Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G...Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G mobile networks.High-security cryptography guarantees that essential data can be transmitted securely;however,it increases energy consumption and reduces data processing speed.Therefore,this study proposes a low-energy data encryption(LEDE)algorithm based on the Advanced Encryption Standard(AES)for improving data transmission security and reducing the energy consumption of encryption in Internet-of-Things(IoT)devices.In the proposed LEDE algorithm,the system time parameter is employed to create a dynamic S-Box to replace the static S-Box of AES.Tests indicated that six-round LEDE encryption achieves the same security level as 10-round conventional AES encryption.This reduction in encryption time results in the LEDE algorithm having a 67.4%lower energy consumption and 43.9%shorter encryption time than conventional AES;thus,the proposed LEDE algorithm can improve the performance and the energy consumption of IoT edge devices.展开更多
We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that prov...We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.展开更多
Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady perform...Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.展开更多
Despite only being around for a few years, mobile devices have steadily risen to become the most extensively used computer devices. Given the number of people who rely on smartphones, which can install third-party app...Despite only being around for a few years, mobile devices have steadily risen to become the most extensively used computer devices. Given the number of people who rely on smartphones, which can install third-party apps, it has become an increasingly important issue for end-users and service providers to ensure that both the devices and the underlying network are secure. People will become more reliant on applications such as SMS, MMS, Internet Access, Online Transactions, and so on due to such features and capabilities. Thousands of devices ranging from low-cost phones to high-end luxury phones are powered by the Android operating system, which has dominated the smartphone marketplace. It is about making it possible for people from all socioeconomic backgrounds to get and use mobile devices in their daily activities. In response to this growing popularity, the number of new applications introduced to the Android market has skyrocketed. The recent appearance of a wide range of mobile malware has caught the attention of security professionals and scholars alike. In light of the ongoing expansion of the mobile phone industry, the likelihood of it being used in criminal activities will only continue to rise in the future. This article reviews the literature on malware detection and prevention in Android mobile devices, analyzes the existing literature on major studies and tasks, and covers articles, journals, and digital resources such as Internet security publications, scientific studies, and conferences.展开更多
In today’s era, where mobile devices have become an integral part of our daily lives, ensuring the security of mobile applications has become increasingly crucial. Mobile penetration testing, a specialized subfield w...In today’s era, where mobile devices have become an integral part of our daily lives, ensuring the security of mobile applications has become increasingly crucial. Mobile penetration testing, a specialized subfield within the realm of cybersecurity, plays a vital role in safeguarding mobile ecosystems against the ever-evolving landscape of threats. The ubiquity of mobile devices has made them a prime target for cybercriminals, and the data and functionality accessed through mobile applications make them valuable assets to protect. Mobile penetration testing is designed to identify vulnerabilities, weaknesses, and potential exploits within mobile applications and the devices themselves. Unlike traditional penetration testing, which often focuses on network and server security, mobile penetration testing zeroes in on the unique challenges posed by mobile platforms. Mobile penetration testing, a specialized field within cybersecurity, is an essential tool in the Cybersecurity specialists’ toolkit to protect mobile ecosystems from emerging threats. This article introduces mobile penetration testing, emphasizing its significance, including comprehensive learning labs for Android and iOS platforms, and highlighting how it distinctly differs from traditional penetration testing methodologies.展开更多
Mobile Edge Computing(MEC) is an emerging technology in 5G era which enables the provision of the cloud and IT services within the close proximity of mobile subscribers.It allows the availability of the cloud servers ...Mobile Edge Computing(MEC) is an emerging technology in 5G era which enables the provision of the cloud and IT services within the close proximity of mobile subscribers.It allows the availability of the cloud servers inside or adjacent to the base station.The endto-end latency perceived by the mobile user is therefore reduced with the MEC platform.The context-aware services are able to be served by the application developers by leveraging the real time radio access network information from MEC.The MEC additionally enables the compute intensive applications execution in the resource constraint devices with the collaborative computing involving the cloud servers.This paper presents the architectural description of the MEC platform as well as the key functionalities enabling the above features.The relevant state-of-the-art research efforts are then surveyed.The paper finally discusses and identifies the open research challenges of MEC.展开更多
By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-grow...By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.展开更多
In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mo...In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mobileapps. The use of these apps eases our daily lives, and all customers who need any type of service can accessit easily, comfortably, and efficiently through mobile apps. Particularly, Saudi Arabia greatly depends on digitalservices to assist people and visitors. Such mobile devices are used in organizing daily work schedules and services,particularly during two large occasions, Umrah and Hajj. However, pilgrims encounter mobile app issues such asslowness, conflict, unreliability, or user-unfriendliness. Pilgrims comment on these issues on mobile app platformsthrough reviews of their experiences with these digital services. Scholars have made several attempts to solve suchmobile issues by reporting bugs or non-functional requirements by utilizing user comments.However, solving suchissues is a great challenge, and the issues still exist. Therefore, this study aims to propose a hybrid deep learningmodel to classify and predict mobile app software issues encountered by millions of pilgrims during the Hajj andUmrah periods from the user perspective. Firstly, a dataset was constructed using user-generated comments fromrelevant mobile apps using natural language processing methods, including information extraction, the annotationprocess, and pre-processing steps, considering a multi-class classification problem. Then, several experimentswere conducted using common machine learning classifiers, Artificial Neural Networks (ANN), Long Short-TermMemory (LSTM), and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) architectures, toexamine the performance of the proposed model. Results show 96% in F1-score and accuracy, and the proposedmodel outperformed the mentioned models.展开更多
How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is pro...How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.展开更多
The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-base...The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.展开更多
Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the applicat...Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.展开更多
In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of ...In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.展开更多
This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. ...This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.展开更多
With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protecti...With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protection of mobile users’privacy information.At present,mobile user authenticationmethods based on humancomputer interaction have been extensively studied due to their advantages of high precision and non-perception,but there are still shortcomings such as low data collection efficiency,untrustworthy participating nodes,and lack of practicability.To this end,this paper proposes a privacy-enhanced mobile user authentication method with motion sensors,which mainly includes:(1)Construct a smart contract-based private chain and federated learning to improve the data collection efficiency of mobile user authentication,reduce the probability of the model being bypassed by attackers,and reduce the overhead of data centralized processing and the risk of privacy leakage;(2)Use certificateless encryption to realize the authentication of the device to ensure the credibility of the client nodes participating in the calculation;(3)Combine Variational Mode Decomposition(VMD)and Long Short-TermMemory(LSTM)to analyze and model the motion sensor data of mobile devices to improve the accuracy of model certification.The experimental results on the real environment dataset of 1513 people show that themethod proposed in this paper can effectively resist poisoning attacks while ensuring the accuracy and efficiency of mobile user authentication.展开更多
Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of th...Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality.展开更多
A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation...A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.展开更多
Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation.While traditional methods for task allocation can help reduce costs and improve efficiency,they may encoun...Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation.While traditional methods for task allocation can help reduce costs and improve efficiency,they may encounter challenges when dealing with abnormal data flow nodes,leading to decreased allocation accuracy and efficiency.To address these issues,this study proposes a novel two-part invalid detection task allocation framework.In the first step,an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous data.Compared to the baseline method,the model achieves an approximately 4%increase in the F1 value on the public dataset.In the second step of the framework,task allocation modeling is performed using a twopart graph matching method.This phase introduces a P-queue KM algorithm that implements a more efficient optimization strategy.The allocation efficiency is improved by approximately 23.83%compared to the baseline method.Empirical results confirm the effectiveness of the proposed framework in detecting abnormal data nodes,enhancing allocation precision,and achieving efficient allocation.展开更多
Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms i...Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety.展开更多
Mobile technology is developing significantly.Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners.Typically,computer vision models focus on image detection and cla...Mobile technology is developing significantly.Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners.Typically,computer vision models focus on image detection and classification issues.MobileNetV2 is a computer vision model that performs well on mobile devices,but it requires cloud services to process biometric image information and provide predictions to users.This leads to increased latency.Processing biometrics image datasets on mobile devices will make the prediction faster,but mobiles are resource-restricted devices in terms of storage,power,and computational speed.Hence,a model that is small in size,efficient,and has good prediction quality for biometrics image classification problems is required.Quantizing pre-trained CNN(PCNN)MobileNetV2 architecture combined with a Support Vector Machine(SVM)compacts the model representation and reduces the computational cost and memory requirement.This proposed novel approach combines quantized pre-trained CNN(PCNN)MobileNetV2 architecture with a Support Vector Machine(SVM)to represent models efficiently with low computational cost and memory.Our contributions include evaluating three CNN models for ocular disease identification in transfer learning and deep feature plus SVM approaches,showing the superiority of deep features from MobileNetV2 and SVM classification models,comparing traditional methods,exploring six ocular diseases and normal classification with 20,111 images postdata augmentation,and reducing the number of trainable models.The model is trained on ocular disorder retinal fundus image datasets according to the severity of six age-related macular degeneration(AMD),one of the most common eye illnesses,Cataract,Diabetes,Glaucoma,Hypertension,andMyopia with one class Normal.From the experiment outcomes,it is observed that the suggested MobileNetV2-SVM model size is compressed.The testing accuracy for MobileNetV2-SVM,InceptionV3,and MobileNetV2 is 90.11%,86.88%,and 89.76%respectively while MobileNetV2-SVM,InceptionV3,and MobileNetV2 accuracy are observed to be 92.59%,83.38%,and 90.16%,respectively.The proposed novel technique can be used to classify all biometric medical image datasets on mobile devices.展开更多
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金This work was supported by the National Science and Technology Council,Taiwan,under Project NSTC 112-2221-E-029-015.
文摘Various mobile devices and applications are now used in daily life.These devices require high-speed data processing,low energy consumption,low communication latency,and secure data transmission,especially in 5G and 6G mobile networks.High-security cryptography guarantees that essential data can be transmitted securely;however,it increases energy consumption and reduces data processing speed.Therefore,this study proposes a low-energy data encryption(LEDE)algorithm based on the Advanced Encryption Standard(AES)for improving data transmission security and reducing the energy consumption of encryption in Internet-of-Things(IoT)devices.In the proposed LEDE algorithm,the system time parameter is employed to create a dynamic S-Box to replace the static S-Box of AES.Tests indicated that six-round LEDE encryption achieves the same security level as 10-round conventional AES encryption.This reduction in encryption time results in the LEDE algorithm having a 67.4%lower energy consumption and 43.9%shorter encryption time than conventional AES;thus,the proposed LEDE algorithm can improve the performance and the energy consumption of IoT edge devices.
基金Project supported by the National Natural Science Foundation of China (Grant No.62073045)。
文摘We develop a policy of observer-based dynamic event-triggered state feedback control for distributed parameter systems over a mobile sensor-plus-actuator network.It is assumed that the mobile sensing devices that provide spatially averaged state measurements can be used to improve state estimation in the network.For the purpose of decreasing the update frequency of controller and unnecessary sampled data transmission, an efficient dynamic event-triggered control policy is constructed.In an event-triggered system, when an error signal exceeds a specified time-varying threshold, it indicates the occurrence of a typical event.The global asymptotic stability of the event-triggered closed-loop system and the boundedness of the minimum inter-event time can be guaranteed.Based on the linear quadratic optimal regulator, the actuator selects the optimal displacement only when an event occurs.A simulation example is finally used to verify that the effectiveness of such a control strategy can enhance the system performance.
基金supported by the Natural Science Foundation of China (No.62171051)。
文摘Puncturing has been recognized as a promising technology to cope with the coexistence problem of enhanced mobile broadband(eMBB) and ultra-reliable low latency communications(URLLC)traffic. However, the steady performance of eMBB traffic while meeting the requirements of URLLC traffic with puncturing is a major challenge in some realistic scenarios. In this paper, we pay attention to the timely and energy-efficient processing for eMBB traffic in the industrial Internet of Things(IIoT), where mobile edge computing(MEC) is employed for data processing. Specifically, the performance of eMBB traffic and URLLC traffic in a MEC-based IIoT system is ensured by setting the threshold of tolerable delay and outage probability, respectively. Furthermore,considering the limited energy supply, an energy minimization problem of eMBB device is formulated under the above constraints, by jointly optimizing the resource blocks(RBs) punctured by URLLC traffic, data offloading and transmit power of eMBB device. With Markov's inequality, the problem is reformulated by transforming the probabilistic outage constraint into a deterministic constraint. Meanwhile, an iterative energy minimization algorithm(IEMA) is proposed.Simulation results demonstrate that our algorithm has a significant reduction in the energy consumption for eMBB device and achieves a better overall effect compared to several benchmarks.
文摘Despite only being around for a few years, mobile devices have steadily risen to become the most extensively used computer devices. Given the number of people who rely on smartphones, which can install third-party apps, it has become an increasingly important issue for end-users and service providers to ensure that both the devices and the underlying network are secure. People will become more reliant on applications such as SMS, MMS, Internet Access, Online Transactions, and so on due to such features and capabilities. Thousands of devices ranging from low-cost phones to high-end luxury phones are powered by the Android operating system, which has dominated the smartphone marketplace. It is about making it possible for people from all socioeconomic backgrounds to get and use mobile devices in their daily activities. In response to this growing popularity, the number of new applications introduced to the Android market has skyrocketed. The recent appearance of a wide range of mobile malware has caught the attention of security professionals and scholars alike. In light of the ongoing expansion of the mobile phone industry, the likelihood of it being used in criminal activities will only continue to rise in the future. This article reviews the literature on malware detection and prevention in Android mobile devices, analyzes the existing literature on major studies and tasks, and covers articles, journals, and digital resources such as Internet security publications, scientific studies, and conferences.
文摘In today’s era, where mobile devices have become an integral part of our daily lives, ensuring the security of mobile applications has become increasingly crucial. Mobile penetration testing, a specialized subfield within the realm of cybersecurity, plays a vital role in safeguarding mobile ecosystems against the ever-evolving landscape of threats. The ubiquity of mobile devices has made them a prime target for cybercriminals, and the data and functionality accessed through mobile applications make them valuable assets to protect. Mobile penetration testing is designed to identify vulnerabilities, weaknesses, and potential exploits within mobile applications and the devices themselves. Unlike traditional penetration testing, which often focuses on network and server security, mobile penetration testing zeroes in on the unique challenges posed by mobile platforms. Mobile penetration testing, a specialized field within cybersecurity, is an essential tool in the Cybersecurity specialists’ toolkit to protect mobile ecosystems from emerging threats. This article introduces mobile penetration testing, emphasizing its significance, including comprehensive learning labs for Android and iOS platforms, and highlighting how it distinctly differs from traditional penetration testing methodologies.
文摘Mobile Edge Computing(MEC) is an emerging technology in 5G era which enables the provision of the cloud and IT services within the close proximity of mobile subscribers.It allows the availability of the cloud servers inside or adjacent to the base station.The endto-end latency perceived by the mobile user is therefore reduced with the MEC platform.The context-aware services are able to be served by the application developers by leveraging the real time radio access network information from MEC.The MEC additionally enables the compute intensive applications execution in the resource constraint devices with the collaborative computing involving the cloud servers.This paper presents the architectural description of the MEC platform as well as the key functionalities enabling the above features.The relevant state-of-the-art research efforts are then surveyed.The paper finally discusses and identifies the open research challenges of MEC.
基金supported in part by the National Natural Science Foundation of China under Grant 62171465,62072303,62272223,U22A2031。
文摘By pushing computation,cache,and network control to the edge,mobile edge computing(MEC)is expected to play a leading role in fifth generation(5G)and future sixth generation(6G).Nevertheless,facing ubiquitous fast-growing computational demands,it is impossible for a single MEC paradigm to effectively support high-quality intelligent services at end user equipments(UEs).To address this issue,we propose an air-ground collaborative MEC(AGCMEC)architecture in this article.The proposed AGCMEC integrates all potentially available MEC servers within air and ground in the envisioned 6G,by a variety of collaborative ways to provide computation services at their best for UEs.Firstly,we introduce the AGC-MEC architecture and elaborate three typical use cases.Then,we discuss four main challenges in the AGC-MEC as well as their potential solutions.Next,we conduct a case study of collaborative service placement for AGC-MEC to validate the effectiveness of the proposed collaborative service placement strategy.Finally,we highlight several potential research directions of the AGC-MEC.
文摘In the last decade, technical advancements and faster Internet speeds have also led to an increasing number ofmobile devices and users. Thus, all contributors to society, whether young or old members, can use these mobileapps. The use of these apps eases our daily lives, and all customers who need any type of service can accessit easily, comfortably, and efficiently through mobile apps. Particularly, Saudi Arabia greatly depends on digitalservices to assist people and visitors. Such mobile devices are used in organizing daily work schedules and services,particularly during two large occasions, Umrah and Hajj. However, pilgrims encounter mobile app issues such asslowness, conflict, unreliability, or user-unfriendliness. Pilgrims comment on these issues on mobile app platformsthrough reviews of their experiences with these digital services. Scholars have made several attempts to solve suchmobile issues by reporting bugs or non-functional requirements by utilizing user comments.However, solving suchissues is a great challenge, and the issues still exist. Therefore, this study aims to propose a hybrid deep learningmodel to classify and predict mobile app software issues encountered by millions of pilgrims during the Hajj andUmrah periods from the user perspective. Firstly, a dataset was constructed using user-generated comments fromrelevant mobile apps using natural language processing methods, including information extraction, the annotationprocess, and pre-processing steps, considering a multi-class classification problem. Then, several experimentswere conducted using common machine learning classifiers, Artificial Neural Networks (ANN), Long Short-TermMemory (LSTM), and Convolutional Neural Network Long Short-Term Memory (CNN-LSTM) architectures, toexamine the performance of the proposed model. Results show 96% in F1-score and accuracy, and the proposedmodel outperformed the mentioned models.
文摘How to use a few defect samples to complete the defect classification is a key challenge in the production of mobile phone screens.An attention-relation network for the mobile phone screen defect classification is proposed in this paper.The architecture of the attention-relation network contains two modules:a feature extract module and a feature metric module.Different from other few-shot models,an attention mechanism is applied to metric learning in our model to measure the distance between features,so as to pay attention to the correlation between features and suppress unwanted information.Besides,we combine dilated convolution and skip connection to extract more feature information for follow-up processing.We validate attention-relation network on the mobile phone screen defect dataset.The experimental results show that the classification accuracy of the attentionrelation network is 0.9486 under the 5-way 1-shot training strategy and 0.9039 under the 5-way 5-shot setting.It achieves the excellent effect of classification for mobile phone screen defects and outperforms with dominant advantages.
基金the China Scholarship Council(202106690037)the Natural Science Foundation of Anhui Province(19080885QE194)。
文摘The trajectory tracking control performance of nonholonomic wheeled mobile robots(NWMRs)is subject to nonholonomic constraints,system uncertainties,and external disturbances.This paper proposes a barrier function-based adaptive sliding mode control(BFASMC)method to provide high-precision,fast-response performance and robustness for NWMRs.Compared with the conventional adaptive sliding mode control,the proposed control strategy can guarantee that the sliding mode variables converge to a predefined neighborhood of origin with a predefined reaching time independent of the prior knowledge of the uncertainties and disturbances bounds.Another advantage of the proposed algorithm is that the control gains can be adaptively adjusted to follow the disturbances amplitudes thanks to the barrier function.The benefit is that the overestimation of control gain can be eliminated,resulting in chattering reduction.Moreover,a modified barrier function-like control gain is employed to prevent the input saturation problem due to the physical limit of the actuator.The stability analysis and comparative experiments demonstrate that the proposed BFASMC can ensure the prespecified convergence performance of the NWMR system output variables and strong robustness against uncertainties/disturbances.
基金supported by the Jiangsu Provincial Key Research and Development Program(No.BE2020084-4)the National Natural Science Foundation of China(No.92067201)+2 种基金the National Natural Science Foundation of China(61871446)the Open Research Fund of Jiangsu Key Laboratory of Wireless Communications(710020017002)the Natural Science Foundation of Nanjing University of Posts and telecommunications(NY220047).
文摘Reliable communication and intensive computing power cannot be provided effectively by temporary hot spots in disaster areas and complex terrain ground infrastructure.Mitigating this has greatly developed the application and integration of UAV and Mobile Edge Computing(MEC)to the Internet of Things(loT).However,problems such as multi-user and huge data flow in large areas,which contradict the reality that a single UAV is constrained by limited computing power,still exist.Due to allowing UAV collaboration to accomplish complex tasks,cooperative task offloading between multiple UAVs must meet the interdependence of tasks and realize parallel processing,which reduces the computing power consumption and endurance pressure of terminals.Considering the computing requirements of the user terminal,delay constraint of a computing task,energy constraint,and safe distance of UAV,we constructed a UAV-Assisted cooperative offloading energy efficiency system for mobile edge computing to minimize user terminal energy consumption.However,the resulting optimization problem is originally nonconvex and thus,difficult to solve optimally.To tackle this problem,we developed an energy efficiency optimization algorithm using Block Coordinate Descent(BCD)that decomposes the problem into three convex subproblems.Furthermore,we jointly optimized the number of local computing tasks,number of computing offloaded tasks,trajectories of UAV,and offloading matching relationship between multi-UAVs and multiuser terminals.Simulation results show that the proposed approach is suitable for different channel conditions and significantly saves the user terminal energy consumption compared with other benchmark schemes.
基金This work was supported by the Key Scientific and Technological Project of Henan Province(Grant Number 222102210212)Doctoral Research Start Project of Henan Institute of Technology(Grant Number KQ2005)Key Research Projects of Colleges and Universities in Henan Province(Grant Number 23B510006).
文摘In this paper,we consider mobile edge computing(MEC)networks against proactive eavesdropping.To maximize the transmission rate,IRS assisted UAV communications are applied.We take the joint design of the trajectory of UAV,the transmitting beamforming of users,and the phase shift matrix of IRS.The original problem is strong non-convex and difficult to solve.We first propose two basic modes of the proactive eavesdropper,and obtain the closed-form solution for the boundary conditions of the two modes.Then we transform the original problem into an equivalent one and propose an alternating optimization(AO)based method to obtain a local optimal solution.The convergence of the algorithm is illustrated by numerical results.Further,we propose a zero forcing(ZF)based method as sub-optimal solution,and the simulation section shows that the proposed two schemes could obtain better performance compared with traditional schemes.
基金the National Natural Science Foundation of China under Grant U22A2043.
文摘This paper investigates the adaptive fuzzy finite-time output-feedback fault-tolerant control (FTC) problemfor a class of nonlinear underactuated wheeled mobile robots (UWMRs) system with intermittent actuatorfaults. The UWMR system includes unknown nonlinear dynamics and immeasurable states. Fuzzy logic systems(FLSs) are utilized to work out immeasurable functions. Furthermore, with the support of the backsteppingcontrol technique and adaptive fuzzy state observer, a fuzzy adaptive finite-time output-feedback FTC scheme isdeveloped under the intermittent actuator faults. It is testifying the scheme can ensure the controlled nonlinearUWMRs is stable and the estimation errors are convergent. Finally, the comparison results and simulationvalidate the effectiveness of the proposed fuzzy adaptive finite-time FTC approach.
基金Wenzhou Key Scientific and Technological Projects(No.ZG2020031)Wenzhou Polytechnic Research Projects(No.WZY2021002)+3 种基金Key R&D Projects in Zhejiang Province(No.2021C01117)Major Program of Natural Science Foundation of Zhejiang Province(LD22F020002)the Cloud Security Key Technology Research Laboratorythe Researchers Supporting Project Number(RSP2023R509),King Saud University,Riyadh,Saudi Arabia.
文摘With the development of hardware devices and the upgrading of smartphones,a large number of users save privacy-related information in mobile devices,mainly smartphones,which puts forward higher demands on the protection of mobile users’privacy information.At present,mobile user authenticationmethods based on humancomputer interaction have been extensively studied due to their advantages of high precision and non-perception,but there are still shortcomings such as low data collection efficiency,untrustworthy participating nodes,and lack of practicability.To this end,this paper proposes a privacy-enhanced mobile user authentication method with motion sensors,which mainly includes:(1)Construct a smart contract-based private chain and federated learning to improve the data collection efficiency of mobile user authentication,reduce the probability of the model being bypassed by attackers,and reduce the overhead of data centralized processing and the risk of privacy leakage;(2)Use certificateless encryption to realize the authentication of the device to ensure the credibility of the client nodes participating in the calculation;(3)Combine Variational Mode Decomposition(VMD)and Long Short-TermMemory(LSTM)to analyze and model the motion sensor data of mobile devices to improve the accuracy of model certification.The experimental results on the real environment dataset of 1513 people show that themethod proposed in this paper can effectively resist poisoning attacks while ensuring the accuracy and efficiency of mobile user authentication.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB4700402).
文摘Existing mobile robots mostly use graph search algorithms for path planning,which suffer from relatively low planning efficiency owing to high redundancy and large computational complexity.Due to the limitations of the neighborhood search strategy,the robots could hardly obtain the most optimal global path.A global path planning algorithm,denoted as EDG*,is proposed by expanding nodes using a well-designed expanding disconnected graph operator(EDG)in this paper.Firstly,all obstacles are marked and their corners are located through the map pre-processing.Then,the EDG operator is designed to find points in non-obstruction areas to complete the rapid expansion of disconnected nodes.Finally,the EDG*heuristic iterative algorithm is proposed.It selects the candidate node through a specific valuation function and realizes the node expansion while avoiding collision with a minimum offset.Path planning experiments were conducted in a typical indoor environment and on the public dataset CSM.The result shows that the proposed EDG*reduced the planning time by more than 90%and total length of paths reduced by more than 4.6%.Compared to A*,Dijkstra and JPS,EDG*does not show an exponential explosion effect in map size.The EDG*showed better performance in terms of path smoothness,and collision avoidance.This shows that the EDG*algorithm proposed in this paper can improve the efficiency of path planning and enhance path quality.
基金Project supported by the National Natural Science Foundation of China (Grant No. 62073172)the Natural Science Foundation of Jiangsu Province of China (Grant No. BK20221329)。
文摘A dynamical model is constructed to depict the spatial-temporal evolution of malware in mobile wireless sensor networks(MWSNs). Based on such a model, we design a hybrid control scheme combining parameter perturbation and state feedback to effectively manipulate the spatiotemporal dynamics of malware propagation. The hybrid control can not only suppress the Turing instability caused by diffusion factor but can also adjust the occurrence of Hopf bifurcation induced by time delay. Numerical simulation results show that the hybrid control strategy can efficiently manipulate the transmission dynamics to achieve our expected desired properties, thus reducing the harm of malware propagation to MWSNs.
基金National Natural Science Foundation of China(62072392).
文摘Crowdsourcing technology is widely recognized for its effectiveness in task scheduling and resource allocation.While traditional methods for task allocation can help reduce costs and improve efficiency,they may encounter challenges when dealing with abnormal data flow nodes,leading to decreased allocation accuracy and efficiency.To address these issues,this study proposes a novel two-part invalid detection task allocation framework.In the first step,an anomaly detection model is developed using a dynamic self-attentive GAN to identify anomalous data.Compared to the baseline method,the model achieves an approximately 4%increase in the F1 value on the public dataset.In the second step of the framework,task allocation modeling is performed using a twopart graph matching method.This phase introduces a P-queue KM algorithm that implements a more efficient optimization strategy.The allocation efficiency is improved by approximately 23.83%compared to the baseline method.Empirical results confirm the effectiveness of the proposed framework in detecting abnormal data nodes,enhancing allocation precision,and achieving efficient allocation.
基金supported by the National Natural Science Foundation of China(32172188)Science and Technology Cooperation Project of ZheJiang Province(2023SNJF058-3)。
文摘Multidrug-resistant(MDR)Enterobacteriaceae critically threaten duck farming and public health.The phenotypes,genotypes,and associated mobile genetic elements(MGEs)of MDR Enterobacteriaceae isolated from 6 duck farms in Zhejiang Province,China,were investigated.A total of 215 isolates were identified as Escherichia coli(64.65%),Klebsiella pneumoniae(12.09%),Proteus mirabilis(10.23%),Salmonella(8.84%),and Enterobacter cloacae(4.19%).Meanwhile,all isolates were resistant to at least two antibiotics.Most isolates carried tet(A)(85.12%),blaTEM(78.60%)and sul1(67.44%)resistance genes.Gene co-occurrence analysis showed that the resistance genes were associated with IS26 and integrons.A conjugative IncFII plasmid pSDM004 containing all the above MGEs was detected in Proteus mirabilis isolate SDM004.This isolate was resistant to 18 antibiotics and carried the blaNDM-5 gene.MGEs,especially plasmids,are the primary antibiotic resistance gene transmission route in duck farms.These findings provide a theoretical basis for the rational use of antibiotics in farms which are substantial for evaluating public health and food safety.
文摘Mobile technology is developing significantly.Mobile phone technologies have been integrated into the healthcare industry to help medical practitioners.Typically,computer vision models focus on image detection and classification issues.MobileNetV2 is a computer vision model that performs well on mobile devices,but it requires cloud services to process biometric image information and provide predictions to users.This leads to increased latency.Processing biometrics image datasets on mobile devices will make the prediction faster,but mobiles are resource-restricted devices in terms of storage,power,and computational speed.Hence,a model that is small in size,efficient,and has good prediction quality for biometrics image classification problems is required.Quantizing pre-trained CNN(PCNN)MobileNetV2 architecture combined with a Support Vector Machine(SVM)compacts the model representation and reduces the computational cost and memory requirement.This proposed novel approach combines quantized pre-trained CNN(PCNN)MobileNetV2 architecture with a Support Vector Machine(SVM)to represent models efficiently with low computational cost and memory.Our contributions include evaluating three CNN models for ocular disease identification in transfer learning and deep feature plus SVM approaches,showing the superiority of deep features from MobileNetV2 and SVM classification models,comparing traditional methods,exploring six ocular diseases and normal classification with 20,111 images postdata augmentation,and reducing the number of trainable models.The model is trained on ocular disorder retinal fundus image datasets according to the severity of six age-related macular degeneration(AMD),one of the most common eye illnesses,Cataract,Diabetes,Glaucoma,Hypertension,andMyopia with one class Normal.From the experiment outcomes,it is observed that the suggested MobileNetV2-SVM model size is compressed.The testing accuracy for MobileNetV2-SVM,InceptionV3,and MobileNetV2 is 90.11%,86.88%,and 89.76%respectively while MobileNetV2-SVM,InceptionV3,and MobileNetV2 accuracy are observed to be 92.59%,83.38%,and 90.16%,respectively.The proposed novel technique can be used to classify all biometric medical image datasets on mobile devices.