Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for ga...Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for gastrointestinal disease identification in the clinical setting.A randomized controlled trial demonstrated improvements in the colorectal adenoma detection rate(ADR)and the mean number of adenomas per procedure(MAP)of TXI compared with those of white-light imaging(WLI)observation(58.7%vs 42.7%,adjusted relative risk 1.35,95%CI:1.17-1.56;1.36 vs 0.89,adjusted incident risk ratio 1.48,95%CI:1.22-1.80,respectively).A cross-over study also showed that the colorectal MAP and ADR in TXI were higher than those in WLI(1.5 vs 1.0,adjusted odds ratio 1.4,95%CI:1.2-1.6;58.2%vs 46.8%,1.5,1.0-2.3,respectively).A randomized controlled trial demonstrated non-inferiority of TXI to narrow-band imaging in the colorectal mean number of adenomas and sessile serrated lesions per procedure(0.29 vs 0.30,difference for non-inferiority-0.01,95%CI:-0.10 to 0.08).A cohort study found that scoring for ulcerative colitis severity using TXI could predict relapse of ulcerative colitis.A cross-sectional study found that TXI improved the gastric cancer detection rate compared to WLI(0.71%vs 0.29%).A cross-sectional study revealed that the sensitivity and accuracy for active Helicobacter pylori gastritis in TXI were higher than those of WLI(69.2%vs 52.5%and 85.3%vs 78.7%,res-pectively).In conclusion,TXI can improve gastrointestinal lesion detection and qualitative diagnosis.Therefore,further studies on the efficacy of TXI in clinical practice are required.展开更多
Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal d...Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.展开更多
Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding th...Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.展开更多
Interpreting experimental diagnostics data in tokamaks,while considering non-ideal effects,is challenging due to the complexity of plasmas.To address this challenge,a general synthetic diagnostics(GSD)platform has bee...Interpreting experimental diagnostics data in tokamaks,while considering non-ideal effects,is challenging due to the complexity of plasmas.To address this challenge,a general synthetic diagnostics(GSD)platform has been established that facilitates microwave imaging reflectometry and electron cyclotron emission imaging.This platform utilizes plasma profiles as input and incorporates the finite-difference time domain,ray tracing and the radiative transfer equation to calculate the propagation of plasma spontaneous radiation and the external electromagnetic field in plasmas.Benchmark tests for classical cases have been conducted to verify the accuracy of every core module in the GSD platform.Finally,2D imaging of a typical electron temperature distribution is reproduced by this platform and the results are consistent with the given real experimental data.This platform also has the potential to be extended to 3D electromagnetic field simulations and other microwave diagnostics such as cross-polarization scattering.展开更多
The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and...The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.展开更多
Cancer has long been amajor threat to human health.Recent advancements inmolecular imaging have revolutionized cancer research by enabling early and precise disease localization,essential for effective management.In p...Cancer has long been amajor threat to human health.Recent advancements inmolecular imaging have revolutionized cancer research by enabling early and precise disease localization,essential for effective management.In particular,optical molecular imaging is an invaluable cancer detection tool in preoperative planning,intraoperative guidance,and postoperative monitoring owing to its noninvasive nature,rapid turnover,safety,and ease of use.The tumor microenvironment and cells within it express distinct biomarkers.Optical imaging technology leverages these markers to differentiate tumor tissues from surrounding tissues and capture real-time images with high resolution.Nevertheless,a robust understanding of these cancer-relatedmolecules and their dynamic changes is crucial for effectivelymanaging cancer.Recent advancements in opticalmolecular imaging technologies offer novel approaches for cancer investigation in research and practice.This review investigates themodern opticalmolecular imaging techniques employed in both preclinical and clinical research,including bioluminescence,fluorescence,chemiluminescence,photoacoustic imaging,and Raman spectroscopy.We explore the current paradigm of optical molecular imaging modalities,their current status in preclinical cancer research and clinical applications,and future perspectives in the fields of cancer research and treatment.展开更多
Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for ...Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction.展开更多
Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on ...Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).展开更多
The integration of 7 Tesla magnetic resonance imaging(7 T MRI)in adult patients has marked a revolutionary stride in radiology.In this article we explore the feasibility of 7 T MRI in paediatric practice,emphasizing i...The integration of 7 Tesla magnetic resonance imaging(7 T MRI)in adult patients has marked a revolutionary stride in radiology.In this article we explore the feasibility of 7 T MRI in paediatric practice,emphasizing its feasibility,applications,challenges,and safety considerations.The heightened resolution and tissue contrast of 7 T MRI offer unprecedented diagnostic accuracy,particularly in neuroimaging.Applications range from neuro-oncology to neonatal brain imaging,showcasing its efficacy in detecting subtle structural abnormalities and providing enhanced insights into neurological conditions.Despite the promise,challenges such as high cost,discomfort,and safety concerns necessitate careful consideration.Research suggests that,with precautions,7 T MRI is feasible in paediatrics,yet ongoing studies and safety assessments are imperative.展开更多
Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are ...Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are lacking.Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease.This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques,and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI.We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations.Finally,we identify the challenges and possible solutions for spinal cord neuron imaging.展开更多
Fluorescence imaging in the second near-infrared window(NIR-II,900–1880 nm)with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imagi...Fluorescence imaging in the second near-infrared window(NIR-II,900–1880 nm)with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imaging with high spatial resolution.However,the traditional NIR-IIfluorescence confocal microscope with separate excitation focus and detection pinhole makes it possess low confocal e±ciency,as well as di±cultly to adjust.Two types of upgraded NIR-IIfluorescence confocal microscopes,sharing the same pinhole by excitation and emission focus,leading to higher confocal e±ciency,are built in this work.One type is-ber-pinhole-based confocal microscope applicable to CW laser excitation.It is constructed forfluorescence intensity imaging with large depth,high stabilization and low cost,which could replace multiphotonfluorescence microscopy in some applications(e.g.,cerebrovascular and hepatocellular imaging).The other type is air-pinhole-based confocal microscope applicable to femtosecond(fs)laser excitation.It can be employed not only for NIR-IIfluorescence intensity imaging,but also for multi-channelfluorescence lifetime imaging to recognize different structures with similarfluorescence spectrum.Moreover,it can be facilely combined with multiphotonfluorescence microscopy.A single fs pulsed laser is utilized to achieve up-conversion(visible multiphotonfluorescence)and down-conversion(NIR-II one-photonfluorescence)excitation simultaneously,extending imaging spectral channels,and thus facilitates multi-structure and multi-functional observation.展开更多
The optical diffraction effect imposes a radical obstacle preventing conventional optical microscopes from achieving an imaging resolution beyond the Abbe diffraction limit and thereby restricting their usage in a mul...The optical diffraction effect imposes a radical obstacle preventing conventional optical microscopes from achieving an imaging resolution beyond the Abbe diffraction limit and thereby restricting their usage in a multitude of nanoscale applications.Over the past decade,the optical microsphere nanoimaging technique has been demonstrated to be a cost-effective solution for overcoming the diffraction limit and has achieved an imaging resolution of up to about k6k8 in a real-time and label-free manner,making it highly competitive among numerous super-resolution imaging technologies.In this review,we summarize the underlying nano-imaging mechanisms of the microsphere nanoscope and key advancements aimed at imaging performance enhancement:first,to change the working environment or modify the peripheral hardware of a single microsphere nanoscope at the system level;second,to compose the microsphere compound lens;and third,to engineer the geometry or ingredients of microspheres.We also analyze challenges yet to be overcome in optical microsphere nano-imaging,followed by an outlook of this technique.展开更多
We report a novel stimulated Raman scattering(SRS)microscopy technique featuring phase-controlled light focusing and aberration corrections for rapid,deep tissue 3D chemical imaging with subcellular resolution.To acco...We report a novel stimulated Raman scattering(SRS)microscopy technique featuring phase-controlled light focusing and aberration corrections for rapid,deep tissue 3D chemical imaging with subcellular resolution.To accomplish phasecontrolled SRS(PC-SRS),we utilize a single spatial light modulator to electronically tune the axial positioning of both the shortened-length Bessel pump and the focused Gaussian Stokes beams,enabling z-scanning-free optical sectioning in the sample.By incorporating Zernike polynomials into the phase patterns,we simultaneously correct the system aberrations at two separate wavelengths(~240 nm difference),achieving a~3-fold enhancement in signal-to-noise ratio over the uncorrected imaging system.PC-SRS provides>2-fold improvement in imaging depth in various samples(e.g.,polystyrene bead phantoms,porcine brain tissue)as well as achieves SRS 3D imaging speed of~13 Hz per volume for real-time monitoring of Brownian motion of polymer beads in water,superior to conventional point-scanning SRS 3D imaging.We further utilize PC-SRS to observe the metabolic activities of the entire tumor liver in living zebrafish in cellsilent region,unraveling the upregulated metabolism in liver tumor compared to normal liver.This work shows that PCSRS provides unprecedented insights into morpho-chemistry,metabolic and dynamic functioning of live cells and tissue in real-time at the subcellular level.展开更多
Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MB...Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MBPA)is accordingly proposed and four imaging algorithms are used for comparison,back-projection method(BP),back-projection one in time domain(BP-TD),modified back-projection one and fast Fourier transform(FFT)-based MIMO range migration algorithm(FFT-based MIMO RMA).All of the algorithms have been implemented in practical application scenarios by use of the proposed imaging system.Back to the practical applications,MIMO array-based imaging system with wide-bandwidth properties provides an efficient tool to detect objects hidden behind a wall.An MIMO imaging radar system,composed of a vector network analyzer(VNA),a set of switches,and an array of Vivaldi antennas,have been designed,fabricated,and tested.Then,these algorithms have been applied to measured data collected in different scenarios constituted by five metallic spheres in the absence and in the presence of a wall between the antennas and the targets in simulation and pliers in free space for experimental test.Finally,the focusing properties and time consumption of the above algorithms are compared.展开更多
In seismic exploration,it is a critical task to image and interpret different seismic signatures over complex geology due to strong lateral velocity contrast,steep reflectors,overburden strata and dipping flanks.To un...In seismic exploration,it is a critical task to image and interpret different seismic signatures over complex geology due to strong lateral velocity contrast,steep reflectors,overburden strata and dipping flanks.To understand the behavior of these seismic signatures,nowadays Reverse Time Migration(RTM)technique is used extensively by the oil&gas industries.During the extrapolation phase of RTM,the source wavefield needs to be saved,which needs high storage memory and large computing time.These two are the main obstacles of RTM for production use.In order to overcome these disadvantages,in this study,a second-generation improved RTM technique is proposed.In this improved form,a shift operator is introduced at the time of imaging condition of RTM algorithm which is performed automatically both in space and time domain.This effort is made to produce a better-quality image by minimizing the computational time as well as numerical artefacts.The proposed method is applied over various benchmark models and validated by implementing over one field data set from the Jaisalmer Basin,India.From the analysis,it is observed that the method consumes a minimum of 45%less storage space and reduce the execution time by 20%,as compared to conventional RTM.The proposed RTM is found to work efficiently in comparison to the conventional RTM both in terms of imaging quality and minimization of numerical artefacts for all the benchmark models as well as field data.展开更多
Optical imaging in the second near-infrared(NIR-II;900-1880 nm)window is currently a popular research topic in the field of biomedical imaging.This study aimed to explore the application value of NIR-II fluorescence i...Optical imaging in the second near-infrared(NIR-II;900-1880 nm)window is currently a popular research topic in the field of biomedical imaging.This study aimed to explore the application value of NIR-II fluorescence imaging in foot and ankle surgeries.A lab-established NIR-II fluorescence surgical navigation system was developed and used to navigate foot and ankle surgeries which enabled obtaining more high-spatial-frequency information and a higher signal-to-background ratio(SBR)in NIR-II fluorescence images compared to NIR-I fluorescence images;our result demonstrates that NIR-II imaging could provide higher-contrast and larger-depth images to surgeons.Three types of clinical application scenarios(diabetic foot,calcaneal fracture,and lower extremity trauma)were included in this study.Using the NIR-II fluorescence imaging technique,we observed the ischemic region in the diabetic foot before morphological alterations,accurately determined the boundary of the ischemic region in the surgical incision,and fully assessed the blood supply condition of the flap.NIR-II fluorescence imaging can help surgeons precisely judge surgical margins,detect ischemic lesions early,and dynamically trace the perfusion process.We believe that portable and reliable NIR-II fluorescence imaging equipment and additional functional fluorescent probes can play crucial roles in precision surgery.展开更多
The internal carotid artery occlusion caused by head and neck trauma,also known as traumatic intracranial artery occlusion,is relatively rare clinically.Traumatic skull base fracture is a common complication of trauma...The internal carotid artery occlusion caused by head and neck trauma,also known as traumatic intracranial artery occlusion,is relatively rare clinically.Traumatic skull base fracture is a common complication of traumatic brain injury.Traumatic skull base fracture is one of the causes of traumatic internal carotid artery occlusion.If not detected early and treated in time,the prognosis of patients is poor.This editorial makes a relevant analysis of this disease.展开更多
In a single-pixel fast imaging setup,the data collected by the single-pixel detector needs to be processed by a computer,but the speed of the latter will affect the image reconstruction time.Here we propose two kinds ...In a single-pixel fast imaging setup,the data collected by the single-pixel detector needs to be processed by a computer,but the speed of the latter will affect the image reconstruction time.Here we propose two kinds of setups which are able to transform non-visible into visible light imaging,wherein their computing process is replaced by a camera integration mode.The image captured by the camera has a low contrast,so here we present an algorithm that can realize a high quality image in near-infrared to visible cross-waveband imaging.The scheme is verified both by simulation and in actual experiments.The setups demonstrate the great potential for single-pixel imaging and high-speed cross-waveband imaging for future practical applications.展开更多
BACKGROUND Giant cell tumor of bone is a locally aggressive and rarely metastasizing tumor,and also a potential malignant tumor that may develop into a primary malignant giant cell tumor.AIM To evaluate the role of mu...BACKGROUND Giant cell tumor of bone is a locally aggressive and rarely metastasizing tumor,and also a potential malignant tumor that may develop into a primary malignant giant cell tumor.AIM To evaluate the role of multimodal imaging in the diagnosis of giant cell tumors of bone.METHODS The data of 32 patients with giant cell tumor of bone confirmed by core-needle biopsy or surgical pathology at our hospital between March 2018 and March 2023 were retrospectively selected.All the patients with giant cell tumors of the bone were examined by X-ray,computed tomography(CT)and magnetic resonance imaging(MRI),and 7 of them were examined by positron emission tomography(PET)-CT.RESULTS X-ray imaging can provide overall information on giant cell tumor lesions.CT and MRI can reveal the characteristics of the internal structure of the tumor as well as the adjacent relationships of the tumor,and these methods have unique advantages for diagnosing tumors and determining the scope of surgery.PET-CT can detect small lesions and is highly valuable for identifying benign and malignant tumors to aid in the early diagnosis of metastasis.CONCLUSION Multimodal imaging plays an important role in the diagnosis of giant cell tumor of bone and can provide a reference for the treatment of giant cell tumors.展开更多
BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imag...BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes.展开更多
文摘Olympus Corporation developed texture and color enhancement imaging(TXI)as a novel image-enhancing endoscopic technique.This topic highlights a series of hot-topic articles that investigated the efficacy of TXI for gastrointestinal disease identification in the clinical setting.A randomized controlled trial demonstrated improvements in the colorectal adenoma detection rate(ADR)and the mean number of adenomas per procedure(MAP)of TXI compared with those of white-light imaging(WLI)observation(58.7%vs 42.7%,adjusted relative risk 1.35,95%CI:1.17-1.56;1.36 vs 0.89,adjusted incident risk ratio 1.48,95%CI:1.22-1.80,respectively).A cross-over study also showed that the colorectal MAP and ADR in TXI were higher than those in WLI(1.5 vs 1.0,adjusted odds ratio 1.4,95%CI:1.2-1.6;58.2%vs 46.8%,1.5,1.0-2.3,respectively).A randomized controlled trial demonstrated non-inferiority of TXI to narrow-band imaging in the colorectal mean number of adenomas and sessile serrated lesions per procedure(0.29 vs 0.30,difference for non-inferiority-0.01,95%CI:-0.10 to 0.08).A cohort study found that scoring for ulcerative colitis severity using TXI could predict relapse of ulcerative colitis.A cross-sectional study found that TXI improved the gastric cancer detection rate compared to WLI(0.71%vs 0.29%).A cross-sectional study revealed that the sensitivity and accuracy for active Helicobacter pylori gastritis in TXI were higher than those of WLI(69.2%vs 52.5%and 85.3%vs 78.7%,res-pectively).In conclusion,TXI can improve gastrointestinal lesion detection and qualitative diagnosis.Therefore,further studies on the efficacy of TXI in clinical practice are required.
基金supported by the Natural Science Foundation of Sichuan Province of China,Nos.2022NSFSC1545 (to YG),2022NSFSC1387 (to ZF)the Natural Science Foundation of Chongqing of China,Nos.CSTB2022NSCQ-LZX0038,cstc2021ycjh-bgzxm0035 (both to XT)+3 种基金the National Natural Science Foundation of China,No.82001378 (to XT)the Joint Project of Chongqing Health Commission and Science and Technology Bureau,No.2023QNXM009 (to XT)the Science and Technology Research Program of Chongqing Education Commission of China,No.KJQN202200435 (to XT)the Chongqing Talents:Exceptional Young Talents Project,No.CQYC202005014 (to XT)。
文摘Epilepsy can be defined as a dysfunction of the brain network,and each type of epilepsy involves different brain-network changes that are implicated diffe rently in the control and propagation of interictal or ictal discharges.Gaining more detailed information on brain network alterations can help us to further understand the mechanisms of epilepsy and pave the way for brain network-based precise therapeutic approaches in clinical practice.An increasing number of advanced neuroimaging techniques and electrophysiological techniques such as diffusion tensor imaging-based fiber tra ctography,diffusion kurtosis imaging-based fiber tractography,fiber ball imagingbased tra ctography,electroencephalography,functional magnetic resonance imaging,magnetoencephalography,positron emission tomography,molecular imaging,and functional ultrasound imaging have been extensively used to delineate epileptic networks.In this review,we summarize the relevant neuroimaging and neuroelectrophysiological techniques for assessing structural and functional brain networks in patients with epilepsy,and extensively analyze the imaging mechanisms,advantages,limitations,and clinical application ranges of each technique.A greater focus on emerging advanced technologies,new data analysis software,a combination of multiple techniques,and the construction of personalized virtual epilepsy models can provide a theoretical basis to better understand the brain network mechanisms of epilepsy and make surgical decisions.
基金Supported by the PetroChina Science and Technology Project(2021DJ4002,2022DJ3908)。
文摘Acoustic reflection imaging logging technology can detect and evaluate the development of reflection anomalies,such as fractures,caves and faults,within a range of tens of meters from the wellbore,greatly expanding the application scope of well logging technology.This article reviews the development history of the technology and focuses on introducing key methods,software,and on-site applications of acoustic reflection imaging logging technology.Based on the analyses of major challenges faced by existing technologies,and in conjunction with the practical production requirements of oilfields,the further development directions of acoustic reflection imaging logging are proposed.Following the current approach that utilizes the reflection coefficients,derived from the computation of acoustic slowness and density,to perform seismic inversion constrained by well logging,the next frontier is to directly establish the forward and inverse relationships between the downhole measured reflection waves and the surface seismic reflection waves.It is essential to advance research in imaging of fractures within shale reservoirs,the assessment of hydraulic fracturing effectiveness,the study of geosteering while drilling,and the innovation in instruments of acoustic reflection imaging logging technology.
基金supported by the National Magnetic Confinement Fusion Energy Program of China(No.2019YFE03020001)the Collaborative Innovation Program of Hefei Science Center,CAS(No.2021HSC-CIP010)the Fundamental Research Funds for the Central Universities。
文摘Interpreting experimental diagnostics data in tokamaks,while considering non-ideal effects,is challenging due to the complexity of plasmas.To address this challenge,a general synthetic diagnostics(GSD)platform has been established that facilitates microwave imaging reflectometry and electron cyclotron emission imaging.This platform utilizes plasma profiles as input and incorporates the finite-difference time domain,ray tracing and the radiative transfer equation to calculate the propagation of plasma spontaneous radiation and the external electromagnetic field in plasmas.Benchmark tests for classical cases have been conducted to verify the accuracy of every core module in the GSD platform.Finally,2D imaging of a typical electron temperature distribution is reproduced by this platform and the results are consistent with the given real experimental data.This platform also has the potential to be extended to 3D electromagnetic field simulations and other microwave diagnostics such as cross-polarization scattering.
基金supported by the CAS Project for Young Scientists in Basic Research(YSBR-096)the National Major Scientific Instruments and Equipment Development Project of China(No.11627901)+1 种基金the National Key Research and Development Program of China(Nos.2021YFF0701202,2021YFA1600703)the National Natural Science Foundation of China(Nos.U1932205,12275343).
文摘The fast X-ray imaging beamline(BL16U2)at Shanghai Synchrotron Radiation Facility(SSRF)is a new beamline that provides X-ray micro-imaging capabilities across a wide range of time scales,spanning from 100 ps toμs and ms.This beamline has been specifically designed to facilitate the investigation of a wide range of rapid phenomena,such as the deformation and failure of materials subjected to intense dynamic loads.In addition,it enables the study of high-pressure and high-speed fuel spray processes in automotive engines.The light source of this beamline is a cryogenic permanent magnet undulator(CPMU)that is cooled by liquid nitrogen.This CPMU can generate X-ray photons within an energy range of 8.7-30 keV.The beamline offers two modes of operation:monochromatic beam mode with a liquid nitrogen-cooled double-crystal monochromator(DCM)and pink beam mode with the first crystal of the DCM out of the beam path.Four X-ray imaging methods were implemented in BL16U2:single-pulse ultrafast X-ray imaging,microsecond-resolved X-ray dynamic imaging,millisecond-resolved X-ray dynamic micro-CT,and high-resolution quantitative micro-CT.Furthermore,BL16U2 is equipped with various in situ impact loading systems,such as a split Hopkinson bar system,light gas gun,and fuel spray chamber.Following the completion of the final commissioning in 2021 and subsequent trial operations in 2022,the beamline has been officially available to users from 2023.
基金supported by the National Key R&D Program(the 14th Five-Year Plan)(no.2023YFC2706001 and no.2023YFC2706003).
文摘Cancer has long been amajor threat to human health.Recent advancements inmolecular imaging have revolutionized cancer research by enabling early and precise disease localization,essential for effective management.In particular,optical molecular imaging is an invaluable cancer detection tool in preoperative planning,intraoperative guidance,and postoperative monitoring owing to its noninvasive nature,rapid turnover,safety,and ease of use.The tumor microenvironment and cells within it express distinct biomarkers.Optical imaging technology leverages these markers to differentiate tumor tissues from surrounding tissues and capture real-time images with high resolution.Nevertheless,a robust understanding of these cancer-relatedmolecules and their dynamic changes is crucial for effectivelymanaging cancer.Recent advancements in opticalmolecular imaging technologies offer novel approaches for cancer investigation in research and practice.This review investigates themodern opticalmolecular imaging techniques employed in both preclinical and clinical research,including bioluminescence,fluorescence,chemiluminescence,photoacoustic imaging,and Raman spectroscopy.We explore the current paradigm of optical molecular imaging modalities,their current status in preclinical cancer research and clinical applications,and future perspectives in the fields of cancer research and treatment.
基金supported by the National Natural Science Foundation of China,No.31970906(to WLei)the Natural Science Foundation of Guangdong Province,No.2020A1515011079(to WLei)+4 种基金Key Technologies R&D Program of Guangdong Province,No.2018B030332001(to GC)Science and Technology Projects of Guangzhou,No.202206060002(to GC)the Youth Science Program of the National Natural Science Foundation of China,No.32100793(to ZX)the Pearl River Innovation and Entrepreneurship Team,No.2021ZT09 Y552Yi-Liang Liu Endowment Fund from Jinan University Education Development Foundation。
文摘Over the past decade,a growing number of studies have reported transcription factor-based in situ reprogramming that can directly conve rt endogenous glial cells into functional neurons as an alternative approach for n euro regeneration in the adult mammalian central ne rvous system.Howeve r,many questions remain regarding how a terminally differentiated glial cell can transform into a delicate neuron that forms part of the intricate brain circuitry.In addition,concerns have recently been raised around the absence of astrocyte-to-neuron conversion in astrocytic lineage-tra cing mice.In this study,we employed repetitive two-photon imaging to continuously capture the in situ astrocyte-to-neuron conversion process following ecto pic expression of the neural transcription factor NeuroD1 in both prolife rating reactive astrocytes and lineage-tra ced astrocytes in the mouse cortex.Time-lapse imaging over several wee ks revealed the ste p-by-step transition from a typical astrocyte with numero us short,tapered branches to a typical neuro n with a few long neurites and dynamic growth cones that actively explored the local environment.In addition,these lineage-converting cells were able to migrate ra dially or to ngentially to relocate to suitable positions.Furthermore,two-photon Ca2+imaging and patch-clamp recordings confirmed that the newly generated neuro ns exhibited synchronous calcium signals,repetitive action potentials,and spontaneous synaptic responses,suggesting that they had made functional synaptic connections within local neural circuits.In conclusion,we directly visualized the step-by-step lineage conversion process from astrocytes to functional neurons in vivo and unambiguously demonstrated that adult mammalian brains are highly plastic with respect to their potential for neuro regeneration and neural circuit reconstruction.
基金supported by the National Natural Science Foundation of China(Nos.12174208 and 32227802)National Key Research and Development Program of China(No.2022YFC3400600)+2 种基金Guangdong Major Project of Basic and Applied Basic Research(No.2020B0301030009)Fundamental Research Funds for the Central Universities(Nos.2122021337 and 2122021405)the 111 Project(No.B23045).
文摘Microwave-induced thermoacoustic imaging(MTI)has the advantages of high resolution,high contrast,non-ionization,and non-invasive.Recently,MTI was used in the¯eld of breast cancer screening.In this paper,based on the¯nite element method(FEM)and COMSOL Multiphysics software,a three-dimensional breast cancer model suitable for exploring the MTI process is proposed to investigate the in°uence of Young's modulus(YM)of breast cancer tissue on MTI.It is found that the process of electromagnetic heating and initial pressure generation of the entire breast tissue is earlier in time than the thermal expansion process.Besides,compared with normal breast tissue,tumor tissue has a greater temperature rise,displacement,and pressure rise.In particular,YM of the tumor is related to the speed of thermal expansion.In particular,the larger the YM of the tumor is,the higher the heating and contraction frequency is,and the greater the maximum pressure is.Di®erent Young's moduli correspond to di®erent thermoacoustic signal spectra.In MTI,this study can be used to judge di®erent degrees of breast cancer based on elastic imaging.In addition,this study is helpful in exploring the possibility of microwave-induced thermoacoustic elastic imaging(MTAE).
文摘The integration of 7 Tesla magnetic resonance imaging(7 T MRI)in adult patients has marked a revolutionary stride in radiology.In this article we explore the feasibility of 7 T MRI in paediatric practice,emphasizing its feasibility,applications,challenges,and safety considerations.The heightened resolution and tissue contrast of 7 T MRI offer unprecedented diagnostic accuracy,particularly in neuroimaging.Applications range from neuro-oncology to neonatal brain imaging,showcasing its efficacy in detecting subtle structural abnormalities and providing enhanced insights into neurological conditions.Despite the promise,challenges such as high cost,discomfort,and safety concerns necessitate careful consideration.Research suggests that,with precautions,7 T MRI is feasible in paediatrics,yet ongoing studies and safety assessments are imperative.
基金supported by the National Natural Science Foundation of China,No.82272478(to PT)。
文摘Deciphering the neuronal response to injury in the spinal cord is essential for exploring treatment strategies for spinal cord injury(SCI).However,this subject has been neglected in part because appropriate tools are lacking.Emerging in vivo imaging and labeling methods offer great potential for observing dynamic neural processes in the central nervous system in conditions of health and disease.This review first discusses in vivo imaging of the mouse spinal cord with a focus on the latest imaging techniques,and then analyzes the dynamic biological response of spinal cord sensory and motor neurons to SCI.We then summarize and compare the techniques behind these studies and clarify the advantages of in vivo imaging compared with traditional neuroscience examinations.Finally,we identify the challenges and possible solutions for spinal cord neuron imaging.
基金supported by National Natural Science Foundation of China(61975172,82001874 and 61735016).
文摘Fluorescence imaging in the second near-infrared window(NIR-II,900–1880 nm)with less scattering background in biological tissues has been combined with the confocal microscopic system for achieving deep in vivo imaging with high spatial resolution.However,the traditional NIR-IIfluorescence confocal microscope with separate excitation focus and detection pinhole makes it possess low confocal e±ciency,as well as di±cultly to adjust.Two types of upgraded NIR-IIfluorescence confocal microscopes,sharing the same pinhole by excitation and emission focus,leading to higher confocal e±ciency,are built in this work.One type is-ber-pinhole-based confocal microscope applicable to CW laser excitation.It is constructed forfluorescence intensity imaging with large depth,high stabilization and low cost,which could replace multiphotonfluorescence microscopy in some applications(e.g.,cerebrovascular and hepatocellular imaging).The other type is air-pinhole-based confocal microscope applicable to femtosecond(fs)laser excitation.It can be employed not only for NIR-IIfluorescence intensity imaging,but also for multi-channelfluorescence lifetime imaging to recognize different structures with similarfluorescence spectrum.Moreover,it can be facilely combined with multiphotonfluorescence microscopy.A single fs pulsed laser is utilized to achieve up-conversion(visible multiphotonfluorescence)and down-conversion(NIR-II one-photonfluorescence)excitation simultaneously,extending imaging spectral channels,and thus facilitates multi-structure and multi-functional observation.
基金supported by Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province Human Resource Training Project(HRTP-[2022]-53).
文摘The optical diffraction effect imposes a radical obstacle preventing conventional optical microscopes from achieving an imaging resolution beyond the Abbe diffraction limit and thereby restricting their usage in a multitude of nanoscale applications.Over the past decade,the optical microsphere nanoimaging technique has been demonstrated to be a cost-effective solution for overcoming the diffraction limit and has achieved an imaging resolution of up to about k6k8 in a real-time and label-free manner,making it highly competitive among numerous super-resolution imaging technologies.In this review,we summarize the underlying nano-imaging mechanisms of the microsphere nanoscope and key advancements aimed at imaging performance enhancement:first,to change the working environment or modify the peripheral hardware of a single microsphere nanoscope at the system level;second,to compose the microsphere compound lens;and third,to engineer the geometry or ingredients of microspheres.We also analyze challenges yet to be overcome in optical microsphere nano-imaging,followed by an outlook of this technique.
基金supported by the Academic Research Fund(AcRF)from the Ministry of Education(MOE)(Tier 2(A-8000117-01-00)Tier 1(R397-000-334-114,R397-000-371-114,and R397-000-378-114)2024 Tsinghua-NUS Joint Research Initiative Fund,and the National Medical Research Council(NMRC)(A-0009502-01-00,and A-8001143-00-00),Singapore.
文摘We report a novel stimulated Raman scattering(SRS)microscopy technique featuring phase-controlled light focusing and aberration corrections for rapid,deep tissue 3D chemical imaging with subcellular resolution.To accomplish phasecontrolled SRS(PC-SRS),we utilize a single spatial light modulator to electronically tune the axial positioning of both the shortened-length Bessel pump and the focused Gaussian Stokes beams,enabling z-scanning-free optical sectioning in the sample.By incorporating Zernike polynomials into the phase patterns,we simultaneously correct the system aberrations at two separate wavelengths(~240 nm difference),achieving a~3-fold enhancement in signal-to-noise ratio over the uncorrected imaging system.PC-SRS provides>2-fold improvement in imaging depth in various samples(e.g.,polystyrene bead phantoms,porcine brain tissue)as well as achieves SRS 3D imaging speed of~13 Hz per volume for real-time monitoring of Brownian motion of polymer beads in water,superior to conventional point-scanning SRS 3D imaging.We further utilize PC-SRS to observe the metabolic activities of the entire tumor liver in living zebrafish in cellsilent region,unraveling the upregulated metabolism in liver tumor compared to normal liver.This work shows that PCSRS provides unprecedented insights into morpho-chemistry,metabolic and dynamic functioning of live cells and tissue in real-time at the subcellular level.
基金National Natural Science Foundation of China(No.62293493)。
文摘Three dimensional(3-D)imaging algorithms with irregular planar multiple-input-multiple-output(MIMO)arrays are discussed and compared with each other.Based on the same MIMO array,a modified back projection algorithm(MBPA)is accordingly proposed and four imaging algorithms are used for comparison,back-projection method(BP),back-projection one in time domain(BP-TD),modified back-projection one and fast Fourier transform(FFT)-based MIMO range migration algorithm(FFT-based MIMO RMA).All of the algorithms have been implemented in practical application scenarios by use of the proposed imaging system.Back to the practical applications,MIMO array-based imaging system with wide-bandwidth properties provides an efficient tool to detect objects hidden behind a wall.An MIMO imaging radar system,composed of a vector network analyzer(VNA),a set of switches,and an array of Vivaldi antennas,have been designed,fabricated,and tested.Then,these algorithms have been applied to measured data collected in different scenarios constituted by five metallic spheres in the absence and in the presence of a wall between the antennas and the targets in simulation and pliers in free space for experimental test.Finally,the focusing properties and time consumption of the above algorithms are compared.
文摘In seismic exploration,it is a critical task to image and interpret different seismic signatures over complex geology due to strong lateral velocity contrast,steep reflectors,overburden strata and dipping flanks.To understand the behavior of these seismic signatures,nowadays Reverse Time Migration(RTM)technique is used extensively by the oil&gas industries.During the extrapolation phase of RTM,the source wavefield needs to be saved,which needs high storage memory and large computing time.These two are the main obstacles of RTM for production use.In order to overcome these disadvantages,in this study,a second-generation improved RTM technique is proposed.In this improved form,a shift operator is introduced at the time of imaging condition of RTM algorithm which is performed automatically both in space and time domain.This effort is made to produce a better-quality image by minimizing the computational time as well as numerical artefacts.The proposed method is applied over various benchmark models and validated by implementing over one field data set from the Jaisalmer Basin,India.From the analysis,it is observed that the method consumes a minimum of 45%less storage space and reduce the execution time by 20%,as compared to conventional RTM.The proposed RTM is found to work efficiently in comparison to the conventional RTM both in terms of imaging quality and minimization of numerical artefacts for all the benchmark models as well as field data.
基金supported by the Fundamental Research Fund for the Central Universities(K20220220)the National Key Research and Development Program of China(2018YFC1005003,2018YFE0190200,and 2022YFB3206000)+4 种基金the National Natural Science Foundation of China(U23A20487,82001874,61975172,and 82102105)the Zhejiang Engineering Research Center of Cognitive Healthcare(2017E10011)the Natural Science Foundation of Zhejiang Province(LQ22H160017)the Zhejiang Province Science and Technology Plan Project(2022C03134)the Science and Technology Innovation 2030 Plan Project(2022ZD0160703).
文摘Optical imaging in the second near-infrared(NIR-II;900-1880 nm)window is currently a popular research topic in the field of biomedical imaging.This study aimed to explore the application value of NIR-II fluorescence imaging in foot and ankle surgeries.A lab-established NIR-II fluorescence surgical navigation system was developed and used to navigate foot and ankle surgeries which enabled obtaining more high-spatial-frequency information and a higher signal-to-background ratio(SBR)in NIR-II fluorescence images compared to NIR-I fluorescence images;our result demonstrates that NIR-II imaging could provide higher-contrast and larger-depth images to surgeons.Three types of clinical application scenarios(diabetic foot,calcaneal fracture,and lower extremity trauma)were included in this study.Using the NIR-II fluorescence imaging technique,we observed the ischemic region in the diabetic foot before morphological alterations,accurately determined the boundary of the ischemic region in the surgical incision,and fully assessed the blood supply condition of the flap.NIR-II fluorescence imaging can help surgeons precisely judge surgical margins,detect ischemic lesions early,and dynamically trace the perfusion process.We believe that portable and reliable NIR-II fluorescence imaging equipment and additional functional fluorescent probes can play crucial roles in precision surgery.
基金Supported by the Science and Technology Program of Nantong Health Committee,No.MA2019003 and No.MA2021017Science and Technology Program of Nantong City,No.Key003 and No.JCZ2022040Kangda College of Nanjing Medical University,No.KD2021JYYJYB025,No.KD2022KYJJZD019,and No.KD2022KYJJZD022.
文摘The internal carotid artery occlusion caused by head and neck trauma,also known as traumatic intracranial artery occlusion,is relatively rare clinically.Traumatic skull base fracture is a common complication of traumatic brain injury.Traumatic skull base fracture is one of the causes of traumatic internal carotid artery occlusion.If not detected early and treated in time,the prognosis of patients is poor.This editorial makes a relevant analysis of this disease.
文摘In a single-pixel fast imaging setup,the data collected by the single-pixel detector needs to be processed by a computer,but the speed of the latter will affect the image reconstruction time.Here we propose two kinds of setups which are able to transform non-visible into visible light imaging,wherein their computing process is replaced by a camera integration mode.The image captured by the camera has a low contrast,so here we present an algorithm that can realize a high quality image in near-infrared to visible cross-waveband imaging.The scheme is verified both by simulation and in actual experiments.The setups demonstrate the great potential for single-pixel imaging and high-speed cross-waveband imaging for future practical applications.
基金Supported by the Technology Innovation Leading Program of Shaanxi,No.2023KXJ-095the Shaanxi Provincial People's Hospital Science and Technology Talent Support Program for Elite Talents,No.2021JY-38 and No.2021JY-50the Shaanxi Provincial People's Hospital Science and Technology Development Incubation Foundation,No.2023YJY-39.
文摘BACKGROUND Giant cell tumor of bone is a locally aggressive and rarely metastasizing tumor,and also a potential malignant tumor that may develop into a primary malignant giant cell tumor.AIM To evaluate the role of multimodal imaging in the diagnosis of giant cell tumors of bone.METHODS The data of 32 patients with giant cell tumor of bone confirmed by core-needle biopsy or surgical pathology at our hospital between March 2018 and March 2023 were retrospectively selected.All the patients with giant cell tumors of the bone were examined by X-ray,computed tomography(CT)and magnetic resonance imaging(MRI),and 7 of them were examined by positron emission tomography(PET)-CT.RESULTS X-ray imaging can provide overall information on giant cell tumor lesions.CT and MRI can reveal the characteristics of the internal structure of the tumor as well as the adjacent relationships of the tumor,and these methods have unique advantages for diagnosing tumors and determining the scope of surgery.PET-CT can detect small lesions and is highly valuable for identifying benign and malignant tumors to aid in the early diagnosis of metastasis.CONCLUSION Multimodal imaging plays an important role in the diagnosis of giant cell tumor of bone and can provide a reference for the treatment of giant cell tumors.
基金Supported by National Natural Science Foundation of China,No.82071871Guangdong Basic and Applied Basic Research Foundation,No.2021A1515220131+1 种基金Guangdong Medical Science and Technology Research Fund Project,No.2022111520491834Clinical Research Project of Shenzhen Second People's Hospital,No.20223357022。
文摘BACKGROUND Intracranial atherosclerosis,a leading cause of stroke,involves arterial plaque formation.This study explores the link between plaque remodelling patterns and diabetes using high-resolution vessel wall imaging(HR-VWI).AIM To investigate the factors of intracranial atherosclerotic remodelling patterns and the relationship between intracranial atherosclerotic remodelling and diabetes mellitus using HR-VWI.METHODS Ninety-four patients diagnosed with middle cerebral artery or basilar artery INTRODUCTION Intracranial atherosclerotic disease is one of the main causes of ischaemic stroke in the world,accounting for approx-imately 10%of transient ischaemic attacks and 30%-50%of ischaemic strokes[1].It is the most common factor among Asian people[2].The adaptive changes in the structure and function of blood vessels that can adapt to changes in the internal and external environment are called vascular remodelling,which is a common and important pathological mechanism in atherosclerotic diseases,and the remodelling mode of atherosclerotic plaques is closely related to the occurrence of stroke.Positive remodelling(PR)is an outwards compensatory remodelling where the arterial wall grows outwards in an attempt to maintain a constant lumen diameter.For a long time,it was believed that the degree of stenosis can accurately reflect the risk of ischaemic stroke[3-5].Previous studies have revealed that lesions without significant luminal stenosis can also lead to acute events[6,7],as summarized in a recent meta-analysis study in which approximately 50%of acute/subacute ischaemic events were due to this type of lesion[6].Research[8,9]has pointed out that the PR of plaques is more dangerous and more likely to cause acute ischaemic stroke.Previous studies[10-13]have found that there are specific vascular remodelling phenomena in the coronary and carotid arteries of diabetic patients.However,due to the deep location and small lumen of intracranial arteries and limitations of imaging techniques,the relationship between intracranial arterial remodelling and diabetes is still unclear.In recent years,with the development of magnetic resonance technology and the emergence of high-resolution(HR)vascular wall imaging,a clear and multidimensional display of the intracranial vascular wall has been achieved.Therefore,in this study,HR wall imaging(HR-VWI)was used to display the remodelling characteristics of bilateral middle cerebral arteries and basilar arteries and to explore the factors of intracranial vascular remodelling and its relationship with diabetes.