A catastrophic landslide occurred at Hongao dumpsite in Guangming New District of Shenzhen, South China, on December 20, 2015. An estimated total volume of 2.73×106 m3 of construction spoils was mobilized during ...A catastrophic landslide occurred at Hongao dumpsite in Guangming New District of Shenzhen, South China, on December 20, 2015. An estimated total volume of 2.73×106 m3 of construction spoils was mobilized during this event. The landslide traveled a long distance on a low-relief terrain. The affected area was approximately 1100 m in length and 630 m in width. This landslide made 33 buildings destroyed, 73 people died and 4 people lost. Due to the special dumping history and other factors, soil in this landfill is of high initial water content. To identify the major factors that attribute to the long runout character, a two-phase flow model of Iverson and George was used to simulate the dynamics of this landslide. The influence of initial hydraulic permeability, initial dilatancy, and earth pressure coefficient was examined through numerical simulations. We found that pore pressure has the most significant effect on the dynamic characteristics of Shenzhen landslides. Average pore pressure ratio ofthe whole basal surface was used to evaluate the degree of liquefaction for the sliding material. The evolution and influence factors of this ratio were analyzed based on the computational results. An exponential function was proposed to fit the evolution curve of the average pore pressure ratio, which can be used as a reasonable and simplified evaluation of the pore pressure. This fitting function can be utilized to improve the single-phase flow model.展开更多
Study on the grain size distribution characteristics and the frictional strength behavior of the slide deposits are helpful to disclose the landslide runout process and understand the mechanism of a long runout landsl...Study on the grain size distribution characteristics and the frictional strength behavior of the slide deposits are helpful to disclose the landslide runout process and understand the mechanism of a long runout landslide. We performed grain size distribution analysis on samples collected from Chenjiaba landslide induced by Wenchuan earthquake. The grain size distribution of samples from the landslide sections quantitatively depicts a gradual coarsening upward grading from shear zone to the top section. Then a multistage-multiphase ring shearing approach was used to determine a comparative shear strength behavior of samples from each landslide section. In this method, a sample was sheared continuously for large displacement and fast rate on different normal stress conditions. The multiphase shear mode with a maximum of 105 mm/min rate has allowed observing the qualitative change and patterns of the frictional resistance behaviors of soils under different normal stresses. The results of coefficient of friction values under multiphase shear mode have shown substantial post peak shear weakening behaviors after large shear displacement that can be narrated with long runout processes. The shear strength test results indicate that the shear zone samples have developed higher friction angle values compared to overlying section samples, on the last phase of shear process, which may be very important to understand the braking mechanism of a long runout landslide.展开更多
The upper reaches of the Minjiang River are in the eastern margin of the Tibetan Plateau,where active faults are well developed and earthquakes frequently occur.Anomalous climate change and the extremely complex geome...The upper reaches of the Minjiang River are in the eastern margin of the Tibetan Plateau,where active faults are well developed and earthquakes frequently occur.Anomalous climate change and the extremely complex geomechanical properties of rock and soil have resulted in a number of geohazards.Based on the analysis of remote sensing interpretations,geological field surveys,geophysical prospecting and geological dating results,this paper discusses the developmental characteristics of the Gamisi ancient landslide in Songpan County,Sichuan Province,and investigates its geological age and formation mechanism.This study finds that the Gamisi ancient landslide is in the periglacial region of the Minshan Mountain and formed approximately 25 ka BP.The landslide initiation zone has a collapse and slide zone of approximately 22.65×106–31.7×106 m3 and shows a maximum sliding distance of approximately 1.42 km,with an elevation difference of approximately 310 m between the back wall of the landslide and the leading edge of the accumulation area.The landslide movement was characterized by a high speed and long runout.During the sliding process,the landslide body eroded and dammed the ancient Minjiang River valley.The ancient river channel was buried 30-60 m below the surface of the landslide accumulation area.Geophysical prospecting and drilling observations revealed that the ancient riverbed was approximately 80-100 m thick.After the dam broke,the Minjiang River was migrated to the current channel at the leading edge of the landslide.The Gamisi ancient landslide was greatly affected by the regional crustal uplift,topography,geomorphology and paleoclimatic change.The combined action of periglacial karstification and climate change caused the limestone at the rear edge of the landslide fractured,thus providing a lithological foundation for landslide occurrence.Intense tectonic activity along the Minjiang Fault,which runs through the middle and trailing parts of the Gamisi ancient landslide,may have been the main factor inducing landsliding.Studying the Gamisi ancient landslide is of great significance for investigating the regional response to paleoclimatic change and geomorphologic evolution of the Minjiang Fault since the late Pleistocene and for disaster prevention and mitigation.展开更多
A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 m...A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.展开更多
基金supported by the National Key R&D Program of China(Grant Nos.2017YFC1502502,2017YFC1502506)National Nature Science Foundation of China(Grant Nos.41672318,51679229,41372331)+1 种基金135 Strategic Program of the Institute of Mountain Hazards and Environment,CAS(Grant No.SDS-135-1701)supported by Youth Innovation Promotion Association of the Chinese Academy of Sciences(2018405)
文摘A catastrophic landslide occurred at Hongao dumpsite in Guangming New District of Shenzhen, South China, on December 20, 2015. An estimated total volume of 2.73×106 m3 of construction spoils was mobilized during this event. The landslide traveled a long distance on a low-relief terrain. The affected area was approximately 1100 m in length and 630 m in width. This landslide made 33 buildings destroyed, 73 people died and 4 people lost. Due to the special dumping history and other factors, soil in this landfill is of high initial water content. To identify the major factors that attribute to the long runout character, a two-phase flow model of Iverson and George was used to simulate the dynamics of this landslide. The influence of initial hydraulic permeability, initial dilatancy, and earth pressure coefficient was examined through numerical simulations. We found that pore pressure has the most significant effect on the dynamic characteristics of Shenzhen landslides. Average pore pressure ratio ofthe whole basal surface was used to evaluate the degree of liquefaction for the sliding material. The evolution and influence factors of this ratio were analyzed based on the computational results. An exponential function was proposed to fit the evolution curve of the average pore pressure ratio, which can be used as a reasonable and simplified evaluation of the pore pressure. This fitting function can be utilized to improve the single-phase flow model.
基金supported by funds from the Strategic Priority Research Program of the Chinese Academy of Sciences under Grant No.XDA23090402the National Science Foundation of China under the Grants Nos. 41672307, 41790442 and 41702345CAS-TWAS presidential fellowship program for funding his Doctoral study (Ph.D)
文摘Study on the grain size distribution characteristics and the frictional strength behavior of the slide deposits are helpful to disclose the landslide runout process and understand the mechanism of a long runout landslide. We performed grain size distribution analysis on samples collected from Chenjiaba landslide induced by Wenchuan earthquake. The grain size distribution of samples from the landslide sections quantitatively depicts a gradual coarsening upward grading from shear zone to the top section. Then a multistage-multiphase ring shearing approach was used to determine a comparative shear strength behavior of samples from each landslide section. In this method, a sample was sheared continuously for large displacement and fast rate on different normal stress conditions. The multiphase shear mode with a maximum of 105 mm/min rate has allowed observing the qualitative change and patterns of the frictional resistance behaviors of soils under different normal stresses. The results of coefficient of friction values under multiphase shear mode have shown substantial post peak shear weakening behaviors after large shear displacement that can be narrated with long runout processes. The shear strength test results indicate that the shear zone samples have developed higher friction angle values compared to overlying section samples, on the last phase of shear process, which may be very important to understand the braking mechanism of a long runout landslide.
基金supported by the National Natural Science Foundation of China(41731287,41877279)China Geological Survey Project(DD20160271)
文摘The upper reaches of the Minjiang River are in the eastern margin of the Tibetan Plateau,where active faults are well developed and earthquakes frequently occur.Anomalous climate change and the extremely complex geomechanical properties of rock and soil have resulted in a number of geohazards.Based on the analysis of remote sensing interpretations,geological field surveys,geophysical prospecting and geological dating results,this paper discusses the developmental characteristics of the Gamisi ancient landslide in Songpan County,Sichuan Province,and investigates its geological age and formation mechanism.This study finds that the Gamisi ancient landslide is in the periglacial region of the Minshan Mountain and formed approximately 25 ka BP.The landslide initiation zone has a collapse and slide zone of approximately 22.65×106–31.7×106 m3 and shows a maximum sliding distance of approximately 1.42 km,with an elevation difference of approximately 310 m between the back wall of the landslide and the leading edge of the accumulation area.The landslide movement was characterized by a high speed and long runout.During the sliding process,the landslide body eroded and dammed the ancient Minjiang River valley.The ancient river channel was buried 30-60 m below the surface of the landslide accumulation area.Geophysical prospecting and drilling observations revealed that the ancient riverbed was approximately 80-100 m thick.After the dam broke,the Minjiang River was migrated to the current channel at the leading edge of the landslide.The Gamisi ancient landslide was greatly affected by the regional crustal uplift,topography,geomorphology and paleoclimatic change.The combined action of periglacial karstification and climate change caused the limestone at the rear edge of the landslide fractured,thus providing a lithological foundation for landslide occurrence.Intense tectonic activity along the Minjiang Fault,which runs through the middle and trailing parts of the Gamisi ancient landslide,may have been the main factor inducing landsliding.Studying the Gamisi ancient landslide is of great significance for investigating the regional response to paleoclimatic change and geomorphologic evolution of the Minjiang Fault since the late Pleistocene and for disaster prevention and mitigation.
基金supported by the China Geological Survey Project(Grant No.DD20211314)the Fundamental Research Funds for Chinese Academy of Geological Science(No.JKY202122).
文摘A calamitous landslide happened at 22:00 on September 1,2014 in the Yunyang area of Chongqing City,southwest China,enforcing the evacuation of 508 people and damaging 23 buildings.The landslide volume comprised 1.44 million m^(3) of material in the source area and 0.4 million m^(3) of shoveled material.The debris flow runout extended 400 m vertically and 1600 m horizontally.The Xianchi reservoir landslide event has been investigated as follows:(1)samples collected from the main body of landslide were carried out using GCTS ring shear apparatus;(2)the parameters of shear and pore water pressure have been measured;and(3)the post-failure characteristics of landslide have been analyzed using the numerical simulation method.The excess pore-water pressure and erosion in the motion path are considered to be the key reasons for the long-runout motion and the scale-up of landslides,such as that at Xianchi,were caused by the heavy rainfall.The aim of this paper is to acquired numerical parameters and the basic resistance model,which is beneficial to improve simulation accuracy for hazard assessment for similar to potentially dangerous hillslopes in China and elsewhere.