An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interf...An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interface migration is excluded in constrained paraequilibrium (CPE) model. Based on "endpoint" predicted by CPE model the thermodynamic condition of interface migration is analyzed, that is, the difference in the chemical potential of iron in both ferrite (martenisite) and austenite produces the driving force of the iron atoms to migrate from one phase to the other phase. In addition, the interface migration can change the austenite fraction; as a result, the austenite fraction at partitioning temperature may be higher than that at quenching temperature through the interface migration, but this phenomenon cannot be explained by CPE model.展开更多
Friction stir lap joints of LY12 aluminum alloy plates with a thickness of 3 mm were fabricated using several tools with different pin profiles. The effects of tool pin profile on the interface migration of friction s...Friction stir lap joints of LY12 aluminum alloy plates with a thickness of 3 mm were fabricated using several tools with different pin profiles. The effects of tool pin profile on the interface migration of friction stir lap joints were investigated with the comparison of weld morphologies. The results show that the screw thread of the pin plays an important role in the migration of weld interface in the thickness direction. The interface between the sheets will move upwards to the top of the plate when the pin with left hand thread was used. Conversely, the interface will move downwards to the tip of the pin when the pin with right hand thread was used: As for a stir pin with smooth surface was used, the upward or downward migration of the weld interface was largely reduced, but the extension of weld interface to the weld center line from the retreating side becomes more serious. By analyzing the force on the pin according to the sucking-extruding theory for the weld formation, the obtained results have been well explained.展开更多
Based on the microscopic phase-field model, the structure and migration characteristic of ordered domain interfaces formed between DO22 and L12 phase are investigated, and the atomistic mechanism of phase transformati...Based on the microscopic phase-field model, the structure and migration characteristic of ordered domain interfaces formed between DO22 and L12 phase are investigated, and the atomistic mechanism of phase transformation from L12 (Ni3Al) to DO22 (Ni3V) in Ni75AlxV25-x alloys are explored, using the simulated microstructure evolution pictures and the occupation probability evolution of alloy elements at the interface. The results show that five kinds of heterointerfaces are formed between DO22 and L12 phase and four of them can migrate during the phase transformation from L12 to DO22 except the interface (002)D//(001)L. The structure of interface (100)D//(200)L and interface (100)D//(200)L·^1/2[001] remain the same before and after migration, while the interface (002)D//(002)L is formed after the migration of interface (002)D//(002)L·^1/2[100] and vice versa. These two kinds of interface appear alternatively. The jump and substitute of atoms selects the optimization way to induce the migration of interface during the phase transformation, and the number of atoms needing to jump during the migration is the least among all of the possible atom jump modes.展开更多
With the rapid development of Mg alloys,deeper understanding to the thermodynamic and diffusional kinetic behavior of intermetallic compounds(IMCs)is important for studying the effect of alloying elements to the micro...With the rapid development of Mg alloys,deeper understanding to the thermodynamic and diffusional kinetic behavior of intermetallic compounds(IMCs)is important for studying the effect of alloying elements to the microstructure evolution.Specially,a systematic quantitative investigation on the diffusional growth of IMCs is of great necessity.However,the works studying the elemental diffusion behaviors of multiple-element IMCs are rare in magnesium alloy systems.The current work takes the ternary Mg-Al-Zn system as research target,and combines the diffusion couple technique,phase stability diagrams,in-situ observation technique and numerical inverse method to investigate the temperature-dependent kinetic coefficients.The parabolic growth constant(PGC)and interdiffusion coefficients for Mg solid-solution phase andγ-Mg_(17)Al_(12),β-Mg_(2)Al_(3),ε-Mg_(23)Al_(30),MgZn_(2),Mg_(2)Zn_(3),τ-Mg_(32)(Zn,Al)49 andφ-Mg_(5)Zn_(2)Al_(2) IMCs in the Mg-Al-Zn alloy system are determined.By comparing the current experimental with calculation results,the rate-controlling factor of the temperature-dependent diffusion growth ofφ,τandεternary IMCs in the Mg-Al-Zn system is further discussed in detail.展开更多
Faceted interphase boundaries(IPBs)are commonly observed in lath-shaped precipitates in alloys consisting of simple face-centred cubic(fcc),body centred-cubic(bcc)or hexagonal closed packed(hcp)phases,which normally c...Faceted interphase boundaries(IPBs)are commonly observed in lath-shaped precipitates in alloys consisting of simple face-centred cubic(fcc),body centred-cubic(bcc)or hexagonal closed packed(hcp)phases,which normally contain one or two sets of parallel dislocations.The influence of these dislocations on interface migration and possible accompanying long-range strain field remain unclear.To elucidate this,we carried out atomistic simulations to investigate the dislocation-mediated migration processes of IPBs in a pure-iron system.Our results show that the migration of these IPBs is accompanied with the slip of interfacial dislocations,even in high-index slip planes,with two migration modes were observed:the first mode is the uniform migration mode that occurs only when all of the dislocations slip in a common slip plane.A shear-coupled interface migration was observed for this mode.The other interfaces propagate in the stick-slip migration mode that occurs when the dislocations glide on different slip planes,involving dislocation reaction or tangling.A quantitative relationship was established to link the atomic displacements with the dislocation structure,slip plane,and interface normal.The macroscopic shear deformation due to the effect of overall atomic displacement shows a good agreement with the results obtained based on the phenomenological theory of martensite crystallography.Our findings have general implications for the understanding of phase transformations and the surface relief effect at the atomic scale.展开更多
The transition temperature between upper bainite and lower bainite is calculated with an extended Gibbs energy balance model, which is able to quantitatively describe the evolution of carbon supersaturation within bai...The transition temperature between upper bainite and lower bainite is calculated with an extended Gibbs energy balance model, which is able to quantitatively describe the evolution of carbon supersaturation within bainitic ferrite sheaves during the entire thickening process. The nucleation rate of intra-lath cementite precipitation on a dislocation is calculated based on of the degree of carbon supersaturation.Upper bainite and lower bainite are thus distinguished by the effective nucleation density and therefore a numerical criterion can be set to define the transition. The model is applied to Fe-xC-1Mn/2Mn/1 Mo ternary alloys. Results show that the transition temperature increases with bulk carbon content at lower carbon concentration but decreases in the higher carbon region. This prediction agrees very well with the experimental observations in Mn and Mo alloyed systems. Moreover, the highest transition temperature and the carbon content at which it occurs in the Fe-xC-2Mn system are in good agreement with reported experimental data. The inverse "V" shaped character of the carbon concentration-transition temperature curve indicates two opposite physical mechanisms operating at the same time. An analysis is carried out to provide an explanation.展开更多
Study on the diffusion growth of ternary intermetallic compounds in Mg-Al-Zn based light-weight alloys is important due to its close interrelation with alloy property.However,there is a very lack of existing data due ...Study on the diffusion growth of ternary intermetallic compounds in Mg-Al-Zn based light-weight alloys is important due to its close interrelation with alloy property.However,there is a very lack of existing data due to difficulties in both experimental and computational aspects.The current work aims at presenting the experimental observation on the diffusion growth behavior of Φ phase at 360℃ as well as calculating its composition-dependent interdiffu sion coefficients.We designed and succes s fully fabricated four Mg-τ ternary diffusion couples annealed at 360℃ for different times,where the diffusion path goes across the Φ phase region and the diffusion growth of ternary intermetallic compound can be solely detected.In-situ observation of the time-dependent growth of Φ phase was performed to accurately determine the parabolic growth constant.The experimental data were then subjected to a numerical inverse method to generate a set of self-consistent interdiffusivities of the ternary intermetallic compounds,which can reproduce the presently observed diffusion growth behavior of Φ ternary intermetallic compound in Mg-τ diffusion couples.展开更多
文摘An Fe-0.2C-1.5Si-1.67Mn steel was subjected to quenching and partitioning (Q&P) process, and the interface migration between martensite and austenite at an elevated partitioning temperature was observed. The interface migration is excluded in constrained paraequilibrium (CPE) model. Based on "endpoint" predicted by CPE model the thermodynamic condition of interface migration is analyzed, that is, the difference in the chemical potential of iron in both ferrite (martenisite) and austenite produces the driving force of the iron atoms to migrate from one phase to the other phase. In addition, the interface migration can change the austenite fraction; as a result, the austenite fraction at partitioning temperature may be higher than that at quenching temperature through the interface migration, but this phenomenon cannot be explained by CPE model.
基金This work was sponsored by the National Natural Science Foundation of China (50875119 ) , the Aerospace Science Foundation of China (20081156009) and the Natural Science Foundation of Jiangxi Province, China (0450090).
文摘Friction stir lap joints of LY12 aluminum alloy plates with a thickness of 3 mm were fabricated using several tools with different pin profiles. The effects of tool pin profile on the interface migration of friction stir lap joints were investigated with the comparison of weld morphologies. The results show that the screw thread of the pin plays an important role in the migration of weld interface in the thickness direction. The interface between the sheets will move upwards to the top of the plate when the pin with left hand thread was used. Conversely, the interface will move downwards to the tip of the pin when the pin with right hand thread was used: As for a stir pin with smooth surface was used, the upward or downward migration of the weld interface was largely reduced, but the extension of weld interface to the weld center line from the retreating side becomes more serious. By analyzing the force on the pin according to the sucking-extruding theory for the weld formation, the obtained results have been well explained.
基金Funded by the National Natural Science Foundation of China (Nos.50941020, 10902086, 50875217, and 20903075)Natural Science Foundation of Shaanxi Province (Nos. SJ08-ZT05 and SJ08-B14)Doctorate Foundation of Northwest Polytechnical University (No. CX200905)
文摘Based on the microscopic phase-field model, the structure and migration characteristic of ordered domain interfaces formed between DO22 and L12 phase are investigated, and the atomistic mechanism of phase transformation from L12 (Ni3Al) to DO22 (Ni3V) in Ni75AlxV25-x alloys are explored, using the simulated microstructure evolution pictures and the occupation probability evolution of alloy elements at the interface. The results show that five kinds of heterointerfaces are formed between DO22 and L12 phase and four of them can migrate during the phase transformation from L12 to DO22 except the interface (002)D//(001)L. The structure of interface (100)D//(200)L and interface (100)D//(200)L·^1/2[001] remain the same before and after migration, while the interface (002)D//(002)L is formed after the migration of interface (002)D//(002)L·^1/2[100] and vice versa. These two kinds of interface appear alternatively. The jump and substitute of atoms selects the optimization way to induce the migration of interface during the phase transformation, and the number of atoms needing to jump during the migration is the least among all of the possible atom jump modes.
基金funded by the National Natural Science Foundation of China(No.51801116 and 52001176)the Shandong Province Key Research and Development Plan(No.2019GHZ019 and 2021SFGC1001)the Youth Innovation and Technology Support Program of Shandong Provincial Colleges and Universities(No.2020KJA002).
文摘With the rapid development of Mg alloys,deeper understanding to the thermodynamic and diffusional kinetic behavior of intermetallic compounds(IMCs)is important for studying the effect of alloying elements to the microstructure evolution.Specially,a systematic quantitative investigation on the diffusional growth of IMCs is of great necessity.However,the works studying the elemental diffusion behaviors of multiple-element IMCs are rare in magnesium alloy systems.The current work takes the ternary Mg-Al-Zn system as research target,and combines the diffusion couple technique,phase stability diagrams,in-situ observation technique and numerical inverse method to investigate the temperature-dependent kinetic coefficients.The parabolic growth constant(PGC)and interdiffusion coefficients for Mg solid-solution phase andγ-Mg_(17)Al_(12),β-Mg_(2)Al_(3),ε-Mg_(23)Al_(30),MgZn_(2),Mg_(2)Zn_(3),τ-Mg_(32)(Zn,Al)49 andφ-Mg_(5)Zn_(2)Al_(2) IMCs in the Mg-Al-Zn alloy system are determined.By comparing the current experimental with calculation results,the rate-controlling factor of the temperature-dependent diffusion growth ofφ,τandεternary IMCs in the Mg-Al-Zn system is further discussed in detail.
基金financially supported by the National Natural Science Foundation of China (Nos.51471097 and 51671111)the National Key Research and Development Program of China (No. 2016YFB0701304)
文摘Faceted interphase boundaries(IPBs)are commonly observed in lath-shaped precipitates in alloys consisting of simple face-centred cubic(fcc),body centred-cubic(bcc)or hexagonal closed packed(hcp)phases,which normally contain one or two sets of parallel dislocations.The influence of these dislocations on interface migration and possible accompanying long-range strain field remain unclear.To elucidate this,we carried out atomistic simulations to investigate the dislocation-mediated migration processes of IPBs in a pure-iron system.Our results show that the migration of these IPBs is accompanied with the slip of interfacial dislocations,even in high-index slip planes,with two migration modes were observed:the first mode is the uniform migration mode that occurs only when all of the dislocations slip in a common slip plane.A shear-coupled interface migration was observed for this mode.The other interfaces propagate in the stick-slip migration mode that occurs when the dislocations glide on different slip planes,involving dislocation reaction or tangling.A quantitative relationship was established to link the atomic displacements with the dislocation structure,slip plane,and interface normal.The macroscopic shear deformation due to the effect of overall atomic displacement shows a good agreement with the results obtained based on the phenomenological theory of martensite crystallography.Our findings have general implications for the understanding of phase transformations and the surface relief effect at the atomic scale.
基金supported by the National Natural Science Foundation of China (Grant No. 51471094)The financial support provided by China Scholarship Council
文摘The transition temperature between upper bainite and lower bainite is calculated with an extended Gibbs energy balance model, which is able to quantitatively describe the evolution of carbon supersaturation within bainitic ferrite sheaves during the entire thickening process. The nucleation rate of intra-lath cementite precipitation on a dislocation is calculated based on of the degree of carbon supersaturation.Upper bainite and lower bainite are thus distinguished by the effective nucleation density and therefore a numerical criterion can be set to define the transition. The model is applied to Fe-xC-1Mn/2Mn/1 Mo ternary alloys. Results show that the transition temperature increases with bulk carbon content at lower carbon concentration but decreases in the higher carbon region. This prediction agrees very well with the experimental observations in Mn and Mo alloyed systems. Moreover, the highest transition temperature and the carbon content at which it occurs in the Fe-xC-2Mn system are in good agreement with reported experimental data. The inverse "V" shaped character of the carbon concentration-transition temperature curve indicates two opposite physical mechanisms operating at the same time. An analysis is carried out to provide an explanation.
基金supported financially by the National Key Research and Development Program of China(No.2016YFB0701202)the National Natural Science Foundation of China(Nos.51801116 and 51901117)+1 种基金the Natural Science Foundation of Shandong Province(No.ZR2017BEM022)the Youth Fund of Shandong Academy of Sciences(Nos.2018QN0032 and 2019QN0023)。
文摘Study on the diffusion growth of ternary intermetallic compounds in Mg-Al-Zn based light-weight alloys is important due to its close interrelation with alloy property.However,there is a very lack of existing data due to difficulties in both experimental and computational aspects.The current work aims at presenting the experimental observation on the diffusion growth behavior of Φ phase at 360℃ as well as calculating its composition-dependent interdiffu sion coefficients.We designed and succes s fully fabricated four Mg-τ ternary diffusion couples annealed at 360℃ for different times,where the diffusion path goes across the Φ phase region and the diffusion growth of ternary intermetallic compound can be solely detected.In-situ observation of the time-dependent growth of Φ phase was performed to accurately determine the parabolic growth constant.The experimental data were then subjected to a numerical inverse method to generate a set of self-consistent interdiffusivities of the ternary intermetallic compounds,which can reproduce the presently observed diffusion growth behavior of Φ ternary intermetallic compound in Mg-τ diffusion couples.