Seismic wave propagation in fluid-solid coupled media is currently a popular topic. However, traditional wave equation-based simulation methods have to consider complex boundary conditions at the fluid-solid interface...Seismic wave propagation in fluid-solid coupled media is currently a popular topic. However, traditional wave equation-based simulation methods have to consider complex boundary conditions at the fluid-solid interface. To address this challenge, we propose a novel numerical scheme that integrates the lattice Boltzmann method(LBM) and lattice spring model(LSM). In this scheme, LBM simulates viscoacoustic wave propagation in the fluid area and LSM simulates elastic wave propagation in the solid area. We also introduce three different LBM-LSM coupling strategies, a standard bounce back scheme, a specular reflection scheme, and a hybrid scheme, to describe wave propagation across fluid-solid boundaries. To demonstrate the accuracy of these LBM-LSM coupling schemes, we simulate wave propagation in a two-layer model containing a fluid-solid interface. We place excitation sources in the fluid layer and the solid layer respectively, to observe the wave phenomena when seismic waves propagate to interface from different sides. The simulated results by LBM-LSM are compared with the reference wavefields obtained by the finite difference method(FDM) and the analytical solution(ANA).Our LBM-LSM coupling scheme was verified effective, as the relative errors between the LBM-LSM solutions and reference solutions were within an acceptable range, sometimes around 1.00%. The coupled LBM-LSM scheme is further used to model seismic wavefields across a more realistic rugged seabed,which reveals the potential applications of the coupled LBM-LSM scheme in marine seismic imaging techniques, such as reverse-time migration and full-waveform inversion. The method also has potential applications in simulating wave propagation in complex two-and multi-phase media.展开更多
The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive comp...The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive computational costs.To overcome this limitation,a message passing interface(MPI)parallel DEM-IMB-LBM framework is proposed aimed at enhancing computation efficiency.This framework utilises a static domain decomposition scheme,with the entire computation domain being decomposed into multiple subdomains according to predefined processors.A detailed parallel strategy is employed for both contact detection and hydrodynamic force calculation.In particular,a particle ID re-numbering scheme is proposed to handle particle transitions across sub-domain interfaces.Two benchmarks are conducted to validate the accuracy and overall performance of the proposed framework.Subsequently,the framework is applied to simulate scenarios involving multi-particle sedimentation and submarine landslides.The numerical examples effectively demonstrate the robustness and applicability of the MPI parallel DEM-IMB-LBM framework.展开更多
Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate parti...Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate particle-fluid interaction problems involving heat transfer at the grain level.In this extended technique,an immersed moving boundary(IMB)scheme is used to couple the discrete element method(DEM)and lattice Boltzmann method(LBM),while a recently proposed Dirichlet-type thermal boundary condition is also adapted to account for heat transfer between fluid phase and solid particles.The resulting DEM-IBM-LBM model is robust to simulate moving curved boundaries with constant temperature in thermal flows.To facilitate the understanding and implementation of this coupled model for non-isothermal problems,a complete list is given for the conversion of relevant physical variables to lattice units.Then,benchmark tests,including a single-particle sedimentation and a two-particle drafting-kissing-tumbling(DKT)simulation with heat transfer,are carried out to validate the accuracy of our coupled technique.To further investigate the role of heat transfer in particle-laden flows,two multiple-particle problems with heat transfer are performed.Numerical examples demonstrate that the proposed coupling model is a promising high-resolution approach for simulating the heat-particle-fluid coupling at the grain level.展开更多
基金supported in part by R & D Department of China National Petroleum Corporation (2022DQ0604-01)National Natural Science Foundation of China (42204132)+3 种基金the China Postdoctoral Science Foundations (2020M680667, 2021T140661)Harvard-CUP Joint Laboratory on Petroleum Science“111” project (B13010)the financial support from the CAS Special Research Assistant Project。
文摘Seismic wave propagation in fluid-solid coupled media is currently a popular topic. However, traditional wave equation-based simulation methods have to consider complex boundary conditions at the fluid-solid interface. To address this challenge, we propose a novel numerical scheme that integrates the lattice Boltzmann method(LBM) and lattice spring model(LSM). In this scheme, LBM simulates viscoacoustic wave propagation in the fluid area and LSM simulates elastic wave propagation in the solid area. We also introduce three different LBM-LSM coupling strategies, a standard bounce back scheme, a specular reflection scheme, and a hybrid scheme, to describe wave propagation across fluid-solid boundaries. To demonstrate the accuracy of these LBM-LSM coupling schemes, we simulate wave propagation in a two-layer model containing a fluid-solid interface. We place excitation sources in the fluid layer and the solid layer respectively, to observe the wave phenomena when seismic waves propagate to interface from different sides. The simulated results by LBM-LSM are compared with the reference wavefields obtained by the finite difference method(FDM) and the analytical solution(ANA).Our LBM-LSM coupling scheme was verified effective, as the relative errors between the LBM-LSM solutions and reference solutions were within an acceptable range, sometimes around 1.00%. The coupled LBM-LSM scheme is further used to model seismic wavefields across a more realistic rugged seabed,which reveals the potential applications of the coupled LBM-LSM scheme in marine seismic imaging techniques, such as reverse-time migration and full-waveform inversion. The method also has potential applications in simulating wave propagation in complex two-and multi-phase media.
基金financially supported by the National Natural Science Foundation of China(Grant Nos.12072217 and 42077254)the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ30567).
文摘The high-resolution DEM-IMB-LBM model can accurately describe pore-scale fluid-solid interactions,but its potential for use in geotechnical engineering analysis has not been fully unleashed due to its prohibitive computational costs.To overcome this limitation,a message passing interface(MPI)parallel DEM-IMB-LBM framework is proposed aimed at enhancing computation efficiency.This framework utilises a static domain decomposition scheme,with the entire computation domain being decomposed into multiple subdomains according to predefined processors.A detailed parallel strategy is employed for both contact detection and hydrodynamic force calculation.In particular,a particle ID re-numbering scheme is proposed to handle particle transitions across sub-domain interfaces.Two benchmarks are conducted to validate the accuracy and overall performance of the proposed framework.Subsequently,the framework is applied to simulate scenarios involving multi-particle sedimentation and submarine landslides.The numerical examples effectively demonstrate the robustness and applicability of the MPI parallel DEM-IMB-LBM framework.
基金financially supported by the Natural Science Foundation of Hunan Province,China(Grant No.2022JJ30567)the support of EPSRC Grant(UK):PURIFY(EP/V000756/1)the Scientific Research Foundation of Education Department of Hunan Province,China(Grant No.20B557).
文摘Multifield coupling is frequently encountered and also an active area of research in geotechnical engineering.In this work,a particle-resolved direct numerical simulation(PR-DNS)technique is extended to simulate particle-fluid interaction problems involving heat transfer at the grain level.In this extended technique,an immersed moving boundary(IMB)scheme is used to couple the discrete element method(DEM)and lattice Boltzmann method(LBM),while a recently proposed Dirichlet-type thermal boundary condition is also adapted to account for heat transfer between fluid phase and solid particles.The resulting DEM-IBM-LBM model is robust to simulate moving curved boundaries with constant temperature in thermal flows.To facilitate the understanding and implementation of this coupled model for non-isothermal problems,a complete list is given for the conversion of relevant physical variables to lattice units.Then,benchmark tests,including a single-particle sedimentation and a two-particle drafting-kissing-tumbling(DKT)simulation with heat transfer,are carried out to validate the accuracy of our coupled technique.To further investigate the role of heat transfer in particle-laden flows,two multiple-particle problems with heat transfer are performed.Numerical examples demonstrate that the proposed coupling model is a promising high-resolution approach for simulating the heat-particle-fluid coupling at the grain level.