期刊文献+
共找到45篇文章
< 1 2 3 >
每页显示 20 50 100
Incremental learning of the triangular membership functions based on single-pass FCM and CHC genetic model 被引量:1
1
作者 霍纬纲 Qu Feng Zhang Yuxiang 《High Technology Letters》 EI CAS 2017年第1期7-15,共9页
In order to improve the efficiency of learning the triangular membership functions( TMFs) for mining fuzzy association rule( FAR) in dynamic database,a single-pass fuzzy c means( SPFCM)algorithm is combined with the r... In order to improve the efficiency of learning the triangular membership functions( TMFs) for mining fuzzy association rule( FAR) in dynamic database,a single-pass fuzzy c means( SPFCM)algorithm is combined with the real-coded CHC genetic model to incrementally learn the TMFs. The cluster centers resulting from SPFCM are regarded as the midpoint of TMFs. The population of CHC is generated randomly according to the cluster center and constraint conditions among TMFs. Then a new population for incremental learning is composed of the excellent chromosomes stored in the first genetic process and the chromosomes generated based on the cluster center adjusted by SPFCM. The experiments on real datasets show that the number of generations converging to the solution of the proposed approach is less than that of the existing batch learning approach. The quality of TMFs generated by the approach is comparable to that of the batch learning approach. Compared with the existing incremental learning strategy,the proposed approach is superior in terms of the quality of TMFs and time cost. 展开更多
关键词 incremental learning triangular membership function TMFs) fuzzy associationrule (FAR) real-coded CHC
下载PDF
Relative attribute based incremental learning for image recognition 被引量:3
2
作者 Emrah Ergul 《CAAI Transactions on Intelligence Technology》 2017年第1期1-11,共11页
In this study, we propose an incremental learning approach based on a machine-machine interaction via relative attribute feedbacks that exploit comparative relationships among top level image categories. One machine a... In this study, we propose an incremental learning approach based on a machine-machine interaction via relative attribute feedbacks that exploit comparative relationships among top level image categories. One machine acts as 'Student (S)' with initially limited information and it endeavors to capture the task domain gradually by questioning its mentor on a pool of unlabeled data. The other machine is 'Teacher (T)' with the implicit knowledge for helping S on learning the class models. T initiates relative attributes as a communication channel by randomly sorting the classes on attribute space in an unsupervised manner. S starts modeling the categories in this intermediate level by using only a limited number of labeled data. Thereafter, it first selects an entropy-based sample from the pool of unlabeled data and triggers the conversation by propagating the selected image with its belief class in a query. Since T already knows the ground truth labels, it not only decides whether the belief is true or false, but it also provides an attribute-based feedback to S in each case without revealing the true label of the query sample if the belief is false. So the number of training data is increased virtually by dropping the falsely predicted sample back into the unlabeled pool. Next, S updates the attribute space which, in fact, has an impact on T's future responses, and then the category models are updated concurrently for the next run. We experience the weakly supervised algorithm on the real world datasets of faces and natural scenes in comparison with direct attribute prediction and semi-supervised learning approaches, and a noteworthy performance increase is achieved. 展开更多
关键词 Image classification incremental learning Relative attribute Visual recognition
下载PDF
Filter Bank Networks for Few-Shot Class-Incremental Learning
3
作者 Yanzhao Zhou Binghao Liu +1 位作者 Yiran Liu Jianbin Jiao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第10期647-668,共22页
Deep Convolution Neural Networks(DCNNs)can capture discriminative features from large datasets.However,how to incrementally learn new samples without forgetting old ones and recognize novel classes that arise in the d... Deep Convolution Neural Networks(DCNNs)can capture discriminative features from large datasets.However,how to incrementally learn new samples without forgetting old ones and recognize novel classes that arise in the dynamically changing world,e.g.,classifying newly discovered fish species,remains an open problem.We address an even more challenging and realistic setting of this problem where new class samples are insufficient,i.e.,Few-Shot Class-Incremental Learning(FSCIL).Current FSCIL methods augment the training data to alleviate the overfitting of novel classes.By contrast,we propose Filter Bank Networks(FBNs)that augment the learnable filters to capture fine-detailed features for adapting to future new classes.In the forward pass,FBNs augment each convolutional filter to a virtual filter bank containing the canonical one,i.e.,itself,and multiple transformed versions.During back-propagation,FBNs explicitly stimulate fine-detailed features to emerge and collectively align all gradients of each filter bank to learn the canonical one.FBNs capture pattern variants that do not yet exist in the pretraining session,thus making it easy to incorporate new classes in the incremental learning phase.Moreover,FBNs introduce model-level prior knowledge to efficiently utilize the limited few-shot data.Extensive experiments on MNIST,CIFAR100,CUB200,andMini-ImageNet datasets show that FBNs consistently outperformthe baseline by a significantmargin,reporting new state-of-the-art FSCIL results.In addition,we contribute a challenging FSCIL benchmark,Fishshot1K,which contains 8261 underwater images covering 1000 ocean fish species.The code is included in the supplementary materials. 展开更多
关键词 Deep learning incremental learning few-shot learning Filter Bank Networks
下载PDF
Incremental Learning Model for Load Forecasting without Training Sample
4
作者 Charnon Chupong Boonyang Plangklang 《Computers, Materials & Continua》 SCIE EI 2022年第9期5415-5427,共13页
This article presents hourly load forecasting by using an incremental learning model called Online Sequential Extreme Learning Machine(OSELM),which can learn and adapt automatically according to new arrival input.Howe... This article presents hourly load forecasting by using an incremental learning model called Online Sequential Extreme Learning Machine(OSELM),which can learn and adapt automatically according to new arrival input.However,the use of OS-ELM requires a sufficient amount of initial training sample data,which makes OS-ELM inoperable if sufficiently accurate sample data cannot be obtained.To solve this problem,a synthesis of the initial training sample is proposed.The synthesis of the initial sample is achieved by taking the first data received at the start of working and adding random noises to that data to create new and sufficient samples.Then the synthesis samples are used to initial train the OS-ELM.This proposed method is compared with Fully Online Extreme Learning Machine(FOS-ELM),which is an incremental learning model that also does not require the initial training samples.Both the proposed method and FOS-ELM are used for hourly load forecasting from the Hourly Energy Consumption dataset.Experiments have shown that the proposed method with a wide range of noise levels,can forecast hourly load more accurately than the FOS-ELM. 展开更多
关键词 incremental learning load forecasting Synthesis data OS-ELM
下载PDF
Incremental Learning Framework for Mining Big Data Stream
5
作者 Alaa Eisa Nora E.L-Rashidy +2 位作者 Mohammad Dahman Alshehri Hazem M.El-bakry Samir Abdelrazek 《Computers, Materials & Continua》 SCIE EI 2022年第5期2901-2921,共21页
At this current time,data stream classification plays a key role in big data analytics due to its enormous growth.Most of the existing classification methods used ensemble learning,which is trustworthy but these metho... At this current time,data stream classification plays a key role in big data analytics due to its enormous growth.Most of the existing classification methods used ensemble learning,which is trustworthy but these methods are not effective to face the issues of learning from imbalanced big data,it also supposes that all data are pre-classified.Another weakness of current methods is that it takes a long evaluation time when the target data stream contains a high number of features.The main objective of this research is to develop a new method for incremental learning based on the proposed ant lion fuzzy-generative adversarial network model.The proposed model is implemented in spark architecture.For each data stream,the class output is computed at slave nodes by training a generative adversarial network with the back propagation error based on fuzzy bound computation.This method overcomes the limitations of existing methods as it can classify data streams that are slightly or completely unlabeled data and providing high scalability and efficiency.The results show that the proposed model outperforms stateof-the-art performance in terms of accuracy(0.861)precision(0.9328)and minimal MSE(0.0416). 展开更多
关键词 Ant lion optimization(ALO) big data stream generative adversarial network(GAN) incremental learning renyi entropy
下载PDF
ILIDViz:An incremental learning-based visual analysis system for network anomaly detection
6
作者 Xuefei TIAN Zhiyuan WU +2 位作者 Junxiang CAO Shengtao CHEN Xiaoju DONG 《Virtual Reality & Intelligent Hardware》 EI 2023年第6期471-489,共19页
Background With the development of information technology,there is a significant increase in the number of network traffic logs mixed with various types of cyberattacks.Traditional intrusion detection systems(IDSs)are... Background With the development of information technology,there is a significant increase in the number of network traffic logs mixed with various types of cyberattacks.Traditional intrusion detection systems(IDSs)are limited in detecting new inconstant patterns and identifying malicious traffic traces in real time.Therefore,there is an urgent need to implement more effective intrusion detection technologies to protect computer security.Methods In this study,we designed a hybrid IDS by combining our incremental learning model(KANSOINN)and active learning to learn new log patterns and detect various network anomalies in real time.Conclusions Experimental results on the NSLKDD dataset showed that KAN-SOINN can be continuously improved and effectively detect malicious logs.Meanwhile,comparative experiments proved that using a hybrid query strategy in active learning can improve the model learning efficiency. 展开更多
关键词 Intrusion detection Machine learning incremental learning Active learning Visual analysis
下载PDF
Intrusion Detection Method Based on Active Incremental Learning in Industrial Internet of Things Environment
7
作者 Zeyong Sun Guo Ran Zilong Jin 《Journal on Internet of Things》 2022年第2期99-111,共13页
Intrusion detection is a hot field in the direction of network security.Classical intrusion detection systems are usually based on supervised machine learning models.These offline-trained models usually have better pe... Intrusion detection is a hot field in the direction of network security.Classical intrusion detection systems are usually based on supervised machine learning models.These offline-trained models usually have better performance in the initial stages of system construction.However,due to the diversity and rapid development of intrusion techniques,the trained models are often difficult to detect new attacks.In addition,very little noisy data in the training process often has a considerable impact on the performance of the intrusion detection system.This paper proposes an intrusion detection system based on active incremental learning with the adaptive capability to solve these problems.IDS consists of two modules,namely the improved incremental stacking ensemble learning detection method called Multi-Stacking model and the active learning query module.The stacking model can cope well with concept drift due to the diversity and generalization selection of its base classifiers,but the accuracy does not meet the requirements.The Multi-Stacking model improves the accuracy of the model by adding a voting layer on the basis of the original stacking.The active learning query module improves the detection of known attacks through the committee algorithm,and the improved KNN algorithm can better help detect unknown attacks.We have tested the latest industrial IoT dataset with satisfactory results. 展开更多
关键词 Intrusion detection IDS active incremental learning stacking ensemble learning unknown attacks
下载PDF
Incremental Learning Based on Data Translation and Knowledge Distillation
8
作者 Tan Cheng Jielong Wang 《International Journal of Intelligence Science》 2023年第2期33-47,共15页
Recently, deep convolutional neural networks (DCNNs) have achieved remarkable results in image classification tasks. Despite convolutional networks’ great successes, their training process relies on a large amount of... Recently, deep convolutional neural networks (DCNNs) have achieved remarkable results in image classification tasks. Despite convolutional networks’ great successes, their training process relies on a large amount of data prepared in advance, which is often challenging in real-world applications, such as streaming data and concept drift. For this reason, incremental learning (continual learning) has attracted increasing attention from scholars. However, incremental learning is associated with the challenge of catastrophic forgetting: the performance on previous tasks drastically degrades after learning a new task. In this paper, we propose a new strategy to alleviate catastrophic forgetting when neural networks are trained in continual domains. Specifically, two components are applied: data translation based on transfer learning and knowledge distillation. The former translates a portion of new data to reconstruct the partial data distribution of the old domain. The latter uses an old model as a teacher to guide a new model. The experimental results on three datasets have shown that our work can effectively alleviate catastrophic forgetting by a combination of the two methods aforementioned. 展开更多
关键词 incremental Domain learning Data Translation Knowledge Distillation Cat-astrophic Forgetting
下载PDF
Selective and Adaptive Incremental Transfer Learning with Multiple Datasets for Machine Fault Diagnosis
9
作者 Kwok Tai Chui Brij B.Gupta +1 位作者 Varsha Arya Miguel Torres-Ruiz 《Computers, Materials & Continua》 SCIE EI 2024年第1期1363-1379,共17页
The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation fo... The visions of Industry 4.0 and 5.0 have reinforced the industrial environment.They have also made artificial intelligence incorporated as a major facilitator.Diagnosing machine faults has become a solid foundation for automatically recognizing machine failure,and thus timely maintenance can ensure safe operations.Transfer learning is a promising solution that can enhance the machine fault diagnosis model by borrowing pre-trained knowledge from the source model and applying it to the target model,which typically involves two datasets.In response to the availability of multiple datasets,this paper proposes using selective and adaptive incremental transfer learning(SA-ITL),which fuses three algorithms,namely,the hybrid selective algorithm,the transferability enhancement algorithm,and the incremental transfer learning algorithm.It is a selective algorithm that enables selecting and ordering appropriate datasets for transfer learning and selecting useful knowledge to avoid negative transfer.The algorithm also adaptively adjusts the portion of training data to balance the learning rate and training time.The proposed algorithm is evaluated and analyzed using ten benchmark datasets.Compared with other algorithms from existing works,SA-ITL improves the accuracy of all datasets.Ablation studies present the accuracy enhancements of the SA-ITL,including the hybrid selective algorithm(1.22%-3.82%),transferability enhancement algorithm(1.91%-4.15%),and incremental transfer learning algorithm(0.605%-2.68%).These also show the benefits of enhancing the target model with heterogeneous image datasets that widen the range of domain selection between source and target domains. 展开更多
关键词 Deep learning incremental learning machine fault diagnosis negative transfer transfer learning
下载PDF
Adaptive Spectral Clustering Ensemble Selection via Resampling and Population-Based Incremental Learning Algorithm 被引量:5
10
作者 XU Yuanchun JIA Jianhua 《Wuhan University Journal of Natural Sciences》 CAS 2011年第3期228-236,共9页
In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral ... In this paper, we explore a novel ensemble method for spectral clustering. In contrast to the traditional clustering ensemble methods that combine all the obtained clustering results, we propose the adaptive spectral clustering ensemble method to achieve a better clustering solution. This method can adaptively assess the number of the component members, which is not owned by many other algorithms. The component clusterings of the ensemble system are generated by spectral clustering (SC) which bears some good characteristics to engender the diverse committees. The selection process works by evaluating the generated component spectral clustering through resampling technique and population-based incremental learning algorithm (PBIL). Experimental results on UCI datasets demonstrate that the proposed algorithm can achieve better results compared with traditional clustering ensemble methods, especially when the number of component clusterings is large. 展开更多
关键词 spectral clustering clustering ensemble selective ensemble RESAMPLING population-based incremental learning algorithm (PBIL) data clustering
原文传递
Incremental support vector machine algorithm based on multi-kernel learning 被引量:7
11
作者 Zhiyu Li Junfeng Zhang Shousong Hu 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2011年第4期702-706,共5页
A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set l... A new incremental support vector machine (SVM) algorithm is proposed which is based on multiple kernel learning. Through introducing multiple kernel learning into the SVM incremental learning, large scale data set learning problem can be solved effectively. Furthermore, different punishments are adopted in allusion to the training subset and the acquired support vectors, which may help to improve the performance of SVM. Simulation results indicate that the proposed algorithm can not only solve the model selection problem in SVM incremental learning, but also improve the classification or prediction precision. 展开更多
关键词 support vector machine (SVM) incremental learning multiple kernel learning (MKL).
下载PDF
APPLICATION OF ROUGH SET THEORY TO MAINTENANCE LEVEL DECISION-MAKING FOR AERO-ENGINE MODULES BASED ON INCREMENTAL KNOWLEDGE LEARNING 被引量:3
12
作者 陆晓华 左洪福 蔡景 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第4期366-373,共8页
The maintenance of an aero-engine usually includes three levels,and the maintenance cost and period greatly differ depending on the different maintenance levels.To plan a reasonable maintenance budget program, airline... The maintenance of an aero-engine usually includes three levels,and the maintenance cost and period greatly differ depending on the different maintenance levels.To plan a reasonable maintenance budget program, airlines would like to predict the maintenance level of aero-engine before repairing in terms of performance parameters,which can provide more economic benefits.The maintenance level decision rules are mined using the historical maintenance data of a civil aero-engine based on the rough set theory,and a variety of possible models of updating rules produced by newly increased maintenance cases added to the historical maintenance case database are investigated by the means of incremental machine learning.The continuously updated rules can provide reasonable guidance suggestions for engineers and decision support for planning a maintenance budget program before repairing. The results of an example show that the decision rules become more typical and robust,and they are more accurate to predict the maintenance level of an aero-engine module as the maintenance data increase,which illustrates the feasibility of the represented method. 展开更多
关键词 civil aero-engine maintenance level decision-making rough set incremental learning
下载PDF
Incremental semi-supervised learning for intelligent seismic facies identification 被引量:2
13
作者 He Su-Mei Song Zhao-Hui +2 位作者 Zhang Meng-Ke Yuan San-Yi Wang Shang-Xu 《Applied Geophysics》 SCIE CSCD 2022年第1期41-52,144,共13页
Intelligent seismic facies identification based on deep learning can alleviate the time-consuming and labor-intensive problem of manual interpretation,which has been widely applied.Supervised learning can realize faci... Intelligent seismic facies identification based on deep learning can alleviate the time-consuming and labor-intensive problem of manual interpretation,which has been widely applied.Supervised learning can realize facies identification with high efficiency and accuracy;however,it depends on the usage of a large amount of well-labeled data.To solve this issue,we propose herein an incremental semi-supervised method for intelligent facies identification.Our method considers the continuity of the lateral variation of strata and uses cosine similarity to quantify the similarity of the seismic data feature domain.The maximum-diff erence sample in the neighborhood of the currently used training data is then found to reasonably expand the training sets.This process continuously increases the amount of training data and learns its distribution.We integrate old knowledge while absorbing new ones to realize incremental semi-supervised learning and achieve the purpose of evolving the network models.In this work,accuracy and confusion matrix are employed to jointly control the predicted results of the model from both overall and partial aspects.The obtained values are then applied to a three-dimensional(3D)real dataset and used to quantitatively evaluate the results.Using unlabeled data,our proposed method acquires more accurate and stable testing results compared to conventional supervised learning algorithms that only use well-labeled data.A considerable improvement for small-sample categories is also observed.Using less than 1%of the training data,the proposed method can achieve an average accuracy of over 95%on the 3D dataset.In contrast,the conventional supervised learning algorithm achieved only approximately 85%. 展开更多
关键词 seismic facies identification semi-supervised learning incremental learning cosine similarity
下载PDF
An artificial immune and incremental learning inspired novel framework for performance pattern identification of complex electromechanical systems 被引量:1
14
作者 WANG RongXi GAO Xu +3 位作者 GAO JianMin GAO ZhiYong CHEN Kun PENG CaiYuan 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第1期1-13,共13页
Performance pattern identification is the key basis for fault detection and condition prediction,which plays a major role in ensuring safety and reliability in complex electromechanical systems(CESs).However,there are... Performance pattern identification is the key basis for fault detection and condition prediction,which plays a major role in ensuring safety and reliability in complex electromechanical systems(CESs).However,there are a few problems related to the automatic and adaptive updating of an identification model.Aiming to solve the problem of identification model updating,a novel framework for performance pattern identification of the CESs based on the artificial immune systems and incremental learning is proposed in this paper to classify real-time monitoring data into different performance patterns.First,an unsupervised clustering technique is used to construct an initial identification model.Second,the artificial immune and outlier detection algorithms are applied to identify abnormal data and determine the type of immune response.Third,incremental learning is employed to trace the dynamic changes of patterns,and operations such as pattern insertion,pattern removal,and pattern revision are designed to realize automatic and adaptive updates of an identification model.The effectiveness of the proposed framework is demonstrated through experiments with the benchmark and actual pattern identification applications.As an unsupervised and self-adapting approach,the proposed framework inherits the preponderances of the conventional methods but overcomes some of their drawbacks because the retraining process is not required in perceiving the pattern changes.Therefore,this method can be flexibly and efficiently used for performance pattern identification of the CESs.Moreover,the proposed method provides a foundation for fault detection and condition prediction,and can be used in other engineering applications. 展开更多
关键词 performance pattern identification complex electromechanical systems artificial immune incremental learning data classification
原文传递
OKO-SVM:Online kernel optimization-based support vector machine for the incremental learning and classification of the sentiments in the train reviews
15
作者 Rashmi K.Thakur Manojkumar V.Deshpande 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2018年第6期100-126,共27页
Online incremental learning is one of the emerging research interests among the researchers in the recent years.The sentiment classification through the online incremental learning faces many challenges due to the lim... Online incremental learning is one of the emerging research interests among the researchers in the recent years.The sentiment classification through the online incremental learning faces many challenges due to the limitations in the memory and the computing resources available for processing the online reviews.This work has introduced an online incremental learning algorithm for classifying the train reviews.The sentiments available in the reviews provided for the public services are necessary for improving the quality of the service.This work proposes the online kernel optimizationbased support vector machine(OKO-SVM)classifier for the sentiment classification of the train reviews.This paper is the extension of the previous work kernel optimizationbased support vector machine(KO-SVM).The OKO-SVM classifier uses the proposed fuzzy bound for modifying the weight for each incoming review database for the particular time duration.The simulation uses the standard train review and the movie review database for the classification.From the simulation results,it is evident that the proposed model has achieved a better performance with the values of 84.42%,93.86%,and 74.56%regarding the accuracy,sensitivity,and specificity while classifying the train review database. 展开更多
关键词 Online incremental learning train reviews sentiment classification kernel optimization train review database.
原文传递
Ethical Decision-Making Framework Based on Incremental ILP Considering Conflicts
16
作者 Xuemin Wang Qiaochen Li Xuguang Bao 《Computers, Materials & Continua》 SCIE EI 2024年第3期3619-3643,共25页
Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values... Humans are experiencing the inclusion of artificial agents in their lives,such as unmanned vehicles,service robots,voice assistants,and intelligent medical care.If the artificial agents cannot align with social values or make ethical decisions,they may not meet the expectations of humans.Traditionally,an ethical decision-making framework is constructed by rule-based or statistical approaches.In this paper,we propose an ethical decision-making framework based on incremental ILP(Inductive Logic Programming),which can overcome the brittleness of rule-based approaches and little interpretability of statistical approaches.As the current incremental ILP makes it difficult to solve conflicts,we propose a novel ethical decision-making framework considering conflicts in this paper,which adopts our proposed incremental ILP system.The framework consists of two processes:the learning process and the deduction process.The first process records bottom clauses with their score functions and learns rules guided by the entailment and the score function.The second process obtains an ethical decision based on the rules.In an ethical scenario about chatbots for teenagers’mental health,we verify that our framework can learn ethical rules and make ethical decisions.Besides,we extract incremental ILP from the framework and compare it with the state-of-the-art ILP systems based on ASP(Answer Set Programming)focusing on conflict resolution.The results of comparisons show that our proposed system can generate better-quality rules than most other systems. 展开更多
关键词 Ethical decision-making inductive logic programming incremental learning conflicts
下载PDF
Incremental POP Learning
17
作者 刘本永 《Journal of Electronic Science and Technology of China》 2004年第4期29-36,共8页
In recently proposed partial oblique projection (POP) learning, a function space is decomposed into two complementary subspaces, so that functions belonging to one of which can be optimally estimated. This paper shows... In recently proposed partial oblique projection (POP) learning, a function space is decomposed into two complementary subspaces, so that functions belonging to one of which can be optimally estimated. This paper shows that when the decomposition is specially performed so that the above subspace becomes the largest, a special learning called SPOP learning is obtained and correspondingly an incremental learning is implemented, result of which equals exactly to that of batch learning including novel data. The effectiveness of the method is illustrated by experimental results. 展开更多
关键词 supervised learning generalization ability POP learning incremental learning
下载PDF
A Super-resolution Perception-based Incremental Learning Approach for Power System Voltage Stability Assessment with Incomplete PMU Measurements 被引量:5
18
作者 Chao Ren Yan Xu +2 位作者 Junhua Zhao Rui Zhang Tong Wan 《CSEE Journal of Power and Energy Systems》 SCIE EI CSCD 2022年第1期76-85,共10页
This paper develops a fully data-driven,missingdata tolerant method for post-fault short-term voltage stability(STVS)assessment of power systems against the incomplete PMU measurements.The super-resolution perception(... This paper develops a fully data-driven,missingdata tolerant method for post-fault short-term voltage stability(STVS)assessment of power systems against the incomplete PMU measurements.The super-resolution perception(SRP),based on a deep residual learning convolutional neural network,is employed to cope with the missing PMU measurements.The incremental broad learning(BL)is used to rapidly update the model to maintain and enhance the online application performance.Being different from the state-of-the-art methods,the proposed method is fully data-driven and can fill up missing data under any PMU placement information loss and network topology change scenario.Simulation results demonstrate that the proposed method has the best performance in terms of STVS assessment accuracy and missing-data tolerance among the existing methods on the benchmark testing system. 展开更多
关键词 DATA-DRIVEN deep residual convolutional neural network incremental broad learning short-term voltage stability super-resolution perception
原文传递
Self-Care Assessment for Daily Living Using Machine Learning Mechanism
19
作者 Mouazma Batool Yazeed Yasin Ghadi +3 位作者 Suliman A.Alsuhibany Tamara al Shloul Ahmad Jalal Jeongmin Park 《Computers, Materials & Continua》 SCIE EI 2022年第7期1747-1764,共18页
Nowadays,activities of daily living(ADL)recognition system has been considered an important field of computer vision.Wearable and optical sensors are widely used to assess the daily living activities in healthy people... Nowadays,activities of daily living(ADL)recognition system has been considered an important field of computer vision.Wearable and optical sensors are widely used to assess the daily living activities in healthy people and people with certain disorders.Although conventional ADL utilizes RGB optical sensors but an RGB-D camera with features of identifying depth(distance information)and visual cues has greatly enhanced the performance of activity recognition.In this paper,an RGB-D-based ADL recognition system has been presented.Initially,human silhouette has been extracted from the noisy background of RGB and depth images to track human movement in a scene.Based on these silhouettes,full body features and point based features have been extracted which are further optimized with probability based incremental learning(PBIL)algorithm.Finally,random forest classifier has been used to classify activities into different categories.The n-fold crossvalidation scheme has been used to measure the viability of the proposed model on the RGBD-AC benchmark dataset and has achieved an accuracy of 92.71%over other state-of-the-art methodologies. 展开更多
关键词 Angular geometric features decision tree classifier human activity recognition probability based incremental learning ridge detection
下载PDF
An Online Chronic Disease Prediction System Based on Incremental Deep Neural Network
20
作者 Bin Yang Lingyun Xiang +1 位作者 Xianyi Chen Wenjing Jia 《Computers, Materials & Continua》 SCIE EI 2021年第4期951-964,共14页
Many chronic disease prediction methods have been proposed to predict or evaluate diabetes through artificial neural network.However,due to the complexity of the human body,there are still many challenges to face in t... Many chronic disease prediction methods have been proposed to predict or evaluate diabetes through artificial neural network.However,due to the complexity of the human body,there are still many challenges to face in that process.One of them is how to make the neural network prediction model continuously adapt and learn disease data of different patients,online.This paper presents a novel chronic disease prediction system based on an incremental deep neural network.The propensity of users suffering from chronic diseases can continuously be evaluated in an incremental manner.With time,the system can predict diabetes more and more accurately by processing the feedback information.Many diabetes prediction studies are based on a common dataset,the Pima Indians diabetes dataset,which has only eight input attributes.In order to determine the correlation between the pathological characteristics of diabetic patients and their daily living resources,we have established an in-depth cooperation with a hospital.A Chinese diabetes dataset with 575 diabetics was created.Users’data collected by different sensors were used to train the network model.We evaluated our system using a real-world diabetes dataset to confirm its effectiveness.The experimental results show that the proposed system can not only continuously monitor the users,but also give early warning of physiological data that may indicate future diabetic ailments. 展开更多
关键词 Deep learning incremental learning network architecture design chronic disease prediction
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部