期刊文献+
共找到164篇文章
< 1 2 9 >
每页显示 20 50 100
Enhanced wetting and properties of carbon/carbon-Cu composites with Cr_3C_2 coatings by Cr-solution immersion method 被引量:4
1
作者 Bo Kong Jinming Ru +1 位作者 Hongdi Zhang Tongxiang Fan 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2018年第3期458-465,共8页
A facile ammonium-dichromate solution immersion method was introduced to synthesize the copperwettable Cr3C2 coating on and inside the carbon-carbon (C/C) preform. The formation mechanism and the microstructures of ... A facile ammonium-dichromate solution immersion method was introduced to synthesize the copperwettable Cr3C2 coating on and inside the carbon-carbon (C/C) preform. The formation mechanism and the microstructures of the Cr3C2 coatings were studied. The contact angle between molten copper and the C/C decreased from 140°to 60°, demonstrating the significant improvement in the wettability. The Cr3C2- coated C/C-Cu composite with only 4.2% porosity and 3.69 gcm^-3 density was manufactured through copper infiltration. As a result, the thermal and electrical conductivity of the modified C/C-Cu increased significantly due to the infiltrated copper. Also the mechanical properties of the composites including both the flexural and compressive strengths were enhanced by over 100%. The modified C/C-Cu composite exhibited lower friction coefficients and wear rates for different load levels than those of the commercial C/Cu composite. These results demonstrate the potential of the modified C/C-Cu material for use in electrical contacts. 展开更多
关键词 Enhanced wetting and properties of carbon/carbon-Cu composites with Cr3C2 coatings by Cr-solution immersion method CR CU
原文传递
A High-Accuracy Curve Boundary Recognition Method Based on the Lattice Boltzmann Method and Immersed Moving Boundary Method
2
作者 Jie-Di Weng Yong-Zheng Jiang +2 位作者 Long-Chao Chen Xu Zhang Guan-Yong Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第9期2533-2557,共25页
Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Latti... Applying numerical simulation technology to investigate fluid-solid interaction involving complex curved bound-aries is vital in aircraft design,ocean,and construction engineering.However,current methods such as Lattice Boltzmann(LBM)and the immersion boundary method based on solid ratio(IMB)have limitations in identifying custom curved boundaries.Meanwhile,IBM based on velocity correction(IBM-VC)suffers from inaccuracies and numerical instability.Therefore,this study introduces a high-accuracy curve boundary recognition method(IMB-CB),which identifies boundary nodes by moving the search box,and corrects the weighting function in LBM by calculating the solid ratio of the boundary nodes,achieving accurate recognition of custom curve boundaries.In addition,curve boundary image and dot methods are utilized to verify IMB-CB.The findings revealed that IMB-CB can accurately identify the boundary,showing an error of less than 1.8%with 500 lattices.Also,the flow in the custom curve boundary and aerodynamic characteristics of the NACA0012 airfoil are calculated and compared to IBM-VC.Results showed that IMB-CB yields lower lift and drag coefficient errors than IBM-VC,with a 1.45%drag coefficient error.In addition,the characteristic curve of IMB-CB is very stable,whereas that of IBM-VC is not.For the moving boundary problem,LBM-IMB-CB with discrete element method(DEM)is capable of accurately simulating the physical phenomena of multi-moving particle flow in complex curved pipelines.This research proposes a new curve boundary recognition method,which can significantly promote the stability and accuracy of fluid-solid interaction simulations and thus has huge applications in engineering. 展开更多
关键词 Fluid-solid interaction curve boundary recognition method Lattice Boltzmann method immersed moving boundary method
下载PDF
NOVEL IMMERSED BOUNDARY-LATTICE BOLTZMANN METHOD BASED ON FEEDBACK LAW 被引量:1
3
作者 李秀娟 赵荣国 钟诚文 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2012年第2期179-186,共8页
The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S)... The lattice Boltzmann method (LBM) and the immersed boundary method (IBM) are alternative, com- putational techniques for solving complex fluid dynamics systems, and can take the place of the Navier-Stokes(N- S) equation. This paper proposes a novel immersed boundary-lattice Boltzmann method (IB-LBM) based on the feedback law. The method uses the immersed boundary concept in the LBM framework to capture the coupling between a body with complex geometry and a uniform fluid, Then, the flows around a stationary circular cylinder and two circular cylinders in a side by side arrangement are simulated by using the method. Results are agreed well with the benchmark data, so, the capability of the method for complex geometry is demonstrated. Different from the conventional IB-LBM, which uses the Hook's law or the direct forcing method to compute the interae- tion force, the method uses the feedback law--the feedback of velocity field and displacement information to calculate the force, thus ensuring the method has advantages of easy implementation and full parallelism. 展开更多
关键词 computational fluid dynamics lattice Boltzmann method immersed boundary method feedback law circular cylinder
下载PDF
A large eddy simulation of flows around an underwater vehicle model using an immersed boundary method 被引量:7
4
作者 Shizhao Wang Beiji Shi +1 位作者 Yuhang Li Guowei He 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2016年第6期302-305,共4页
A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the ... A large eddy simulation (LES) of the flows around an underwater vehicle model at intermediate Reynolds numbers is performed. The underwater vehicle model is taken as the DARPA SUBOFF with full appendages, where the Reynolds number based on the hull length is 1.0x 105, An immersed boundary method based on the moving-least-squares reconstruction is used to handle the complex geometric boundaries. The adaptive mesh refinement is utilized to resolve the flows near the hull, The parallel scalabilities of the flow solver are tested on meshes with the number of cells varying from 50 million to 3.2 billion, The parallel solver reaches nearly linear scalability for the flows around the underwater vehicle model, The present simulation captures the essential features of the vortex structures near the hull and in the wake, Both of the time-averaged pressure coefficients and srreamwise velocity profiles obtained from the LES are consistent with the characteristics of the flows pass an appended axisymmetric body. The code efficiency and its correct predictions on flow features allow us to perform the full-scale simulations on tens of thousands of cores with billions of grid points for higher-Reynolds-number flows around the underwater vehicles. 展开更多
关键词 Underwater vehicle SUBOFF Immersed boundary method Large eddy simulation Adaptive mesh refinement
下载PDF
Numerical Simulation of Fluid and Heat Transfer in a Biological Tissue Using an Immersed Boundary Method Mimicking the Exact Structure of the Microvascular Network 被引量:7
5
作者 Yuanliang Tang Lizhong Mu Ying He 《Fluid Dynamics & Materials Processing》 EI 2020年第2期281-296,共16页
The aim of this study is to develop a model of fluid and heat transfer in a biological tissue taking into account the exact structure of the related microvascular network,and to analyze the influence of structural cha... The aim of this study is to develop a model of fluid and heat transfer in a biological tissue taking into account the exact structure of the related microvascular network,and to analyze the influence of structural changes of such a network induced by diabetes.A cubic region representing local skin tissue is selected as the computational domain,which in turn includes two intravascular and extravascular sub-domains.To save computational resources,the capillary network is reduced to a 1D pipeline model and embedded into the extravascular region.On the basis of the immersed boundary method(IBM)strategy,fluid and heat fluxes across a capillary wall are distributed to the surrounding tissue nodes by a delta function.We consider both steady and periodic blood pressure conditions at the entrances of the capillary network.Under steady blood pressure conditions,both the interstitial fluid pressure and tissue temperature around the capillary network are larger than those in other places.When the periodic blood pressure condition is considered,tissue temperature tends to fluctuate with the same frequency of the forcing,but the related waveform displays a smaller amplitude and a certain time(phase)delay.When the connectivity of capillary network is diminished,the capacity of blood redistribution through the capillary network becomes weaker and a subset of the vessel branches lose blood flow,which further aggravates the amplitude attenuation and time delay of the skin temperature fluctuation. 展开更多
关键词 Bioheat transfer porous media immersed boundary method DIABETES microvascular dysfunction skin temperature fluctuation
下载PDF
Numerical Investigation on Vortex-Induced Rotations of A Triangular Cylinder Using An Immersed Boundary Method 被引量:3
6
作者 WANG Hua-kun YAN Yu-hao +2 位作者 CHEN Can-ming JI Chun-ning ZHAI Qiu 《China Ocean Engineering》 SCIE EI CSCD 2019年第6期723-733,共11页
A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the n... A numerical study of vortex-induced rotations(VIRs) of an equivalent triangular cylinder, which is free to rotate in the azimuthal direction in a uniform flow, is presented. Based on an immersed boundary method, the numerical model is established, and is verified through the benchmark problem of flow past a freely rotating rectangular body.The computation is performed for a fixed reduced mass of m~*=2.0 and the structural stiffness and damping ratio are set to zero. The effects of Reynolds number(Re=25-180) on the characteristics of VIR are studied. It is found that the dynamic response of the triangular cylinder exhibits four distinct modes with increasing Re: a rest position,periodic rotational oscillation, random rotation and autorotation. For the rotational oscillation mode, the cylinder undergoes a periodic vibration around an equilibrium position with one side facing the incoming flow. Since the rotation effect, the outset of vortex shedding from cylinder shifts to a much lower Reynolds number. Further increase in Re leads to 2 P and P+S vortex shedding modes besides the typical 2 S pattern. Our simulation results also elucidate that the free rotation significantly changes the drag and lift forces. Inspired by these facts, the effect of free rotation on flow-induced vibration of a triangular cylinder in the in-line and transverse directions is investigated. The results show that when the translational vibration is coupled with rotation, the triangular cylinder presents a galloping response instead of vortex-induced vibration(VIV). 展开更多
关键词 vortex-induced rotation triangular cylinder dynamic response vortex shedding mode immersed boundary method
下载PDF
Unstructured Grid Immersed Boundary Method for Numerical Simulation of Fluid Structure Interaction 被引量:2
7
作者 明平剑 孙扬哲 +1 位作者 段文洋 张文平 《Journal of Marine Science and Application》 2010年第2期181-186,共6页
This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance ... This paper presents an improved unstructured grid immersed boundary method.The advantages of both immersed boundary method and body fitted grids which are generated by unstructured grid technology are used to enhance the computation efficiency of fluid structure interaction in complex domain.The Navier-Stokes equation was discretized spacially with collocated finite volume method and Euler implicit method in time domain.The rigid body motion was simulated by immersed boundary method in which the fluid and rigid body interface interaction was dealt with VOS(volume of solid) method.A new VOS calculation method based on graph was presented in which both immersed boundary points and cross points were collected in arbitrary order to form a graph.The method is verified with flow past oscillating cylinder. 展开更多
关键词 fluid structure interaction immersed boundary method VOS unstructured grids finite volume method
下载PDF
Immersed Interface Finite Element Methods for Elasticity Interface Problems with Non-Homogeneous Jump Conditions 被引量:3
8
作者 Yan Gong Zhilin Li 《Numerical Mathematics(Theory,Methods and Applications)》 SCIE 2010年第1期23-39,共17页
In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body... In this paper,a class of new immersed interface finite element methods (IIFEM) is developed to solve elasticity interface problems with homogeneous and non-homogeneous jump conditions in two dimensions.Simple non-body-fitted meshes are used.For homogeneous jump conditions,both non-conforming and conforming basis functions are constructed in such a way that they satisfy the natural jump conditions. For non-homogeneous jump conditions,a pair of functions that satisfy the same non-homogeneous jump conditions are constructed using a level-set representation of the interface.With such a pair of functions,the discontinuities across the interface in the solution and flux are removed;and an equivalent elasticity interface problem with homogeneous jump conditions is formulated.Numerical examples are presented to demonstrate that such methods have second order convergence. 展开更多
关键词 Immersed interface finite element methods elasticity interface problems singularity removal homogeneous and non-homogeneous jump conditions level-set function.
下载PDF
Accuracy analysis of immersed boundary method using method of manufactured solutions 被引量:1
9
作者 宫兆新 鲁传敬 黄华雄 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2010年第10期1197-1208,共12页
The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics.This paper analyzes the accuracy of the immersed boundary method.T... The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics.This paper analyzes the accuracy of the immersed boundary method.The procedure contains two parts,i.e.,the code verification and the accuracy analysis.The code verification provides the confidence that the code used is free of mistakes,and the accuracy analysis gives the order of accuracy of the immersed boundary method.The method of manufactured solutions is taken as a means for both parts.In the first part,the numerical code employs a second-order discretization scheme,i.e.,it has second-order accuracy in theory.It matches the calculated order of accuracy obtained in the numerical calculation for all variables.This means that the code contains no mistake,which is a premise of the subsequent work.The second part introduces a jump in the manufactured solution for the pressure and adds the corresponding singular forcing terms in the momentum equations.By analyzing the discretization errors,the accuracy of the immersed boundary method is proven to be first order even though the discretization scheme is second order.It has been found that the coarser mesh may not be sensitive enough to capture the influence of the immersed boundary,and the refinement on the Lagrangian markers barely has any effect on the numerical calculation. 展开更多
关键词 manufactured solution immersed boundary method order of accuracy code verification discretization error
下载PDF
New Immersed Boundary Method on the Adaptive Cartesian Grid Applied to the Local Discontinuous Galerkin Method 被引量:1
10
作者 Xu-Jiu Zhang Yong-Sheng Zhu +1 位作者 Ke Yan You-Yun Zhang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2018年第2期176-185,共10页
Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and ... Currently, many studies on the local discontinuous Galerkin method focus on the Cartesian grid with low computational e ciency and poor adaptability to complex shapes. A new immersed boundary method is presented, and this method employs the adaptive Cartesian grid to improve the adaptability to complex shapes and the immersed boundary to increase computational e ciency. The new immersed boundary method employs different boundary cells(the physical cell and ghost cell) to impose the boundary condition and the reconstruction algorithm of the ghost cell is the key for this method. The classical model elliptic equation is used to test the method. This method is tested and analyzed from the viewpoints of boundary cell type, error distribution and accuracy. The numerical result shows that the presented method has low error and a good rate of the convergence and works well in complex geometries. The method has good prospect for practical application research of the numerical calculation research. 展开更多
关键词 Immersed boundary method Adaptive Cartesian grid Local discontinuous Galerkin method RECONSTRUCTION Heat transfer equation
下载PDF
Combined immersed boundary method and multiple-relaxation-time lattice Boltzmann flux solver for numerical simulations of incompressible flows 被引量:1
11
作者 Xiaodi WU Fu CHEN Huaping LIU 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2017年第12期1679-1696,共18页
A method combining the immersed boundary technique and a multi- relaxation-time (MRT) lattice Boltzmann flux solver (LBFS) is presented for numerical simulation of incompressible flows over circular and elliptic c... A method combining the immersed boundary technique and a multi- relaxation-time (MRT) lattice Boltzmann flux solver (LBFS) is presented for numerical simulation of incompressible flows over circular and elliptic cylinders and NACA 0012 Airfoil. The method uses a simple Cartesian mesh to simulate flows past immersed complicated bodies. With the Chapman-Enskog expansion analysis, a transform is performed between the Navier-Stokes and lattice Boltzmann equations (LBEs). The LBFS is used to discretize the macroscopic differential equations with a finite volume method and evaluate the interface fluxes through local reconstruction of the lattice Boltzmann solution. The immersed boundary technique is used to correct the intermediate velocity around the solid boundary to satisfy the no-slip boundary condition. Agreement of simulation results with the data found in the literature shows reliability of the proposed method in simulating laminar flows on a Cartesian mesh. 展开更多
关键词 immersed boundary method lattice Boltzmann equation (LBE) multiple relaxation time incompressible flow
下载PDF
On the capability of the curvilinear immersed boundary method in predicting near-wall turbulence of turbulent channel flows 被引量:1
12
作者 Fei Liao Xiaolei Yang 《Theoretical & Applied Mechanics Letters》 CSCD 2021年第4期213-218,共6页
The immersed boundary method has been widely used for simulating flows over complex geometries.However,its accuracy in predicting the statistics of near-wall turbulence has not been fully tested.In this work,we evalua... The immersed boundary method has been widely used for simulating flows over complex geometries.However,its accuracy in predicting the statistics of near-wall turbulence has not been fully tested.In this work,we evaluate the capability of the curvilinear immersed boundary(CURVIB)method in predicting near-wall velocity and pressure fluctuations in turbulent channel flows.Simulation results show that quantities including the time-averaged streamwise velocity,the rms(root-mean-square)of velocity fluctuations,the rms of vorticity fluctuations,the shear stresses,and the correlation coefficients of u'and v"computed from the CURVIB simulations are in good agreement with those from the body-fitted simulations.More importantly,it is found that the time-averaged pressure,the rms and wavenumber-frequency spectra of pressure fluctuations computed using the CURVIB method agree well with the body-fitted results. 展开更多
关键词 Immersed boundary method Turbulent channel flow Wavenumber-frequency spectra Near-wall turbulence
下载PDF
An Immersed Method Based on Cut-Cells for the Simulation of 2D Incompressible Fluid Flows Past Solid Structures 被引量:1
13
作者 Francois Bouchon Thierry Dubois Nicolas James 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第4期165-184,共20页
We present a cut-cell method for the simulation of 2D incompressible flows past obstacles.It consists in using the MAC scheme on cartesian grids and imposing Dirchlet boundary conditions for the velocity field on the ... We present a cut-cell method for the simulation of 2D incompressible flows past obstacles.It consists in using the MAC scheme on cartesian grids and imposing Dirchlet boundary conditions for the velocity field on the boundary of solid structures following the Shortley-Weller formulation.In order to ensure local conservation properties,viscous and convecting terms are discretized in a finite volume way.The scheme is second order implicit in time for the linear part,the linear systems are solved by the use of the capacitance matrix method for non-moving obstacles.Numerical results of flows around an impulsively started circular cylinder are presented which confirm the efficiency of the method,for Reynolds numbers 1000 and 3000.An example of flows around a moving rigid body at Reynolds number 800 is also shown,a solver using the PETSc-Library has been prefered in this context to solve the linear systems. 展开更多
关键词 Immersed boundary methods cutt-cell methods incompressible viscous flows
下载PDF
Numerical Simulation of Tsunami-Like Wave Impacting on Breakwater by CLSVOF/IB Method
14
作者 AN Rui-dong JIANG Da-peng +1 位作者 YU Ching-hao LI Yu-long 《China Ocean Engineering》 SCIE EI CSCD 2021年第5期676-686,共11页
In the current study,the treatment of air/water interface has been made on dam-break induced tsunami-like wave by the Coupled Level Set and Volume of Fluid(CLSVOF)three-dimensional modelling.The overall CLSVOF method ... In the current study,the treatment of air/water interface has been made on dam-break induced tsunami-like wave by the Coupled Level Set and Volume of Fluid(CLSVOF)three-dimensional modelling.The overall CLSVOF method adopts a Tangent of Hy-perbola for INterface Capturing(THINC)scheme with the Weighted Linear Interface Calculation(WLIC)and Level Set(LS)function for capturing interface and calculating normal vector,respectively.As far as THINC/WLIC scheme is concerned,since the convection problem of the VOF function can be solved well,the numerical diffusion can be avoided.The spatial terms in the LS equation were discretized by the Optimized Compact Reconstruction Weighted Essentially Non-Oscillatory(OCRWENO)scheme with fourth-order accuracy,which can avoid false oscillation of LS solution.By combining CLSVOF method with Immersed Boundary(IB)method,the simulation of dam-break induced tsunami-like wave impacting on a stationary breakwater can be carried out.Grid sensitivity,mass error and free-surface profile are first calculated for the tsunami-like wave problem to validate the proposed numerical algorithm,which shows excellent agreement between the numerical results and experimental data.Tsunami-like waves with varied tailgater levels are then investigated.Calculations of velocity magnitude,free-surface profile and wave elevation of the tsunami-like wave are conducted to investigate its dynamics and kinematics. 展开更多
关键词 DAM-BREAK tsunami-like bore CLSVOF method immersed boundary method BREAKWATER
下载PDF
A Hybrid Immersed Boundary/Coarse-Graining Method for Modeling Inextensible Semi-Flexible Filaments in Thermally Fluctuating Fluids Dedicated to Professor Karl Stark Pister for his 95th birthday
15
作者 Magdalini Ntetsika Panayiotis Papadopoulos 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第12期1243-1258,共16页
A new and computationally efficient version of the immersed boundary method,which is combined with the coarse-graining method,is introduced for modeling inextensible filaments immersed in low-Reynolds number flows.Thi... A new and computationally efficient version of the immersed boundary method,which is combined with the coarse-graining method,is introduced for modeling inextensible filaments immersed in low-Reynolds number flows.This is used to represent actin biopolymers,which are constituent elements of the cytoskeleton,a complex network-like structure that plays a fundamental role in shape morphology.An extension of the traditional immersed boundary method to include a stochastic stress tensor is also proposed in order to model the thermal fluctuations in the fluid at smaller scales.By way of validation,the response of a single,massless,inextensible semiflexible filament immersed in a thermally fluctuating fluid is obtained using the suggested numerical scheme and the resulting time-averaged contraction of the filament is compared to the theoretical value obtained from the worm-like chain model. 展开更多
关键词 Semiflexible biopolymers immersed boundary method COARSE-GRAINING actin filaments fluid-structure interaction thermal fluctuations persistence length
下载PDF
An extended iterative direct-forcing immersed boundary method in thermo-fluid problems with Dirichlet or Neumann boundary conditions
16
作者 Ali Akbar Hosseinjani Ali Ashrafizadeh 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第1期137-154,共18页
An iterative direct-forcing immersed boundary method is extended and used to solve convection heat transfer problems.The pressure,momentum source,and heat source at immersed boundary points are calculated simultaneous... An iterative direct-forcing immersed boundary method is extended and used to solve convection heat transfer problems.The pressure,momentum source,and heat source at immersed boundary points are calculated simultaneously to achieve the best coupling.Solutions of convection heat transfer problems with both Dirichlet and Neumann boundary conditions are presented.Two approaches for the implementation of Neumann boundary condition,i.e.direct and indirect methods,are introduced and compared in terms of accuracy and computational efficiency.Validation test cases include forced convection on a heated cylinder in an unbounded flow field and mixed convection around a circular body in a lid-driven cavity.Furthermore,the proposed method is applied to study the mixed convection around a heated rotating cylinder in a square enclosure with both iso-heat flux and iso-thermal boundary conditions.Computational results show that the order of accuracy of the indirect method is less than the direct method.However,the indirect method takes less computational time both in terms of the implementation of the boundary condition and the post processing time required to compute the heat transfer variables such as the Nusselt number.It is concluded that the iterative direct-forcing immersed boundary method is a powerful technique for the solution of convection heat transfer problems with stationary/moving boundaries and various boundary conditions. 展开更多
关键词 immersed boundary method direct forcing thermo-fluid problems neumann boundary condition
下载PDF
A three dimensional implicit immersed boundary method with application
17
作者 Jian Hao1,2 and Luoding Zhu1, 1)Department of Mathematical Sciences and Center for Mathematical Biosciences Indiana University - Purdue University, Indianapolis, IN 46202, USA 2)Department of Mathematics and Center for Research in Scientific Computation, North Carolina State University, Raleigh, NC 27695, USA 《Theoretical & Applied Mechanics Letters》 CAS 2011年第6期22-25,共4页
Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit ap... Most algorithms of the immersed boundary method originated by Peskin are explicit when it comes to the computation of the elastic forces exerted by the immersed boundary to the fluid. A drawback of such an explicit approach is a severe restriction on the time step size for maintaining numerical stability. An implicit immersed boundary method in two dimensions using the lattice Boltzmann approach has been proposed. This paper reports an extension of the method to three dimensions and its application to simulation of a massive flexible sheet interacting with an incompressible viscous flow. 展开更多
关键词 immersed boundary method lattice-Boltzmann method implicit schemes fluid-structure-interaction bi-stability flag-in-wind
下载PDF
Effect of regularized delta function on accuracy of immersed boundary method
18
作者 宫兆新 鲁传敬 黄华雄 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2012年第11期1453-1466,共14页
The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics. The effect of the regularized delta function on the accuracy is a... The immersed boundary method is an effective technique for modeling and simulating fluid-structure interactions especially in the area of biomechanics. The effect of the regularized delta function on the accuracy is an important subject in the property study. A method of manufactured solutions is used in the research. The computational code is first verified to be mistake-free by using smooth manufactured solutions. Then, a jump in the manufactured solution for pressure is introduced to study the accuracy of the immersed boundary method. Four kinds of regularized delta functions are used to test the effect on the accuracy analysis. By analyzing the discretization errors, the accuracy of the immersed boundary method is proved to be first-order. The results show that the regularized delta function cannot improve the accuracy, but it can change the discretization errors in the entire computational domain. 展开更多
关键词 immersed boundary method method of manufactured solutions regularizeddelta function order of accuracy
下载PDF
A three-dimensional immersed boundary method for non-Newtonian fluids
19
作者 Luoding Zhu 《Theoretical & Applied Mechanics Letters》 CAS CSCD 2018年第3期193-196,共4页
Fluid-structure-interaction (FSI) phenomenon is common in science and engineering. The fluidinvolved in an FSI problem may be non-Newtonian such as blood. A popular framework for FSIproblems is Peskin’s imm... Fluid-structure-interaction (FSI) phenomenon is common in science and engineering. The fluidinvolved in an FSI problem may be non-Newtonian such as blood. A popular framework for FSIproblems is Peskin’s immersed boundary (IB) method. However, most of the IB formulations arebased on Newtonian fluids. In this letter, we report an extension of the IB framework to FSIinvolving Oldroyd-B and FENE-P fluids in three dimensions using the lattice Boltzmann approach.The new method is tested on two FSI model problems. Numerical experiments show that themethod is conditionally stable and convergent with the first order of accuracy. 展开更多
关键词 Immersed boundary method Lattice Boltzmann method Fluid-structure-interaction Non-Newtonian fluid Oldroyd-BFENE-P
下载PDF
Modeling and Simulation of Valve Cycle in Vein Using an Immersed Finite Element Method
20
作者 Xiang Liu Liangbo Sun +2 位作者 Mingzhen Wang Bin Li Lisheng Liu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第4期153-183,共31页
A vein model was established to simulate the periodic characteristics of blood flow and valve deformation in blood-induced valve cycles.Using an immersed finite element method which was modified by a ghost fluid techn... A vein model was established to simulate the periodic characteristics of blood flow and valve deformation in blood-induced valve cycles.Using an immersed finite element method which was modified by a ghost fluid technique,the interaction between the vein and blood was simulated.With an independent solid solver,the contact force between vein tissues was calculated using an adhesive contact method.A benchmark simulation of the normal valve cycle validated the proposed model for a healthy vein.Both the opening orifice and blood flow rate agreed with those in the physiology.Low blood shear stress and maximum leaflet stress were also seen in the base region of the valve.On the basis of the healthy model,a diseased vein model was subsequently built to explore the sinus lesions,namely,fibrosis and atrophy which are assumed stiffening and softening of the sinus.Our results showed the opening orifice of the diseased vein was inversely proportional to the corresponding modulus of the sinus.A drop in the transvalvular pressure gradient resulted from the sinus lesion.Compared to the fibrosis,the atrophy of the sinus apparently improved the vein deformability but simultaneously accelerated the deterioration of venous disease and increased the risk of potential fracture.These results provide understandings of the normal/abnormal valve cycle in vein,and can be also helpful for the prosthesis design. 展开更多
关键词 Numerical simulation fluid-structure interaction immersed finite element method adhesive contact method bio-mechanics venous valve.
下载PDF
上一页 1 2 9 下一页 到第
使用帮助 返回顶部