistivity-temperature characteristic measurment, is in good agreement with the results of Raman analysis. The ferroelectric phase transition in the PTCR Bai-xPbxTiO3 ceramics belongs to a distortion or displacement transition.展开更多
Due to extremely effective advantages of the quantum cascade laser spectroscopy and technology for trace gas detection, this paper presents spectroscopy scanning, the characteristics of temperature tuning, system reso...Due to extremely effective advantages of the quantum cascade laser spectroscopy and technology for trace gas detection, this paper presents spectroscopy scanning, the characteristics of temperature tuning, system resolution, sensitivity, and system stability with the application of the presented gas sensor. Experimental results showed that the sensor resolution was 〈0.01cm-1 (equivalent to 0.06nm), and the sensor sensitivity was at the level of 194 ppb with the application of HzCO measurement.展开更多
Vibrational and structural dynamics of two transition metal carbonyl complexes, Mn(CO)5Br and Re(CO)5Br were examined in DMSO, using ultrafast infrared pump-probe spectroscopy, steady-state linear infrared spectro...Vibrational and structural dynamics of two transition metal carbonyl complexes, Mn(CO)5Br and Re(CO)5Br were examined in DMSO, using ultrafast infrared pump-probe spectroscopy, steady-state linear infrared spectroscopy and quantum chemistry computations. Two car- bonyl stretching vibrational modes (a low-frequency A1 mode and two high-frequency degenerate E modes) were used as vibrational probes. Central metal effect on the CO bond order and force constant was responsible for a larger E-A1 frequency separation and a generally more red-shifted E and A1 peaks in the Re complex than in the Mn complex. A generally broader spectral width for the A1 mode than the E mode is believed to be partially due to vibrational lifetime effect. Vibrational mode-dependent diagonal anharmonicity was observed in transient infrared spectra, with a generally smaller anharmonicity found for the E mode in both the Mn and Re complexes.展开更多
Pyrrolidine,a five membered heterocyclic molecule,is widely existing in organism.Herein,infrared spectra of pyrrolidine monomer in neutral and cationic states were obtained by vacuum ultraviolet ionization,infrared ph...Pyrrolidine,a five membered heterocyclic molecule,is widely existing in organism.Herein,infrared spectra of pyrrolidine monomer in neutral and cationic states were obtained by vacuum ultraviolet ionization,infrared photodissociation and time of flight mass spectrometry.Both in neutral and cationic states,it is found that their CH stretching vibration bands are red shifted.In the IR spectrum of neutral pyrrolidine,because the electric dipole moment of NH is small,we have not observed the NH stretching vibration bands.However,the NH stretching vibration band of pyrrolidine is greatly enhanced after ionization,and this band red-shifts compared with the previous experiment.The red shifts of CH stretching vibrations in neutral and cationic states are caused by the negative and positive hyperconjugation,respectively.The enhancement and red shift of the NH stretching band are owing to the ejection of the electrons on the N atom after ionization.Through the calculations,it is found that the acidity of the CH bond is a little stronger than that of NH bond.These kinds of studies would be helpful to understand the intrinsic properties of biomolecules in neutral and cationic states,and to provide reference for the further study of living organic macromolecules.展开更多
This paper presents results of thermoanalytical and structural research on phenolic binder used in foundry for the preparation of moulding sand. The binder has been prepared based on resole type phenolic resin with th...This paper presents results of thermoanalytical and structural research on phenolic binder used in foundry for the preparation of moulding sand. The binder has been prepared based on resole type phenolic resin with the addition of ester hardener. The aim of the study was to determine the structural changes taking place in the phenolic binder under the influence of temperature. Results show that in the investigated range of temperatures, phenolic binder exhibits three exothermic thermal effects accompanying the decomposition process. The test results using the Diffuse Reflectance Infrared Fourier Transform Spectroscopy(DRIFTS) technique show that the addition of a hardener stabilizes the binder structure within methylene bridges. The reduction in the reaction rate observed in the DTA curve at about 330 °C can be associated with the formation of gaseous products by decomposition of the binder or, as suggested by the literature data, the formation of triple bonds and CN-HCN groups.展开更多
The catalytic pyrolysis of lignites is a technical process whose development is complex and time-consuming with the goal to maximize the yield of the desired low-volatile hydrocarbons of choice and to minimize the yie...The catalytic pyrolysis of lignites is a technical process whose development is complex and time-consuming with the goal to maximize the yield of the desired low-volatile hydrocarbons of choice and to minimize the yield of solid residual products. Not every type of lignite is suitable for this process due to its particular chemical composition. In order to be able to predict which lignite specimen will be an especially promising raw material for the pyrolytic liberation of target products, the chemical classification by IR spectroscopic methods was investigated. MIR spectroscopy has been demonstrated to be a valuable tool to characterize the the molecular composition of lignites and to determine the concentrations of aliphatic and aromatic functional groups in lignite as well as alcoholic OH and other forms of bound oxygen. These data provide a comprehensive chemical characterization of the material and help to predict the composition of the chemical components liberated by catalytic decomposition. With a complementary NIR spectroscopic approach, a chemometric method has been developed with which the elemental com-position of the lignites can be determined in a fast and pragmatic way leading to a prediction of the product range of a theoretical pyrolytic product range. Thus, this spectroscopic investigation is a toolbox that can answer the question if the commercial exploitation of catalytic pyrolysis of a lignite sample in question will make sense without preliminary conduction of long and time-consuming testing.展开更多
A high-quality polyene can be obtained by exensive dehydrochlorination of poly(vinyl chloride) (PVC) in aliquid/solid two-phase system. The liquid phase is a tetrahydrofuran solution of PVC containing a small amount o...A high-quality polyene can be obtained by exensive dehydrochlorination of poly(vinyl chloride) (PVC) in aliquid/solid two-phase system. The liquid phase is a tetrahydrofuran solution of PVC containing a small amount ofpoly(ethylene glycol) with molar mass of 400 g as a phase transfer catalys. The solid phase is potassium hydroxide particles.The structure of the polyene is polyacetylene-like and has a long conjugated C=C sequence and a narrow dispersity ofpolyene sequences according to its FT-infrared and Raman spectra. The environmental stability of the polyene was alsostudied by IR, Raman spectra and elemental analysis. Experimental results demonstrated that the polyene was susceptible toair and could be changed into a material containing high concentrations of hydroxyl and carbonyl groups. The polyenesequences were shortened and its dispersity became broader due to the effect of dioxygen.展开更多
Thee adsorption of CO and NO on copper ion-exchanged zeolite Beta was investigated using IR method.It was found that the thermalvacuum pretreatment procedure could result in the reduction of Cu2+ions in zeolite Beta.T...Thee adsorption of CO and NO on copper ion-exchanged zeolite Beta was investigated using IR method.It was found that the thermalvacuum pretreatment procedure could result in the reduction of Cu2+ions in zeolite Beta.The adsorption of CO on Cu+sites in zeolite Beta closely follows Langmuir isotherm.Another Cu+species may form during the reaction between water and CO.The catalytic decomposition of NO on the zeolite was observed at room temperature,indicating that the decomposition reaction may occur between two coordinated NO ligands of the same dinitrosyhc complex.Furthermore,the appearance of two series of NO adsorption bands reveals that copper ions existing at different cation sites may have different effect on the adsorption and decomposition of NO molecules.展开更多
The present paper discusses the vibrational properties of the mixture gelucire-quercetin(from 1%to 5%)at room and body temperature.Quercetin is a flavonoid having beneficial properties:biological and antioxidant;it is...The present paper discusses the vibrational properties of the mixture gelucire-quercetin(from 1%to 5%)at room and body temperature.Quercetin is a flavonoid having beneficial properties:biological and antioxidant;it is used in many fields as food,cosmetic and especially pharmaceutics but its use as a drug is affected by its low solubility.The Gelucire 50/13 is used as sustained release matrix forming agent in pharmaceutical applications and it has demonstrated the ability to improve the dissolution as well as the absorption of poorly water-soluble drugs.The mixture Gelucire-quercetin was essentially studied by FTIR(Fourier transform infrared spectroscopy)and Raman spectroscopy.The behavior of these two molecules has been investigated in the spectral range 4000-0 cm-1 in Raman spectroscopy,and 4,000-600 cm-1 in FTIR.展开更多
Research on organic solar cells has a craze importance because they show very interesting properties including their flexibility and the opportunity to be made into large surfaces. However, their stability and perform...Research on organic solar cells has a craze importance because they show very interesting properties including their flexibility and the opportunity to be made into large surfaces. However, their stability and performance should be significantly improved compared to their current state. A nominal output of around 10% will be the goal for the coming years. The use of organic materials for photovoltaic applications is the subject of intense research in recent years. This work is based in part on the development of new conjugated polymers. In this paper, we present the synthesis and characterization of poly [(thiophene-2,5-diyl)-co-(benzylidene)] PTB catalysed by Maghnite-H+, used in the active layer of the solar cell organic heterojunction with PCBM (derivative of C60) was used as a junction of the solar cell: Glas/ITO/BCP/C60/PTB/Au/Al. A current density of short circuit of about Jcc 0.1mA/cm2 was obtained for this structure with a yield of around 0.15%.展开更多
In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Re...In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission Infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls.展开更多
Applying the Density Function Theory (DFT) combined with LCAO basis set and employing the B3LYP hybrid functional, the optimized geometrical parameters, electronic properties, as well as the Infrared and Raman spectra...Applying the Density Function Theory (DFT) combined with LCAO basis set and employing the B3LYP hybrid functional, the optimized geometrical parameters, electronic properties, as well as the Infrared and Raman spectra for wurtzite-ZnO structure were investigated. Prior to computing, ZnO thin film prepared by the spray pyrolysis method is characterized by X-ray diffraction using Rietveld refinement. This analysis shows that ZnO has hexagonal wurtzite structure (P6<sub>3</sub>mc) with lattice parameters, a = 3.2467 and c = 5.2151 Åin good agreement with our predicted optimized geometry. Atomic force microscopy (AFM), Raman spectroscopy and UV-Vis-NIR spectrophotometry techniques are used to explore morphological, optical and vibrational properties of the sprayed ZnO thin film. The computed band gap is in excellent agreement with that deduced from UV-Vis transmission . The simulated infrared and Raman spectra were also calculated, and a good agreement with the measured spectra is obtained. Finally, a detailed interpretation of the infrared and Raman spectra is reported.展开更多
Aim To prepare and characterize solid dispersions of silymarin with the intention of improving their dissolution properties. Methods The solid dispersions were prepared by the fusion method with polyethylene glycol ...Aim To prepare and characterize solid dispersions of silymarin with the intention of improving their dissolution properties. Methods The solid dispersions were prepared by the fusion method with polyethylene glycol 6000(PEG 6000) as the carrier. Evaluation of the properties of the dispersions was performed using dissolution studies, X ray powder diffraction and Fourier transform infrared (FT IR) spectroscopy. Results The rate of dissolution of silymarin was considerably improved as compared with pure silymarin when formulated in solid dispersions with PEG 6000. The data of the X ray diffraction showed some changes in the parameters of lattice spacing [ d ], peak position and relative intensities. FT IR together with those from X ray diffraction showed the absence of well defined drug polymer interactions. Conclusion The dissolution improvement of poorly soluble silymarin could be illuminated by the changes of the lattice parameters of PEG 6000 and the drug.展开更多
A series of poly-aluminum-chloride-sulfate (PACS), which has different basicities (gamma) and Al3+/SO42- molar ratio, has been prepared and dried at 105degreesC and 65degreesC, respectively. The distribution of alumin...A series of poly-aluminum-chloride-sulfate (PACS), which has different basicities (gamma) and Al3+/SO42- molar ratio, has been prepared and dried at 105degreesC and 65degreesC, respectively. The distribution of aluminum species of PACS was examined, and the effect of 7 value, Al3+/SO42- molar ratio, dilution on the distribution of aluminum species of PACS was also investigated by using Al-ferron timed complex colorimetric method. The IR spectroscopy and X-ray diffraction were used to study the effect of gamma value, Al3+ / SO42- molar ratio and the drying temperature on the structure of PACS. The experimental results show that Al3+/SO42- molar ratio has a great effect on the distribution of aluminum species, but the dilution has a little effect on the distribution of aluminum species. The lower the Al3+/SO42- molar ratio, the higher the proportions of the polymer and colloidal species in PACS, The polymeric degree of PACS was related to gamma value and Al3+/SO(4)(2-)molar ratio. Drying temperature has an influence on the structure and the solubility of solid PACS products.展开更多
N2O is a major by-product emitted during low-temperature selective catalytic reduction of NO with NH3(NH3-SCR), which causes a series of serious environmental problems. A full understanding of the N2O formation mechan...N2O is a major by-product emitted during low-temperature selective catalytic reduction of NO with NH3(NH3-SCR), which causes a series of serious environmental problems. A full understanding of the N2O formation mechanism is essential to suppress the N2O emission during the low-temperature NH3-SCR, and requires an intensive study of this heterogeneous catalysis process. In this study, we investigated the reaction between NH3 and NO over a Pd/CeO2 catalyst in the absence of O2, using X-ray photoelectron spectroscopy, NH3-temperature-programmed desorption, NO-temperature-programmed desorption, and in-situ Fourier-transform infrared spectroscopy. Our results indicate that the N2O formation mechanism is reaction-temperature-dependent. At temperatures below 250 ℃, the dissociation of HON, which is produced from the reaction between surface H· adatoms and adsorbed NO, is the key process for N2O formation. At temperatures above 250 ℃,the reaction between NO and surface N·, which is produced by NO dissociation, is the only route for N2O formation, and the dissociation of NO is the rate-determining step. Under optimal reaction conditions, a high performance with nearly 100% NO conversion and 100% N2 selectivity could be achieved. These results provide important information to clarify the mechanism of N2O formation and possible suppression of N2 O emission during low-temperature NH3-SCR.展开更多
Hydrogels show versatile properties and are of great interest in the fields of bioelectronics and tissue engineering.Understanding the dynamics of the water molecules trapped in the three-dimensional polymeric network...Hydrogels show versatile properties and are of great interest in the fields of bioelectronics and tissue engineering.Understanding the dynamics of the water molecules trapped in the three-dimensional polymeric networks of the hydrogels is crucial to elucidate their mechanical and swelling properties at the molecular level.In this report,the poly(DMAEMA-co-AA)hydrogels were synthesized and characterized by the macroscopic swelling measurements under different pH conditions.Furthermore,the microscopic structural dynamics of pH stimulus-responsive hydrogels were studied using FTIR and ultrafast IR spectroscopies from the viewpoint of the SCN-anionic solute as the local vibrational reporter.Ultrafast IR spectroscopic measurements showed the time constants of the vibrational population decay of SCN-were increased from 14±1 ps to 20±1 ps when the pH of the hydrogels varied from2.0 to 12.0.Rotational anisotropy measurements further revealed that the rotation of SCNanionic probe was restricted by the three-dimensional network formed in the hydrogels and the rotation of SCN-anionic probe cannot decay to zero especially at the pH of 7.0.These results are expected to provide a molecular-level understanding of the microscopic structure of the cross-linked polymeric network in the pH stimulus-responsive hydrogels.展开更多
Eight tri(2-methyl-2-phznylpropyl) germylpropionates have been synthesized. and their structures were characterized by elemental analysis, IR, multinuclear NMR(H-1,C-13.Sn-119) and MS. The spectroscopic studies reveal...Eight tri(2-methyl-2-phznylpropyl) germylpropionates have been synthesized. and their structures were characterized by elemental analysis, IR, multinuclear NMR(H-1,C-13.Sn-119) and MS. The spectroscopic studies revealed that compounds of this type possess a tetrahedral geometry, which have been expected to have good biological activity.展开更多
基金support of the National Key Research and Development Program of China (Grant Numbers 2021YFB3201200 and 2021YFB3201202)the Shandong Province Natural Science Foundation (Grant Numbers ZR2021QB177 and ZR2022QB205).
文摘Human serum albumin(HSA)is the most abundant protein in plasma and plays an essential physiological role in the human body.Ethanol precipitation is the most widely used way to obtain HSA,and pH and ethanol are crucial factors affecting the process.In this study,infrared(IR)spectroscopy and near-infrared(NIR)spectroscopy in combination with chemometrics were used to investigate the changes in the secondary structure and hydration of HSA at acidic pH(5.6-3.2)and isoelectric pH when ethanol concentration was varied from 0%to 40%as a perturbation.IR spectroscopy combined with the two-dimensional correlation spectroscopy(2DCOS)analysis for acid pH system proved that the secondary structure of HSA changed significantly when pH was around 4.5.What's more,the IR spectroscopy and 2DCOS analysis showed different secondary structure forms under different ethanol concentrations at the isoelectric pH.For the hydration effect analysis,NIR spectroscopy combined with the McCabe-Fisher method and aquaphotomics showed that the free hydrogen-bonded water fluctuates dynamically,with ethanol at 0-20%enhancing the hydrogen-bonded water clusters,while weak hydrogen-bonded water clusters were formed when the ethanol concentration increased continuously from 20%to 30%.These measurements provide new insights into the structural changes and changes in the hydration behavior of HSA,revealing the dynamic process of protein purification,and providing a theoretical basis for the selection of HSA alcoholic precipitation process parameters,as well as for further studies of complex biological systems.
基金supported by National Natural Science Foundation of China (No.10975152)the Key Innovative Project of Chinese Academy of Sciences (No.KJCX2-YW-N34-1)+1 种基金the Hundred Talents Program of the Chinese Academy of Sciencesthe Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry
文摘Ion beam irradiation induces important biological effects and it is a long-standing task to acquire both qualitative and quantitative assessment of these effects. One effective way in the investigation is to utilize Fourier transformation infrared (FTIR) spectroscopy because it can offer sensitive and non-invasive measurements. In this paper a novel protocol was employed to prepare biomolecular samples in the form of thin and transversely uniform solid films that were suitable for both infrared and low-energy ion beam irradiation experiments. Under the irradiation of N^+ and Ar^+ ion beams of 25 keV with fluence ranging from 5×10^15 ions/cm^2 to 2.5×10^16 ions/cm^2, the ion radio-sensitivity of four amino acids, namely, glycine, tyrosine, methionine and phenylalanine, were evaluated and compared. The ion beam irradiation caused biomolecular decomposition accompanied by molecular desorption of volatile species and the damage was dependent on ion type, fiuence, energy and types of amino acids. The effectiveness of application of FTIR spectroscopy to the quantitative assessment of biomolecular damage dose effect induced by low-energy ion radiation was thus demonstrated.
基金financially supported by the National Natural Science Foundation of China (No. 21573101)the Liaoning Provincial Natural Science Foundation (No. 2014020107)+1 种基金the Program for Liaoning Excellent Talents in Universities (No. LJQ2014041)sponsored by the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry (SRF for ROCS, SEM)
文摘The adsorption of acetonitrile, the co-adsorption of acetonitrile with CO, and hydrogenation of acetonitrile on fresh Mo2C/γ-Al2O3 catalyst were studied by in situ IR spectroscopy. It was found out that CH3CN exhibited strong interaction with the fresh Mo2C/γ-Al2O3 catalyst and was adsorbed mainly on Moδ+ sites of fresh Mo2C/γ-Al2O3 catalyst. Moreover, CH3CN could affect the shifting of IR spectra for CO adsorption towards a lower wave number. The IR spectroscopic study on acetonitrile hydrogenation showed that CH3CN could be easily hydrogenated in the presence of H2 on the Mo2C/γ-Al2O3 catalyst. Furthermore, it was observed that CH3 CN could be selectively hydrogenated to imines on fresh Mo2C/γ-Al2O3 catalyst. Additionally, the active sites of fresh Mo2C/γ-Al2O3 catalyst might be covered with coke during the hydrogenation reaction of acetonitrile. The treatment of catalyst with hydrogen at 673 K could not completely remove coke deposits on the surface of the Mo2C/γ-Al2O3 catalyst.
文摘Raman and IR spectra of Nb-doped PTC Ba1-xPbxTiO3 semiconducting ceramics (x = 0,0. 28,0. 296,0. 313,0. 330,0. 370) have been measured, and mode assignments of Raman scattering frequencies and infrared absorption peaks have been made at room temperature. The influence of Pb2+ ions content on resistivity temperature characteristics and vibration spectra for the Ea1-xPbxTiO3, ceramics have been discussed,and the temperature dependence of the Raman spectra in tetragonal and cubic phases have been investigated from 25 to 340℃. The results indicated that the Raman spectra of the paraelectric phase above Curie point are obviously different from that of ferroelectric phase below Curie point are obviously different from that of ferroelectric phase below Curie point for all the samples. Curie point of each sample,which is determined by resistivity-temperature characteristic measurment, is in good agreement with the results of Raman analysis. The ferroelectric phase transition in the PTCR Bai-xPbxTiO3 ceramics belongs to a distortion or displacement transition.
基金The authors wish to thank the financial support from the National Natural Science Foundation of China (61505020) and the Fundamental Research Funds for the Central Universities (ZYGX2013J007).
文摘Due to extremely effective advantages of the quantum cascade laser spectroscopy and technology for trace gas detection, this paper presents spectroscopy scanning, the characteristics of temperature tuning, system resolution, sensitivity, and system stability with the application of the presented gas sensor. Experimental results showed that the sensor resolution was 〈0.01cm-1 (equivalent to 0.06nm), and the sensor sensitivity was at the level of 194 ppb with the application of HzCO measurement.
基金This work was supported by the Hundred Talent Fund of the Chinese Academy of Sciences, and also supported by the National Natural Science Foundation of China (No.21473212, No.20727001 and No.21573243). The author thanks P. Yu and J. Zhao for their technical assistances.
文摘Vibrational and structural dynamics of two transition metal carbonyl complexes, Mn(CO)5Br and Re(CO)5Br were examined in DMSO, using ultrafast infrared pump-probe spectroscopy, steady-state linear infrared spectroscopy and quantum chemistry computations. Two car- bonyl stretching vibrational modes (a low-frequency A1 mode and two high-frequency degenerate E modes) were used as vibrational probes. Central metal effect on the CO bond order and force constant was responsible for a larger E-A1 frequency separation and a generally more red-shifted E and A1 peaks in the Re complex than in the Mn complex. A generally broader spectral width for the A1 mode than the E mode is believed to be partially due to vibrational lifetime effect. Vibrational mode-dependent diagonal anharmonicity was observed in transient infrared spectra, with a generally smaller anharmonicity found for the E mode in both the Mn and Re complexes.
基金the National Natural Science Foundation of China(No.U1732146,No.21273083)the Project under Scientific and Technological Planning Grant(No.201805010002)by Guangzhou City.
文摘Pyrrolidine,a five membered heterocyclic molecule,is widely existing in organism.Herein,infrared spectra of pyrrolidine monomer in neutral and cationic states were obtained by vacuum ultraviolet ionization,infrared photodissociation and time of flight mass spectrometry.Both in neutral and cationic states,it is found that their CH stretching vibration bands are red shifted.In the IR spectrum of neutral pyrrolidine,because the electric dipole moment of NH is small,we have not observed the NH stretching vibration bands.However,the NH stretching vibration band of pyrrolidine is greatly enhanced after ionization,and this band red-shifts compared with the previous experiment.The red shifts of CH stretching vibrations in neutral and cationic states are caused by the negative and positive hyperconjugation,respectively.The enhancement and red shift of the NH stretching band are owing to the ejection of the electrons on the N atom after ionization.Through the calculations,it is found that the acidity of the CH bond is a little stronger than that of NH bond.These kinds of studies would be helpful to understand the intrinsic properties of biomolecules in neutral and cationic states,and to provide reference for the further study of living organic macromolecules.
文摘This paper presents results of thermoanalytical and structural research on phenolic binder used in foundry for the preparation of moulding sand. The binder has been prepared based on resole type phenolic resin with the addition of ester hardener. The aim of the study was to determine the structural changes taking place in the phenolic binder under the influence of temperature. Results show that in the investigated range of temperatures, phenolic binder exhibits three exothermic thermal effects accompanying the decomposition process. The test results using the Diffuse Reflectance Infrared Fourier Transform Spectroscopy(DRIFTS) technique show that the addition of a hardener stabilizes the binder structure within methylene bridges. The reduction in the reaction rate observed in the DTA curve at about 330 °C can be associated with the formation of gaseous products by decomposition of the binder or, as suggested by the literature data, the formation of triple bonds and CN-HCN groups.
文摘The catalytic pyrolysis of lignites is a technical process whose development is complex and time-consuming with the goal to maximize the yield of the desired low-volatile hydrocarbons of choice and to minimize the yield of solid residual products. Not every type of lignite is suitable for this process due to its particular chemical composition. In order to be able to predict which lignite specimen will be an especially promising raw material for the pyrolytic liberation of target products, the chemical classification by IR spectroscopic methods was investigated. MIR spectroscopy has been demonstrated to be a valuable tool to characterize the the molecular composition of lignites and to determine the concentrations of aliphatic and aromatic functional groups in lignite as well as alcoholic OH and other forms of bound oxygen. These data provide a comprehensive chemical characterization of the material and help to predict the composition of the chemical components liberated by catalytic decomposition. With a complementary NIR spectroscopic approach, a chemometric method has been developed with which the elemental com-position of the lignites can be determined in a fast and pragmatic way leading to a prediction of the product range of a theoretical pyrolytic product range. Thus, this spectroscopic investigation is a toolbox that can answer the question if the commercial exploitation of catalytic pyrolysis of a lignite sample in question will make sense without preliminary conduction of long and time-consuming testing.
基金This work was supported by the National Natural Science Foundation of China (Grant No. 50073012).
文摘A high-quality polyene can be obtained by exensive dehydrochlorination of poly(vinyl chloride) (PVC) in aliquid/solid two-phase system. The liquid phase is a tetrahydrofuran solution of PVC containing a small amount ofpoly(ethylene glycol) with molar mass of 400 g as a phase transfer catalys. The solid phase is potassium hydroxide particles.The structure of the polyene is polyacetylene-like and has a long conjugated C=C sequence and a narrow dispersity ofpolyene sequences according to its FT-infrared and Raman spectra. The environmental stability of the polyene was alsostudied by IR, Raman spectra and elemental analysis. Experimental results demonstrated that the polyene was susceptible toair and could be changed into a material containing high concentrations of hydroxyl and carbonyl groups. The polyenesequences were shortened and its dispersity became broader due to the effect of dioxygen.
文摘Thee adsorption of CO and NO on copper ion-exchanged zeolite Beta was investigated using IR method.It was found that the thermalvacuum pretreatment procedure could result in the reduction of Cu2+ions in zeolite Beta.The adsorption of CO on Cu+sites in zeolite Beta closely follows Langmuir isotherm.Another Cu+species may form during the reaction between water and CO.The catalytic decomposition of NO on the zeolite was observed at room temperature,indicating that the decomposition reaction may occur between two coordinated NO ligands of the same dinitrosyhc complex.Furthermore,the appearance of two series of NO adsorption bands reveals that copper ions existing at different cation sites may have different effect on the adsorption and decomposition of NO molecules.
文摘The present paper discusses the vibrational properties of the mixture gelucire-quercetin(from 1%to 5%)at room and body temperature.Quercetin is a flavonoid having beneficial properties:biological and antioxidant;it is used in many fields as food,cosmetic and especially pharmaceutics but its use as a drug is affected by its low solubility.The Gelucire 50/13 is used as sustained release matrix forming agent in pharmaceutical applications and it has demonstrated the ability to improve the dissolution as well as the absorption of poorly water-soluble drugs.The mixture Gelucire-quercetin was essentially studied by FTIR(Fourier transform infrared spectroscopy)and Raman spectroscopy.The behavior of these two molecules has been investigated in the spectral range 4000-0 cm-1 in Raman spectroscopy,and 4,000-600 cm-1 in FTIR.
基金the National Agency for Development and Research of Algeria for the financial support.
文摘Research on organic solar cells has a craze importance because they show very interesting properties including their flexibility and the opportunity to be made into large surfaces. However, their stability and performance should be significantly improved compared to their current state. A nominal output of around 10% will be the goal for the coming years. The use of organic materials for photovoltaic applications is the subject of intense research in recent years. This work is based in part on the development of new conjugated polymers. In this paper, we present the synthesis and characterization of poly [(thiophene-2,5-diyl)-co-(benzylidene)] PTB catalysed by Maghnite-H+, used in the active layer of the solar cell organic heterojunction with PCBM (derivative of C60) was used as a junction of the solar cell: Glas/ITO/BCP/C60/PTB/Au/Al. A current density of short circuit of about Jcc 0.1mA/cm2 was obtained for this structure with a yield of around 0.15%.
文摘In this study, the surface chemical properties of carbon nanotubes (CNTs) and carbon nanofibers (CNFs) grown by catalytic decomposition of methane on nickel and cobalt based catalysts were studied by DRIFT (Diffuse Reflectance Infrared Fourier Transform) and transmission Infrared (IR) spectroscopy. The results show that the surface exists not only carbon-hydrogen groups, but also carboxyl, ketene or quinone (carbonyl) oxygen-containing groups. These functional groups were formed in the process of the material growth, which result in large amount of chemical defect sites on the walls.
文摘Applying the Density Function Theory (DFT) combined with LCAO basis set and employing the B3LYP hybrid functional, the optimized geometrical parameters, electronic properties, as well as the Infrared and Raman spectra for wurtzite-ZnO structure were investigated. Prior to computing, ZnO thin film prepared by the spray pyrolysis method is characterized by X-ray diffraction using Rietveld refinement. This analysis shows that ZnO has hexagonal wurtzite structure (P6<sub>3</sub>mc) with lattice parameters, a = 3.2467 and c = 5.2151 Åin good agreement with our predicted optimized geometry. Atomic force microscopy (AFM), Raman spectroscopy and UV-Vis-NIR spectrophotometry techniques are used to explore morphological, optical and vibrational properties of the sprayed ZnO thin film. The computed band gap is in excellent agreement with that deduced from UV-Vis transmission . The simulated infrared and Raman spectra were also calculated, and a good agreement with the measured spectra is obtained. Finally, a detailed interpretation of the infrared and Raman spectra is reported.
文摘Aim To prepare and characterize solid dispersions of silymarin with the intention of improving their dissolution properties. Methods The solid dispersions were prepared by the fusion method with polyethylene glycol 6000(PEG 6000) as the carrier. Evaluation of the properties of the dispersions was performed using dissolution studies, X ray powder diffraction and Fourier transform infrared (FT IR) spectroscopy. Results The rate of dissolution of silymarin was considerably improved as compared with pure silymarin when formulated in solid dispersions with PEG 6000. The data of the X ray diffraction showed some changes in the parameters of lattice spacing [ d ], peak position and relative intensities. FT IR together with those from X ray diffraction showed the absence of well defined drug polymer interactions. Conclusion The dissolution improvement of poorly soluble silymarin could be illuminated by the changes of the lattice parameters of PEG 6000 and the drug.
文摘A series of poly-aluminum-chloride-sulfate (PACS), which has different basicities (gamma) and Al3+/SO42- molar ratio, has been prepared and dried at 105degreesC and 65degreesC, respectively. The distribution of aluminum species of PACS was examined, and the effect of 7 value, Al3+/SO42- molar ratio, dilution on the distribution of aluminum species of PACS was also investigated by using Al-ferron timed complex colorimetric method. The IR spectroscopy and X-ray diffraction were used to study the effect of gamma value, Al3+ / SO42- molar ratio and the drying temperature on the structure of PACS. The experimental results show that Al3+/SO42- molar ratio has a great effect on the distribution of aluminum species, but the dilution has a little effect on the distribution of aluminum species. The lower the Al3+/SO42- molar ratio, the higher the proportions of the polymer and colloidal species in PACS, The polymeric degree of PACS was related to gamma value and Al3+/SO(4)(2-)molar ratio. Drying temperature has an influence on the structure and the solubility of solid PACS products.
基金support of the National Key Research and Development Program of China(2017YFB0310403)the National Natural Science Foundation of China(51872260,51390474,91645103)+2 种基金the Ministry of Science and Technology of China(2016YFE0105700)the Environmentally Sustainable Management of Medical Wastes in China(C/V/S/10/251)the Zhejiang Provincial Natural Science Foundation of China(Z4080070,LD19B030001)~~
文摘N2O is a major by-product emitted during low-temperature selective catalytic reduction of NO with NH3(NH3-SCR), which causes a series of serious environmental problems. A full understanding of the N2O formation mechanism is essential to suppress the N2O emission during the low-temperature NH3-SCR, and requires an intensive study of this heterogeneous catalysis process. In this study, we investigated the reaction between NH3 and NO over a Pd/CeO2 catalyst in the absence of O2, using X-ray photoelectron spectroscopy, NH3-temperature-programmed desorption, NO-temperature-programmed desorption, and in-situ Fourier-transform infrared spectroscopy. Our results indicate that the N2O formation mechanism is reaction-temperature-dependent. At temperatures below 250 ℃, the dissociation of HON, which is produced from the reaction between surface H· adatoms and adsorbed NO, is the key process for N2O formation. At temperatures above 250 ℃,the reaction between NO and surface N·, which is produced by NO dissociation, is the only route for N2O formation, and the dissociation of NO is the rate-determining step. Under optimal reaction conditions, a high performance with nearly 100% NO conversion and 100% N2 selectivity could be achieved. These results provide important information to clarify the mechanism of N2O formation and possible suppression of N2 O emission during low-temperature NH3-SCR.
基金supported by the National Natural Science Foundation of China(No.21873062)the Fundamental Research Funds for the Central Universities(GK202001009)+2 种基金the Natural Science Basis Research Plan in Shaanxi Province of China(No.2020JM-295)the 111 Project(B14041)Program for Changjiang Scholars and the Innovative Research Team in University(IRT-14R33)。
文摘Hydrogels show versatile properties and are of great interest in the fields of bioelectronics and tissue engineering.Understanding the dynamics of the water molecules trapped in the three-dimensional polymeric networks of the hydrogels is crucial to elucidate their mechanical and swelling properties at the molecular level.In this report,the poly(DMAEMA-co-AA)hydrogels were synthesized and characterized by the macroscopic swelling measurements under different pH conditions.Furthermore,the microscopic structural dynamics of pH stimulus-responsive hydrogels were studied using FTIR and ultrafast IR spectroscopies from the viewpoint of the SCN-anionic solute as the local vibrational reporter.Ultrafast IR spectroscopic measurements showed the time constants of the vibrational population decay of SCN-were increased from 14±1 ps to 20±1 ps when the pH of the hydrogels varied from2.0 to 12.0.Rotational anisotropy measurements further revealed that the rotation of SCNanionic probe was restricted by the three-dimensional network formed in the hydrogels and the rotation of SCN-anionic probe cannot decay to zero especially at the pH of 7.0.These results are expected to provide a molecular-level understanding of the microscopic structure of the cross-linked polymeric network in the pH stimulus-responsive hydrogels.
文摘Eight tri(2-methyl-2-phznylpropyl) germylpropionates have been synthesized. and their structures were characterized by elemental analysis, IR, multinuclear NMR(H-1,C-13.Sn-119) and MS. The spectroscopic studies revealed that compounds of this type possess a tetrahedral geometry, which have been expected to have good biological activity.