期刊文献+
共找到9篇文章
< 1 >
每页显示 20 50 100
Birkhoff’s Theorem and Lie Symmetry Analysis
1
作者 Avijit Mukherjee Subham B. Roy 《Journal of High Energy Physics, Gravitation and Cosmology》 2021年第4期1280-1297,共18页
Three dimensional space is said to be spherically symmetric if it admits SO(3) as the group of isometries. Under this symmetry condition, the Einstein’s Field equations for vacuum, yields the Schwarzschild Metric as ... Three dimensional space is said to be spherically symmetric if it admits SO(3) as the group of isometries. Under this symmetry condition, the Einstein’s Field equations for vacuum, yields the Schwarzschild Metric as the unique solution, which essentially is the statement of the well known Birkhoff’s Theorem. Geometrically speaking this theorem claims that the pseudo-Riemanian space-times provide more isometries than expected from the original metric holonomy/ansatz. In this paper we use the method of Lie Symmetry Analysis to analyze the Einstein’s Vacuum Field Equations so as to obtain the Symmetry Generators of the corresponding Differential Equation. Additionally, applying the Noether Point Symmetry method we have obtained the conserved quantities corresponding to the generators of the Schwarzschild Lagrangian and paving way to reformulate the Birkhoff’s Theorem from a different approach. 展开更多
关键词 Birkhoff’s Theorem lie symmetry analysis Noether Point symmetry
下载PDF
Lie Symmetry Analysis,Bcklund Transformations and Exact Solutions to (2+1)-Dimensional Burgers' Types of Equations
2
作者 刘汉泽 李继彬 刘磊 《Communications in Theoretical Physics》 SCIE CAS CSCD 2012年第5期737-742,共6页
This paper is concerned with the (2+1)-dimensional Burgers' and heat types of equations.All of the geometic vector fields of the equations are obtained,an optimal system of the equation is presented.Especially,the... This paper is concerned with the (2+1)-dimensional Burgers' and heat types of equations.All of the geometic vector fields of the equations are obtained,an optimal system of the equation is presented.Especially,the Bcklund transformations (BTs) for the Burgers' equations are constructed based on the symmetry.Then,all of the symmetry reductions are provided in terms of the optimal system method,and the exact explicit solutions are investigated by the symmetry reductions and Bcklund transformations. 展开更多
关键词 (2+1)-dimensional Burgers' equation heat equation lie symmetry analysis Bcklund transformation optimal system exact solution
原文传递
Nonclassical Lie symmetry and conservation laws of the nonlinear timefractional Korteweg–de Vries equation
3
作者 Mir Sajjad Hashemi Ali Haji-Badali +1 位作者 Farzaneh Alizadeh Mustafa Inc 《Communications in Theoretical Physics》 SCIE CAS CSCD 2021年第9期59-67,共9页
In this paper,we use the symmetry of the Lie group analysis as one of the powerful tools that deals with the wide class of fractional order differential equations in the Riemann–Liouville concept.In this study,first,... In this paper,we use the symmetry of the Lie group analysis as one of the powerful tools that deals with the wide class of fractional order differential equations in the Riemann–Liouville concept.In this study,first,we employ the classical and nonclassical Lie symmetries(LS)to acquire similarity reductions of the nonlinear fractional far field Korteweg–de Vries(KdV)equation,and second,we find the related exact solutions for the derived generators.Finally,according to the LS generators acquired,we construct conservation laws for related classical and nonclassical vector fields of the fractional far field KdV equation. 展开更多
关键词 fractional equation lie symmetry analysis classical and non-classical symmetries
原文传递
Some New Nonlinear Wave Solutions for a Higher-Dimensional Shallow Water Wave Equation
4
作者 Longmin Dong Zhu Guo Yinghui He 《Journal of Applied Mathematics and Physics》 2020年第9期1845-1860,共16页
In this manuscript, we first perform a complete Lie symmetry classification for a higher-dimensional shallow water wave equation and then construct the corresponding reduced equations with the obtained Lie symmetries.... In this manuscript, we first perform a complete Lie symmetry classification for a higher-dimensional shallow water wave equation and then construct the corresponding reduced equations with the obtained Lie symmetries. Moreover, with the extended <em>F</em>-expansion method, we obtain several new nonlinear wave solutions involving differentiable arbitrary functions, expressed by Jacobi elliptic function, Weierstrass elliptic function, hyperbolic function and trigonometric function. 展开更多
关键词 Shallow Water Wave Equations Nonlinear Wave Solution lie symmetry analysis Extended F-Expansion Method
下载PDF
Conserved vectors and symmetry solutions of the Landau–Ginzburg–Higgs equation of theoretical physics
5
作者 Chaudry Masood Khalique Mduduzi Yolane Thabo Lephoko 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第4期51-65,共15页
This paper is devoted to the investigation of the Landau–Ginzburg–Higgs equation(LGHe),which serves as a mathematical model to understand phenomena such as superconductivity and cyclotron waves.The LGHe finds applic... This paper is devoted to the investigation of the Landau–Ginzburg–Higgs equation(LGHe),which serves as a mathematical model to understand phenomena such as superconductivity and cyclotron waves.The LGHe finds applications in various scientific fields,including fluid dynamics,plasma physics,biological systems,and electricity-electronics.The study adopts Lie symmetry analysis as the primary framework for exploration.This analysis involves the identification of Lie point symmetries that are admitted by the differential equation.By leveraging these Lie point symmetries,symmetry reductions are performed,leading to the discovery of group invariant solutions.To obtain explicit solutions,several mathematical methods are applied,including Kudryashov's method,the extended Jacobi elliptic function expansion method,the power series method,and the simplest equation method.These methods yield solutions characterized by exponential,hyperbolic,and elliptic functions.The obtained solutions are visually represented through 3D,2D,and density plots,which effectively illustrate the nature of the solutions.These plots depict various patterns,such as kink-shaped,singular kink-shaped,bell-shaped,and periodic solutions.Finally,the paper employs the multiplier method and the conservation theorem introduced by Ibragimov to derive conserved vectors.These conserved vectors play a crucial role in the study of physical quantities,such as the conservation of energy and momentum,and contribute to the understanding of the underlying physics of the system. 展开更多
关键词 Landau-Ginzburg-Higgs equation lie symmetry analysis group invariant solutions conserved vectors multiplier method Ibragimov's method
原文传递
Conservation laws,Lie symmetries,self adjointness,and soliton solutions for the Selkov–Schnakenberg system
6
作者 Kashif Ali Aly R Seadawy +1 位作者 Syed T R Rizvi Noor Aziz 《Communications in Theoretical Physics》 SCIE CAS CSCD 2024年第2期29-44,共16页
In this article,we explore the famous Selkov–Schnakenberg(SS)system of coupled nonlinear partial differential equations(PDEs)for Lie symmetry analysis,self-adjointness,and conservation laws.Moreover,miscellaneous sol... In this article,we explore the famous Selkov–Schnakenberg(SS)system of coupled nonlinear partial differential equations(PDEs)for Lie symmetry analysis,self-adjointness,and conservation laws.Moreover,miscellaneous soliton solutions like dark,bright,periodic,rational,Jacobian elliptic function,Weierstrass elliptic function,and hyperbolic solutions of the SS system will be achieved by a well-known technique called sub-ordinary differential equations.All these results are displayed graphically by 3D,2D,and contour plots. 展开更多
关键词 Selkov-Schnakenberg system lie symmetry analysis conservation laws adjointness INTEGRABILITY
原文传递
Time-fractional Davey–Stewartson equation:Lie point symmetries,similarity reductions,conservation laws and traveling wave solutions
7
作者 Baoyong Guo Yong Fang Huanhe Dong 《Communications in Theoretical Physics》 SCIE CAS CSCD 2023年第10期10-25,共16页
As a celebrated nonlinear water wave equation,the Davey–Stewartson equation is widely studied by researchers,especially in the field of mathematical physics.On the basis of the Riemann–Liouville fractional derivativ... As a celebrated nonlinear water wave equation,the Davey–Stewartson equation is widely studied by researchers,especially in the field of mathematical physics.On the basis of the Riemann–Liouville fractional derivative,the time-fractional Davey–Stewartson equation is investigated in this paper.By application of the Lie symmetry analysis approach,the Lie point symmetries and symmetry groups are obtained.At the same time,the similarity reductions are derived.Furthermore,the equation is converted to a system of fractional partial differential equations and a system of fractional ordinary differential equations in the sense of Riemann–Liouville fractional derivative.By virtue of the symmetry corresponding to the scalar transformation,the equation is converted to a system of fractional ordinary differential equations in the sense of Erdélyi–Kober fractional integro-differential operators.By using Noether’s theorem and Ibragimov’s new conservation theorem,the conserved vectors and the conservation laws are derived.Finally,the traveling wave solutions are achieved and plotted. 展开更多
关键词 time-fractional Davey–Stewartson equation lie symmetry analysis approach lie point symmetries similarity reductions conservation laws
原文传递
Symmetries,optimal system,exact and soliton solutions of(3+1)-dimensional Gardner-KP equation
8
作者 Amjad Hussain Ashreen Anjum +3 位作者 M.Junaid-U-Rehman Ilyas Khan Mariam A.Sameh Amnah S.Al-Johani 《Journal of Ocean Engineering and Science》 SCIE 2024年第2期178-190,共13页
In this research article,the(3+1)-dimensional nonlinear Gardner-Kadomtsov-Petviashvili(Gardner-KP)equation which depicts the nonlinear modulation of periodic waves,is analyzed through the Lie group-theoretic technique... In this research article,the(3+1)-dimensional nonlinear Gardner-Kadomtsov-Petviashvili(Gardner-KP)equation which depicts the nonlinear modulation of periodic waves,is analyzed through the Lie group-theoretic technique.Considering the Lie invariance condition,we find the symmetry generators.The pro-posed model yields eight-dimensional Lie algebra.Moreover,an optimal system of sub-algebras is com-puted,and similarity reductions are made.The considered nonlinear partial differential equation is re-duced into ordinary differential equations(ODEs)by utilizing the similarity transformation method(STM),which has the benefit of yielding a large number of accurate traveling wave solutions.These ODEs are further solved to get closed-form solutions of the Gardner-KP equation in some cases,while in other cases,we use the new auxiliary equation method to get its soliton solutions.The evolution profiles of the obtained solutions are examined graphically under the appropriate selection of arbitrary parameters. 展开更多
关键词 Gardner-KP equation lie symmetry analysis Optimal system New auxiliary equation method Solitary wave solutions
原文传递
Construction of multiple new analytical soliton solutions and various dynamical behaviors to the nonlinear convection-diffusion-reaction equation with power-law nonlinearity and density-dependent diffusion via Lie symmetry approach together with a couple of integration approaches
9
作者 Shoukry El-Ganaini Sachin Kumar Monika Niwas 《Journal of Ocean Engineering and Science》 SCIE 2023年第3期226-237,共12页
By taking advantage of three different computational analytical methods:the Lie symmetry analysis,the generalized Riccati equation mapping approach,and the modified Kudryashov approach,we construct multiple new analyt... By taking advantage of three different computational analytical methods:the Lie symmetry analysis,the generalized Riccati equation mapping approach,and the modified Kudryashov approach,we construct multiple new analytical soliton solutions to the nonlinear convection-diffusion-reaction equation(NCDR)with power-law nonlinearity and density-dependent diffusion.Lie symmetry analysis is one of the pow-erful techniques that reduce the higher-order partial differential equation into an ordinary differential equation by reduction of independent variables.By the Lie group technique,we obtain one-parameter in-variant transformations,determining equations and corresponding vectors for the considered convection-diffusion-reaction equation.By treating the parameters of the governing equation as constants,the ap-plied methods yield a variety of new closed-form solutions,including inverse function solutions,periodic solutions,exponential function solutions,dark solitons,singular solitons,combo bright-singular solitons,and the combine of bright-dark solitons and dark-bright solitons.Moreover,using the Bäcklund transfor-mation of the generalized Riccati equation and modified Kudryashov method,we can construct multiple solitons and other solutions of the considered equation.The obtained new solutions of this work demon-strate that the used approaches are powerful and effective in dealing with nonlinear equations,and that these solutions are required to explain many biological and physical phenomena.Comparing our obtained solutions of this paper with the ones obtained in the literature,we see that our solutions are new and not reported elsewhere.These newly formed soliton solutions will be more beneficial in the various dis-ciplines of ocean engineering,plasma physics,and nonlinear sciences. 展开更多
关键词 lie symmetry analysis Generalized riccati equation mapping Modified kudryashov approach Nonlinear convection-diffusion-reaction equation Solitary wave solutions Closed form solutions Backlund transformation Exact solution Dynamical wave structures Bäcklund transformation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部