Three dimensional space is said to be spherically symmetric if it admits SO(3) as the group of isometries. Under this symmetry condition, the Einstein’s Field equations for vacuum, yields the Schwarzschild Metric as ...Three dimensional space is said to be spherically symmetric if it admits SO(3) as the group of isometries. Under this symmetry condition, the Einstein’s Field equations for vacuum, yields the Schwarzschild Metric as the unique solution, which essentially is the statement of the well known Birkhoff’s Theorem. Geometrically speaking this theorem claims that the pseudo-Riemanian space-times provide more isometries than expected from the original metric holonomy/ansatz. In this paper we use the method of Lie Symmetry Analysis to analyze the Einstein’s Vacuum Field Equations so as to obtain the Symmetry Generators of the corresponding Differential Equation. Additionally, applying the Noether Point Symmetry method we have obtained the conserved quantities corresponding to the generators of the Schwarzschild Lagrangian and paving way to reformulate the Birkhoff’s Theorem from a different approach.展开更多
This paper is concerned with the (2+1)-dimensional Burgers' and heat types of equations.All of the geometic vector fields of the equations are obtained,an optimal system of the equation is presented.Especially,the...This paper is concerned with the (2+1)-dimensional Burgers' and heat types of equations.All of the geometic vector fields of the equations are obtained,an optimal system of the equation is presented.Especially,the Bcklund transformations (BTs) for the Burgers' equations are constructed based on the symmetry.Then,all of the symmetry reductions are provided in terms of the optimal system method,and the exact explicit solutions are investigated by the symmetry reductions and Bcklund transformations.展开更多
In this paper,we use the symmetry of the Lie group analysis as one of the powerful tools that deals with the wide class of fractional order differential equations in the Riemann–Liouville concept.In this study,first,...In this paper,we use the symmetry of the Lie group analysis as one of the powerful tools that deals with the wide class of fractional order differential equations in the Riemann–Liouville concept.In this study,first,we employ the classical and nonclassical Lie symmetries(LS)to acquire similarity reductions of the nonlinear fractional far field Korteweg–de Vries(KdV)equation,and second,we find the related exact solutions for the derived generators.Finally,according to the LS generators acquired,we construct conservation laws for related classical and nonclassical vector fields of the fractional far field KdV equation.展开更多
In this manuscript, we first perform a complete Lie symmetry classification for a higher-dimensional shallow water wave equation and then construct the corresponding reduced equations with the obtained Lie symmetries....In this manuscript, we first perform a complete Lie symmetry classification for a higher-dimensional shallow water wave equation and then construct the corresponding reduced equations with the obtained Lie symmetries. Moreover, with the extended <em>F</em>-expansion method, we obtain several new nonlinear wave solutions involving differentiable arbitrary functions, expressed by Jacobi elliptic function, Weierstrass elliptic function, hyperbolic function and trigonometric function.展开更多
This paper is devoted to the investigation of the Landau–Ginzburg–Higgs equation(LGHe),which serves as a mathematical model to understand phenomena such as superconductivity and cyclotron waves.The LGHe finds applic...This paper is devoted to the investigation of the Landau–Ginzburg–Higgs equation(LGHe),which serves as a mathematical model to understand phenomena such as superconductivity and cyclotron waves.The LGHe finds applications in various scientific fields,including fluid dynamics,plasma physics,biological systems,and electricity-electronics.The study adopts Lie symmetry analysis as the primary framework for exploration.This analysis involves the identification of Lie point symmetries that are admitted by the differential equation.By leveraging these Lie point symmetries,symmetry reductions are performed,leading to the discovery of group invariant solutions.To obtain explicit solutions,several mathematical methods are applied,including Kudryashov's method,the extended Jacobi elliptic function expansion method,the power series method,and the simplest equation method.These methods yield solutions characterized by exponential,hyperbolic,and elliptic functions.The obtained solutions are visually represented through 3D,2D,and density plots,which effectively illustrate the nature of the solutions.These plots depict various patterns,such as kink-shaped,singular kink-shaped,bell-shaped,and periodic solutions.Finally,the paper employs the multiplier method and the conservation theorem introduced by Ibragimov to derive conserved vectors.These conserved vectors play a crucial role in the study of physical quantities,such as the conservation of energy and momentum,and contribute to the understanding of the underlying physics of the system.展开更多
In this article,we explore the famous Selkov–Schnakenberg(SS)system of coupled nonlinear partial differential equations(PDEs)for Lie symmetry analysis,self-adjointness,and conservation laws.Moreover,miscellaneous sol...In this article,we explore the famous Selkov–Schnakenberg(SS)system of coupled nonlinear partial differential equations(PDEs)for Lie symmetry analysis,self-adjointness,and conservation laws.Moreover,miscellaneous soliton solutions like dark,bright,periodic,rational,Jacobian elliptic function,Weierstrass elliptic function,and hyperbolic solutions of the SS system will be achieved by a well-known technique called sub-ordinary differential equations.All these results are displayed graphically by 3D,2D,and contour plots.展开更多
As a celebrated nonlinear water wave equation,the Davey–Stewartson equation is widely studied by researchers,especially in the field of mathematical physics.On the basis of the Riemann–Liouville fractional derivativ...As a celebrated nonlinear water wave equation,the Davey–Stewartson equation is widely studied by researchers,especially in the field of mathematical physics.On the basis of the Riemann–Liouville fractional derivative,the time-fractional Davey–Stewartson equation is investigated in this paper.By application of the Lie symmetry analysis approach,the Lie point symmetries and symmetry groups are obtained.At the same time,the similarity reductions are derived.Furthermore,the equation is converted to a system of fractional partial differential equations and a system of fractional ordinary differential equations in the sense of Riemann–Liouville fractional derivative.By virtue of the symmetry corresponding to the scalar transformation,the equation is converted to a system of fractional ordinary differential equations in the sense of Erdélyi–Kober fractional integro-differential operators.By using Noether’s theorem and Ibragimov’s new conservation theorem,the conserved vectors and the conservation laws are derived.Finally,the traveling wave solutions are achieved and plotted.展开更多
In this research article,the(3+1)-dimensional nonlinear Gardner-Kadomtsov-Petviashvili(Gardner-KP)equation which depicts the nonlinear modulation of periodic waves,is analyzed through the Lie group-theoretic technique...In this research article,the(3+1)-dimensional nonlinear Gardner-Kadomtsov-Petviashvili(Gardner-KP)equation which depicts the nonlinear modulation of periodic waves,is analyzed through the Lie group-theoretic technique.Considering the Lie invariance condition,we find the symmetry generators.The pro-posed model yields eight-dimensional Lie algebra.Moreover,an optimal system of sub-algebras is com-puted,and similarity reductions are made.The considered nonlinear partial differential equation is re-duced into ordinary differential equations(ODEs)by utilizing the similarity transformation method(STM),which has the benefit of yielding a large number of accurate traveling wave solutions.These ODEs are further solved to get closed-form solutions of the Gardner-KP equation in some cases,while in other cases,we use the new auxiliary equation method to get its soliton solutions.The evolution profiles of the obtained solutions are examined graphically under the appropriate selection of arbitrary parameters.展开更多
By taking advantage of three different computational analytical methods:the Lie symmetry analysis,the generalized Riccati equation mapping approach,and the modified Kudryashov approach,we construct multiple new analyt...By taking advantage of three different computational analytical methods:the Lie symmetry analysis,the generalized Riccati equation mapping approach,and the modified Kudryashov approach,we construct multiple new analytical soliton solutions to the nonlinear convection-diffusion-reaction equation(NCDR)with power-law nonlinearity and density-dependent diffusion.Lie symmetry analysis is one of the pow-erful techniques that reduce the higher-order partial differential equation into an ordinary differential equation by reduction of independent variables.By the Lie group technique,we obtain one-parameter in-variant transformations,determining equations and corresponding vectors for the considered convection-diffusion-reaction equation.By treating the parameters of the governing equation as constants,the ap-plied methods yield a variety of new closed-form solutions,including inverse function solutions,periodic solutions,exponential function solutions,dark solitons,singular solitons,combo bright-singular solitons,and the combine of bright-dark solitons and dark-bright solitons.Moreover,using the Bäcklund transfor-mation of the generalized Riccati equation and modified Kudryashov method,we can construct multiple solitons and other solutions of the considered equation.The obtained new solutions of this work demon-strate that the used approaches are powerful and effective in dealing with nonlinear equations,and that these solutions are required to explain many biological and physical phenomena.Comparing our obtained solutions of this paper with the ones obtained in the literature,we see that our solutions are new and not reported elsewhere.These newly formed soliton solutions will be more beneficial in the various dis-ciplines of ocean engineering,plasma physics,and nonlinear sciences.展开更多
文摘Three dimensional space is said to be spherically symmetric if it admits SO(3) as the group of isometries. Under this symmetry condition, the Einstein’s Field equations for vacuum, yields the Schwarzschild Metric as the unique solution, which essentially is the statement of the well known Birkhoff’s Theorem. Geometrically speaking this theorem claims that the pseudo-Riemanian space-times provide more isometries than expected from the original metric holonomy/ansatz. In this paper we use the method of Lie Symmetry Analysis to analyze the Einstein’s Vacuum Field Equations so as to obtain the Symmetry Generators of the corresponding Differential Equation. Additionally, applying the Noether Point Symmetry method we have obtained the conserved quantities corresponding to the generators of the Schwarzschild Lagrangian and paving way to reformulate the Birkhoff’s Theorem from a different approach.
基金Supported by the National Natural Science Foundation of China under Grant Nos.11171041 and 10971018the Natural Science Foundation of Shandong Province under Grant No.ZR2010AM029+1 种基金the Promotive Research Fund for Young and Middle-Aged Scientists of Shandong Province under Grant No.BS2010SF001the Doctoral Foundation of Binzhou University under Grant No.2009Y01
文摘This paper is concerned with the (2+1)-dimensional Burgers' and heat types of equations.All of the geometic vector fields of the equations are obtained,an optimal system of the equation is presented.Especially,the Bcklund transformations (BTs) for the Burgers' equations are constructed based on the symmetry.Then,all of the symmetry reductions are provided in terms of the optimal system method,and the exact explicit solutions are investigated by the symmetry reductions and Bcklund transformations.
文摘In this paper,we use the symmetry of the Lie group analysis as one of the powerful tools that deals with the wide class of fractional order differential equations in the Riemann–Liouville concept.In this study,first,we employ the classical and nonclassical Lie symmetries(LS)to acquire similarity reductions of the nonlinear fractional far field Korteweg–de Vries(KdV)equation,and second,we find the related exact solutions for the derived generators.Finally,according to the LS generators acquired,we construct conservation laws for related classical and nonclassical vector fields of the fractional far field KdV equation.
文摘In this manuscript, we first perform a complete Lie symmetry classification for a higher-dimensional shallow water wave equation and then construct the corresponding reduced equations with the obtained Lie symmetries. Moreover, with the extended <em>F</em>-expansion method, we obtain several new nonlinear wave solutions involving differentiable arbitrary functions, expressed by Jacobi elliptic function, Weierstrass elliptic function, hyperbolic function and trigonometric function.
基金the South African National Space Agency (SANSA) for funding this work
文摘This paper is devoted to the investigation of the Landau–Ginzburg–Higgs equation(LGHe),which serves as a mathematical model to understand phenomena such as superconductivity and cyclotron waves.The LGHe finds applications in various scientific fields,including fluid dynamics,plasma physics,biological systems,and electricity-electronics.The study adopts Lie symmetry analysis as the primary framework for exploration.This analysis involves the identification of Lie point symmetries that are admitted by the differential equation.By leveraging these Lie point symmetries,symmetry reductions are performed,leading to the discovery of group invariant solutions.To obtain explicit solutions,several mathematical methods are applied,including Kudryashov's method,the extended Jacobi elliptic function expansion method,the power series method,and the simplest equation method.These methods yield solutions characterized by exponential,hyperbolic,and elliptic functions.The obtained solutions are visually represented through 3D,2D,and density plots,which effectively illustrate the nature of the solutions.These plots depict various patterns,such as kink-shaped,singular kink-shaped,bell-shaped,and periodic solutions.Finally,the paper employs the multiplier method and the conservation theorem introduced by Ibragimov to derive conserved vectors.These conserved vectors play a crucial role in the study of physical quantities,such as the conservation of energy and momentum,and contribute to the understanding of the underlying physics of the system.
文摘In this article,we explore the famous Selkov–Schnakenberg(SS)system of coupled nonlinear partial differential equations(PDEs)for Lie symmetry analysis,self-adjointness,and conservation laws.Moreover,miscellaneous soliton solutions like dark,bright,periodic,rational,Jacobian elliptic function,Weierstrass elliptic function,and hyperbolic solutions of the SS system will be achieved by a well-known technique called sub-ordinary differential equations.All these results are displayed graphically by 3D,2D,and contour plots.
基金the National Natural Science Foundation of China(Grant No.11975143)。
文摘As a celebrated nonlinear water wave equation,the Davey–Stewartson equation is widely studied by researchers,especially in the field of mathematical physics.On the basis of the Riemann–Liouville fractional derivative,the time-fractional Davey–Stewartson equation is investigated in this paper.By application of the Lie symmetry analysis approach,the Lie point symmetries and symmetry groups are obtained.At the same time,the similarity reductions are derived.Furthermore,the equation is converted to a system of fractional partial differential equations and a system of fractional ordinary differential equations in the sense of Riemann–Liouville fractional derivative.By virtue of the symmetry corresponding to the scalar transformation,the equation is converted to a system of fractional ordinary differential equations in the sense of Erdélyi–Kober fractional integro-differential operators.By using Noether’s theorem and Ibragimov’s new conservation theorem,the conserved vectors and the conservation laws are derived.Finally,the traveling wave solutions are achieved and plotted.
基金The authors would like to thank the Deanship of Scientific Research at Majmaah University for supporting this work under Project R-2022-178.
文摘In this research article,the(3+1)-dimensional nonlinear Gardner-Kadomtsov-Petviashvili(Gardner-KP)equation which depicts the nonlinear modulation of periodic waves,is analyzed through the Lie group-theoretic technique.Considering the Lie invariance condition,we find the symmetry generators.The pro-posed model yields eight-dimensional Lie algebra.Moreover,an optimal system of sub-algebras is com-puted,and similarity reductions are made.The considered nonlinear partial differential equation is re-duced into ordinary differential equations(ODEs)by utilizing the similarity transformation method(STM),which has the benefit of yielding a large number of accurate traveling wave solutions.These ODEs are further solved to get closed-form solutions of the Gardner-KP equation in some cases,while in other cases,we use the new auxiliary equation method to get its soliton solutions.The evolution profiles of the obtained solutions are examined graphically under the appropriate selection of arbitrary parameters.
文摘By taking advantage of three different computational analytical methods:the Lie symmetry analysis,the generalized Riccati equation mapping approach,and the modified Kudryashov approach,we construct multiple new analytical soliton solutions to the nonlinear convection-diffusion-reaction equation(NCDR)with power-law nonlinearity and density-dependent diffusion.Lie symmetry analysis is one of the pow-erful techniques that reduce the higher-order partial differential equation into an ordinary differential equation by reduction of independent variables.By the Lie group technique,we obtain one-parameter in-variant transformations,determining equations and corresponding vectors for the considered convection-diffusion-reaction equation.By treating the parameters of the governing equation as constants,the ap-plied methods yield a variety of new closed-form solutions,including inverse function solutions,periodic solutions,exponential function solutions,dark solitons,singular solitons,combo bright-singular solitons,and the combine of bright-dark solitons and dark-bright solitons.Moreover,using the Bäcklund transfor-mation of the generalized Riccati equation and modified Kudryashov method,we can construct multiple solitons and other solutions of the considered equation.The obtained new solutions of this work demon-strate that the used approaches are powerful and effective in dealing with nonlinear equations,and that these solutions are required to explain many biological and physical phenomena.Comparing our obtained solutions of this paper with the ones obtained in the literature,we see that our solutions are new and not reported elsewhere.These newly formed soliton solutions will be more beneficial in the various dis-ciplines of ocean engineering,plasma physics,and nonlinear sciences.