Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur...Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization.展开更多
Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolli...Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.展开更多
UK manufacturers experienced a challenging start to 2024,with sales in the first quarter(Q1)down 10 per cent on the previous quarter,according to a report by Unleashed.However,year-on-year growth showed a modest incre...UK manufacturers experienced a challenging start to 2024,with sales in the first quarter(Q1)down 10 per cent on the previous quarter,according to a report by Unleashed.However,year-on-year growth showed a modest increase of 2 per cent,reflecting the Bank of England’s assessment of weak growth in the manufacturing sector.展开更多
One of the core competencies of a supermarket lies in its branding.With the continuous development of the market economy and the ongoing evolution of consumer demand,private brands have progressively emerged as signif...One of the core competencies of a supermarket lies in its branding.With the continuous development of the market economy and the ongoing evolution of consumer demand,private brands have progressively emerged as significant contributors to supermarket growth.However,a pivotal developmental challenge for supermarkets is navigating the innovative decision-making process between private brands and designated manufacturers.This paper aims to investigate the innovative decisions between private brands and designated manufacturers,along with the relevant promotional strategies employed during entry into the United States market.展开更多
Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infue...Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.展开更多
Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the m...Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.展开更多
Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In ...Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In recent decades,additive manufacturing(AM)technology has garnered attention as a potential way for fabricating MMCs.This article provides a comprehensive review of recent endeavors and progress in AM of MMCs,encompassing available AM technologies,types of reinforcements,feedstock preparation,synthesis principles during the AM process,typical AM-produced MMCs,strengthening mechanisms,challenges,and future interests.Compared to conventionally manufactured MMCs,AM-produced MMCs exhibit more uniformly distributed reinforcements and refined microstructure,resulting in comparable or even better mechanical properties.In addition,AM technology can produce bulk MMCs with significantly low porosity and fabricate geometrically complex MMC components and MMC lattice structures.As reviewed,many AM-produced MMCs,such as Al matrix composites,Ti matrix composites,nickel matrix composites,Fe matrix composites,etc,have been successfully produced.The types and contents of reinforcements strongly influence the properties of AM-produced MMCs,the choice of AM technology,and the applied processing parameters.In these MMCs,four primary strengthening mechanisms have been identified:Hall–Petch strengthening,dislocation strengthening,load transfer strengthening,and Orowan strengthening.AM technologies offer advantages that enhance the properties of MMCs when compared with traditional fabrication methods.Despite the advantages above,further challenges of AM-produced MMCs are still faced,such as new methods and new technologies for investigating AM-produced MMCs,the intrinsic nature of MMCs coupled with AM technologies,and challenges in the AM processes.Therefore,the article concludes by discussing the challenges and future interests of AM of MMCs.展开更多
Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the med...Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the medical industries owing to their biodegradability and a lower elastic modulus comparable to bone.The ability to manufacture near-net shape products featuring intricate geometries has sparked huge interest in additive manufacturing(AM)of Mg alloys,reflecting a transformation in the manufacturing sectors.However,AM of Mg alloys presents more formidable challenges due to inherent properties,particularly susceptibility to oxidation,gas trapping,high thermal expansion coefficient,and low solidification temperature.This leads to defects such as porosity,lack of fusion,cracking,delamination,residual stresses,and inhomogeneity,ultimately influencing the mechanical,corrosion,and surface properties of AM Mg alloys.To address these issues,post-processing of AM Mg alloys are often needed to make them suitable for application.The present article reviews all post-processing techniques adapted for AM Mg alloys to date,including heat treatment,hot isostatic pressing,friction stir processing,and surface peening.The utilization of these methods within the hybrid AM process,employing interlayer post-processing,is also discussed.Optimal post-processing conditions are reported,and their influence on the microstructure,mechanical,and corrosion properties are detailed.Additionally,future prospects and research directions are proposed.展开更多
This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensi...This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers.展开更多
Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,s...Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,screws are evolving from solid and smooth to porous and rough.Additive manufacturing(AM)offers a high degree of manufacturing freedom,enabling the preparation of predesigned screws that are porous and rough.This paper provides an overview of the problems currently faced by bone screws:long-term loosening and screw breakage.Next,advances in osseointegrated screws are summarized hierarchically(sub-micro,micro,and macro).At the sub-microscale level,we describe surface-modification techniques for enhancing osseointegration.At the micro level,we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws,including porosity,pore size,and pore shape.In addition,we highlight three promising pore shapes:triply periodic minimal surface,auxetic structure with negative Poisson ratio,and the Voronoi structure.At the macro level,we outline the strategies of graded design,gradient design,and topology optimization design to improve the mechanical strength of porous osseointegrated screws.Simultaneously,this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws.AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.展开更多
Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.Howeve...Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials.展开更多
Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium all...Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium alloys,mainly on the Mg-Al alloy system.However,there is little research on GTA-WAAM for casting magnesium alloy.This study investigates the microstructural characteristics and mechanical properties of AZ91D magnesium alloy(AZ91D-Mg)deposited by GTA-WAAM.Single-pass multilayer thin-walled components were successfully fabricated.The results show that equiaxed grains dominate the microstructure of the deposited samples.During the remelting process,the precipitated phases dissolve into the matrix,and they precipitate and grow from the matrix under the thermal effect of the subsequent thermal cycle.The mechanical properties in the vertical and horizontal directions are similar,showing higher overall mechanical properties than the casting parts.The average yield strength is 110.5 MPa,the ultimate tensile strength is 243.6 MPa,and the elongation is 11.7%.The overall hardness distribution in the deposited sample is relatively uniform,and the average microhardness is 59.6 HV_(0.2).展开更多
In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and rene...In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy.展开更多
Nickel-based superalloys, well-established in aeronautics, have recently gained significant traction in additive manufacturing. Inconel 939 is one of the alloys increasingly playing a vital role in this field. This pa...Nickel-based superalloys, well-established in aeronautics, have recently gained significant traction in additive manufacturing. Inconel 939 is one of the alloys increasingly playing a vital role in this field. This paper examines the development of the Portevin-Le Chatelier (PLC) effect in additively manufactured Inconel 939 in comparison with cast Inconel 939. A detailed analysis of tensile test characteristics was conducted, complemented by a high-resolution scanning electron microscopy (HR-SEM) investigation. The PLC region exhibited several properties during tensile testing, such as stress-strain behavior, cycle scale, and overall stress increase. The HR-SEM analysis of Gamma prime (γ') precipitates revealed distinct morphologies, which are suggested to be linked to the features of the PLC region. Samples with a high amount of γ' precipitates showed a less pronounced PLC region, while those with fewer γ' precipitates displayed a more distinct PLC effect. A mechanism for the cyclic drop-and-rise stress behavior, based on the work of Varvenne and La-Rose, was proposed, possibly induced by the varying morphologies of γ' precipitates in the IN939 alloy. Further study is needed to deepen the understanding of the relationship between the γ' micro-(nano) structure and the PLC phenomenon.展开更多
Currently,osteochondral(OC)tissue engineering has become a potential treatment strategy in repairing chondral lesions and early osteoarthritis due to the limited self-healing ability of cartilage.However,it is still c...Currently,osteochondral(OC)tissue engineering has become a potential treatment strategy in repairing chondral lesions and early osteoarthritis due to the limited self-healing ability of cartilage.However,it is still challenging to ensure the integrity,physiological function and regeneration ability of stratified OC scaffolds in clinical application.Biomimetic OC scaffolds are attractive to overcome the above problems because of their similar biological and mechanical properties with native OC tissue.As a consequence,the researches on biomimetic design to achieve the tissue function of each layer,and additive manufacture(AM)to accomplish composition switch and ultrastructure of personalized OC scaffolds have made a remarkable progress.In this review,the design methods of biomaterial and structure as well as computer-aided design,and performance prediction of biopolymer-based OC scaffolds are presented;then,the characteristics and limitations of AM technologies and the integrated manufacture schemes in OC tissue engineering are summarized;finally,the novel biomaterials and techniques and the inevitable trends of multifunctional bio-manufacturing system are discussed for further optimizing production of tissue engineering OC scaffolds.展开更多
This paper advances the viewpoints and methods of the rapid sample product trial manufacture technique for developing water meter new products by CAD and simulation, computer virtual assembling and optimizing, rapid m...This paper advances the viewpoints and methods of the rapid sample product trial manufacture technique for developing water meter new products by CAD and simulation, computer virtual assembling and optimizing, rapid machining process and measurement etc. as the design and sample product trial manufacture process of water meter new products are long in product development period, and low in product development efficiency in the present time.展开更多
As firms come under greater market pressure, the management of the inter-functional design/manufacture relationship becomes a more important competitive variable. The characteristics of the design-manufacture interfac...As firms come under greater market pressure, the management of the inter-functional design/manufacture relationship becomes a more important competitive variable. The characteristics of the design-manufacture interface were analyzed, and several methods of the design-manufacture interface relationship management were compared. Based on theories concerned and enterprise practice, how to manage the relationship of design-manufacture interface to reduce the product cost and shorten the time-to-market was demonstrated, finally the competitive advantage was improved.展开更多
The paper describes the characteristics of the intelligent manufacturing system and production mode in the 21st century in the information age, therefore draws a conclusion that the intelligent manufacturing system ad...The paper describes the characteristics of the intelligent manufacturing system and production mode in the 21st century in the information age, therefore draws a conclusion that the intelligent manufacturing system adapts to agile manufacture (AM for short) production mode in the 21st century.展开更多
In order to build a ceramic component by inkjet printing, the object must be fabricated through the interaction and solidification of drops, typically in the range of 10–100 p L. In order to achieve this goal, stable...In order to build a ceramic component by inkjet printing, the object must be fabricated through the interaction and solidification of drops, typically in the range of 10–100 p L. In order to achieve this goal, stable ceramic inks must be developed. These inks should satisfy specific rheological conditions that can be illustrated within a parameter space defined by the Reynolds and Weber numbers. Printed drops initially deform on impact with a surface by dynamic dissipative processes, but then spread to an equilibrium shape defined by capillarity. We can identify the processes by which these drops interact to form linear features during printing, but there is a poorer level of understanding as to how 2D and 3D structures form. The stability of 2D sheets of ink appears to be possible over a more limited range of process conditions that is seen with the formation of lines. In most cases, the ink solidifies through evaporation and there is a need to control the drying process to eliminate the "coffee ring" defect. Despite these uncertainties, there have been a large number of reports on the successful use of inkjet printing for the manufacture of small ceramic components from a number of different ceramics. This technique offers good prospects as a future manufacturing technique. This review identifies potential areas for future research to improve our understanding of this manufacturing method.展开更多
The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the r...The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.12272356,12072326,and 12172337)the State Key Laboratory of Dynamic Measurement Technology,North University of China(No.2022-SYSJJ-03)。
文摘Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization.
基金Project(ZZYJKT2024-08)supported by the State Key Laboratory of Precision Manufacturing for Extreme Service Performance,ChinaProject(2022JB11GX004)supported by Selection of the best Candidates to Undertake Key Research Projects by Dalian City,ChinaProject(201806835007)supported by China Scholarship Council。
文摘Wire-arc additive manufacture(WAAM)has great potential for manufacturing of Al-Cu components.However,inferior mechanical properties of WAAM deposited material restrict its industrial application.Inter-layer cold rolling and thermo-mechanical heat treatment(T8)with pre-stretching deformation between solution and aging treatment were adopted in this study.Their effects on hardness,mechanical properties and microstructure were analyzed and compared to the conventional heat treatment(T6).The results show that cold rolling increases the hardness and strengths,which further increase with T8 treatment.The ultimate tensile strength(UTS)of 513 MPa and yield stress(YS)of 413 MPa can be obtained in the inter-layer cold-rolled sample with T8 treatment,which is much higher than that in the as-deposited samples.The cold-rolled samples show higher elongation than that of as-deposited ones due to significant elimination of porosity in cold rolling;while both the T6 and T8 treatments decrease the elongation.The cold rolling and pre-stretching deformation both contribute to the formation of dense and dispersive precipitatedθ′phases,which inhibits the dislocation movement and enhances the strengths;as a result,T8 treatment shows better strengthening effect than the T6 treatment.The strengthening mechanism was analyzed and it was mainly related to work hardening and precipitation strengthening.
文摘UK manufacturers experienced a challenging start to 2024,with sales in the first quarter(Q1)down 10 per cent on the previous quarter,according to a report by Unleashed.However,year-on-year growth showed a modest increase of 2 per cent,reflecting the Bank of England’s assessment of weak growth in the manufacturing sector.
文摘One of the core competencies of a supermarket lies in its branding.With the continuous development of the market economy and the ongoing evolution of consumer demand,private brands have progressively emerged as significant contributors to supermarket growth.However,a pivotal developmental challenge for supermarkets is navigating the innovative decision-making process between private brands and designated manufacturers.This paper aims to investigate the innovative decisions between private brands and designated manufacturers,along with the relevant promotional strategies employed during entry into the United States market.
基金supported by the National Key R&D Program of China(Grant No.2022YFB4600300)the National Natural Science Foundation of China(No.U22A20189,52175364)the China Scholarship Council(Grant No.202206290134)。
文摘Nd-Fe-B permanent magnets play a crucial role in energy conversion and electronic devices.The essential magnetic properties of Nd-Fe-B magnets,particularly coercivity and remanent magnetization,are significantly infuenced by the phase characteristics and microstructure.In this work,Nd-Fe-B magnets were manufactured using vacuum induction melting(VIM),laser directed energy deposition(LDED)and laser powder bed fusion(LPBF)technologies.Themicrostructure evolution and phase selection of Nd-Fe-B magnets were then clarified in detail.The results indicated that the solidification velocity(V)and cooling rate(R)are key factors in the phase selection.In terms of the VIM-casting Nd-Fe-B magnet,a large volume fraction of theα-Fe soft magnetic phase(39.7 vol.%)and Nd2Fe17Bxmetastable phase(34.7 vol.%)areformed due to the low R(2.3×10-1?C s-1),whereas only a minor fraction of the Nd2Fe14B hard magnetic phase(5.15 vol.%)is presented.For the LDED-processed Nd-Fe-B deposit,although the Nd2Fe14B hard magnetic phase also had a low value(3.4 vol.%)as the values of V(<10-2m s-1)and R(5.06×103?C s-1)increased,part of theα-Fe soft magnetic phase(31.7vol.%)is suppressed,and a higher volume of Nd2Fe17Bxmetastable phases(47.5 vol.%)areformed.As a result,both the VIM-casting and LDED-processed Nd-Fe-B deposits exhibited poor magnetic properties.In contrast,employing the high values of V(>10-2m s-1)and R(1.45×106?C s-1)in the LPBF process resulted in the substantial formation of the Nd2Fe14B hard magnetic phase(55.8 vol.%)directly from the liquid,while theα-Fe soft magnetic phase and Nd2Fe17Bxmetastable phase precipitation are suppressed in the LPBF-processed Nd-Fe-B magnet.Additionally,crystallographic texture analysis reveals that the LPBF-processedNd-Fe-B magnets exhibit isotropic magnetic characteristics.Consequently,the LPBF-processed Nd-Fe-B deposit,exhibiting a coercivity of 656 k A m-1,remanence of 0.79 T and maximum energy product of 71.5 k J m-3,achieved an acceptable magnetic performance,comparable to other additive manufacturing processed Nd-Fe-B magnets from MQP(Nd-lean)Nd-Fe-Bpowder.
基金supported by the National Institute of Arthritis and Musculoskeletal and Skin Diseases of the National Institutes of Health under Award Numbers R01 AR067306 and R01 AR078241。
文摘Bacterial colonization of orthopedic implants is one of the leading causes of failure and clinical complexities for load-bearing metallic implants. Topical or systemic administration of antibiotics may not offer the most efficient defense against colonization, especially in the case of secondary infection, leading to surgical removal of implants and in some cases even limbs. In this study, laser powder bed fusion was implemented to fabricate Ti3Al2V alloy by a 1:1 weight mixture of CpTi and Ti6Al4V powders. Ti-Tantalum(Ta)–Copper(Cu) alloys were further analyzed by the addition of Ta and Cu into the Ti3Al2V custom alloy. The biological,mechanical, and tribo-biocorrosion properties of Ti3Al2V alloy were evaluated. A 10 wt.% Ta(10Ta) and 3 wt.% Cu(3Cu) were added to the Ti3Al2V alloy to enhance biocompatibility and impart inherent bacterial resistance. Additively manufactured implants were investigated for resistance against Pseudomonas aeruginosa and Staphylococcus aureus strains of bacteria for up to 48 h. A 3 wt.% Cu addition to Ti3Al2V displayed improved antibacterial efficacy, i.e.78%–86% with respect to CpTi. Mechanical properties for Ti3Al2V–10Ta–3Cu alloy were evaluated, demonstrating excellent fatigue resistance, exceptional shear strength, and improved tribological and tribo-biocorrosion characteristics when compared to Ti6Al4V. In vivo studies using a rat distal femur model revealed improved early-stage osseointegration for alloys with10 wt.% Ta addition compared to CpTi and Ti6Al4V. The 3 wt.% Cu-added compositions displayed biocompatibility and no adverse infammatory response in vivo. Our results establish the Ti3Al2V–10Ta–3Cu alloy’s synergistic effect on improving both in vivo biocompatibility and microbial resistance for the next generation of load-bearing metallic implants.
基金the financial support from the Australian Research Council through the Discovery Project(DP110101653 and DP130103592)Basic and Applied Basic Research Foundation of Guangdong Province,China(2022A1515140123).
文摘Metal matrix composites(MMCs)are frequently employed in various advanced industries due to their high modulus and strength,favorable wear and corrosion resistance,and other good properties at elevated temperatures.In recent decades,additive manufacturing(AM)technology has garnered attention as a potential way for fabricating MMCs.This article provides a comprehensive review of recent endeavors and progress in AM of MMCs,encompassing available AM technologies,types of reinforcements,feedstock preparation,synthesis principles during the AM process,typical AM-produced MMCs,strengthening mechanisms,challenges,and future interests.Compared to conventionally manufactured MMCs,AM-produced MMCs exhibit more uniformly distributed reinforcements and refined microstructure,resulting in comparable or even better mechanical properties.In addition,AM technology can produce bulk MMCs with significantly low porosity and fabricate geometrically complex MMC components and MMC lattice structures.As reviewed,many AM-produced MMCs,such as Al matrix composites,Ti matrix composites,nickel matrix composites,Fe matrix composites,etc,have been successfully produced.The types and contents of reinforcements strongly influence the properties of AM-produced MMCs,the choice of AM technology,and the applied processing parameters.In these MMCs,four primary strengthening mechanisms have been identified:Hall–Petch strengthening,dislocation strengthening,load transfer strengthening,and Orowan strengthening.AM technologies offer advantages that enhance the properties of MMCs when compared with traditional fabrication methods.Despite the advantages above,further challenges of AM-produced MMCs are still faced,such as new methods and new technologies for investigating AM-produced MMCs,the intrinsic nature of MMCs coupled with AM technologies,and challenges in the AM processes.Therefore,the article concludes by discussing the challenges and future interests of AM of MMCs.
文摘Magnesium(Mg)and its alloys are emerging as a structural material for the aerospace,automobile,and electronics industries,driven by the imperative of weight reduction.They are also drawing notable attention in the medical industries owing to their biodegradability and a lower elastic modulus comparable to bone.The ability to manufacture near-net shape products featuring intricate geometries has sparked huge interest in additive manufacturing(AM)of Mg alloys,reflecting a transformation in the manufacturing sectors.However,AM of Mg alloys presents more formidable challenges due to inherent properties,particularly susceptibility to oxidation,gas trapping,high thermal expansion coefficient,and low solidification temperature.This leads to defects such as porosity,lack of fusion,cracking,delamination,residual stresses,and inhomogeneity,ultimately influencing the mechanical,corrosion,and surface properties of AM Mg alloys.To address these issues,post-processing of AM Mg alloys are often needed to make them suitable for application.The present article reviews all post-processing techniques adapted for AM Mg alloys to date,including heat treatment,hot isostatic pressing,friction stir processing,and surface peening.The utilization of these methods within the hybrid AM process,employing interlayer post-processing,is also discussed.Optimal post-processing conditions are reported,and their influence on the microstructure,mechanical,and corrosion properties are detailed.Additionally,future prospects and research directions are proposed.
文摘This paper presents the first-ever investigation of Menger fractal cubes'quasi-static compression and impact behaviour.Menger cubes with different void ratios were 3D printed using polylactic acid(PLA)with dimensions of 40 mm×40 mm×40 mm.Three different orders of Menger cubes with different void ratios were considered,namely M1 with a void ratio of 0.26,M2 with a void ratio of 0.45,and M3with a void ratio of 0.60.Quasi-static Compression tests were conducted using a universal testing machine,while the drop hammer was used to observe the behaviour under impact loading.The fracture mechanism,energy efficiency and force-time histories were studied.With the structured nature of the void formation and predictability of the failure modes,the Menger geometry showed some promise compared to other alternatives,such as foams and honeycombs.With the increasing void ratio,the Menger geometries show force-displacement behaviour similar to hyper-elastic materials such as rubber and polymers.The third-order Menger cubes showed the highest energy absorption efficiency compared to the other two geometries in this study.The findings of the present work reveal the possibility of using additively manufactured Menger geometries as an energy-efficient system capable of reducing the transmitting force in applications such as crash barriers.
基金supported by the National Natural Science Foundation of China(Nos.82272504 and 82072456)the National Key R&D Program of China(No.2018YFB1105100)+4 种基金the Department of Science and Technology of Jilin Province,China(Nos.20200404202YY,20200403086SF,20210101321JC,20210204104YY,20200201453JC,20220204119YY,202201ZYTS131,202201ZYTS129,20220401084YY,202201ZYTS505,and YDZJ202301ZYTS076)the Department of Finance of Jilin Province,China(No.2020SCZT037)the Jilin Provincial Development and Reform Commission,China(Nos.2018C010 and 2022C043-5)the Interdisciplinary Integration and Cultivation Project of Jilin University(No.JLUXKJC2020307)the Central University Basic Scientific Research Fund(No.2023-JCXK-04).
文摘Bone screws are devices used to fix implants or bones to bones.However,conventional screws are mechanically fixed with thread and often face long-term failure due to poor osseointegration.To improve osseointegration,screws are evolving from solid and smooth to porous and rough.Additive manufacturing(AM)offers a high degree of manufacturing freedom,enabling the preparation of predesigned screws that are porous and rough.This paper provides an overview of the problems currently faced by bone screws:long-term loosening and screw breakage.Next,advances in osseointegrated screws are summarized hierarchically(sub-micro,micro,and macro).At the sub-microscale level,we describe surface-modification techniques for enhancing osseointegration.At the micro level,we summarize the micro-design parameters that affect the mechanical and biological properties of porous osseointegrated screws,including porosity,pore size,and pore shape.In addition,we highlight three promising pore shapes:triply periodic minimal surface,auxetic structure with negative Poisson ratio,and the Voronoi structure.At the macro level,we outline the strategies of graded design,gradient design,and topology optimization design to improve the mechanical strength of porous osseointegrated screws.Simultaneously,this paper outlines advances in AM technology for enhancing the mechanical properties of porous osseointegrated screws.AM osseointegrated screws with hierarchical design are expected to provide excellent long-term fixation and the required mechanical strength.
基金supported by the Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an(2022JH-ZDZH-0039)International Science and Technology Cooperation Program of Shaanxi Province (2023-GHZD-50)+9 种基金Project of Qin Chuangyuan ‘Scientist+Engineer’team constructionKey R&D plan of Shaanxi Province (S2023-YF-QCYK-0001-237)Projects of Major Scientific and Technological Achievements Local Transformation of Xi’an (2022JH-ZDZH-0039)National Natural Science Foundation of China (52101134)Natural Science Foundation of Guangdong Province (2022A1515010275)Scientific Research Program Funded by Shaanxi Provincial Education Department (22JK0479)Doctoral Dissertations Innovation Fund of Xi’an University of Technology (101-252072305)Research Start-up Project of Xi’an University of Technology(101-256082204)Natural Science Foundation of Shaanxi Province (2023-JC-QN-0573)Natural Science Basic Research Program of Shaanxi(2023-JC-YB-412)
文摘Customized heat treatment is essential for enhancing the mechanical properties of additively manufactured metallic materials,especially for alloys with complex phase constituents and heterogenous microstructure.However,the interrelated evolutions of different microstructure features make it difficult to establish optimal heat treatment processes.Herein,we proposed a method for customized heat treatment process exploration and establishment to overcome this challenge for such kind of alloys,and a wire arc additively manufactured(WAAM)Mg-Gd-Y-Zn-Zr alloy with layered heterostructure was used for feasibility verification.Through this method,the optimal microstructures(fine grain,controllable amount of long period stacking ordered(LPSO)structure and nano-scaleβ'precipitates)and the corresponding customized heat treatment processes(520°C/30 min+200°C/48 h)were obtained to achieve a good combination of a high strength of 364 MPa and a considerable elongation of 6.2%,which surpassed those of other state-of-the-art WAAM-processed Mg alloys.Furthermore,we evidenced that the favorable effect of the undeformed LPSO structures on the mechanical properties was emphasized only when the nano-scaleβ'precipitates were present.It is believed that the findings promote the application of magnesium alloy workpieces and help to establish customized heat treatment processes for additively manufactured materials.
基金supported by the National Natural Science Foundation of China[Grant Nos.52275324 and 51975148]the Fundamental Research Funds for the Central Universities[Grant No.FRFCU5710051321].
文摘Wire arc additive manufacturing offers advantages in producing large metal structures.The current research on GTA-based wire arc additive manufacturing(GTA-WAAM)of magnesium alloys is focused on deformed magnesium alloys,mainly on the Mg-Al alloy system.However,there is little research on GTA-WAAM for casting magnesium alloy.This study investigates the microstructural characteristics and mechanical properties of AZ91D magnesium alloy(AZ91D-Mg)deposited by GTA-WAAM.Single-pass multilayer thin-walled components were successfully fabricated.The results show that equiaxed grains dominate the microstructure of the deposited samples.During the remelting process,the precipitated phases dissolve into the matrix,and they precipitate and grow from the matrix under the thermal effect of the subsequent thermal cycle.The mechanical properties in the vertical and horizontal directions are similar,showing higher overall mechanical properties than the casting parts.The average yield strength is 110.5 MPa,the ultimate tensile strength is 243.6 MPa,and the elongation is 11.7%.The overall hardness distribution in the deposited sample is relatively uniform,and the average microhardness is 59.6 HV_(0.2).
文摘In the face of the increased global campaign to minimize the emission of greenhouse gases and the need for sustainability in manufacturing, there is a great deal of research focusing on environmentally benign and renewable materials as a substitute for synthetic and petroleum-based products. Natural fiber-reinforced polymeric composites have recently been proposed as a viable alternative to synthetic materials. The current work investigates the suitability of coconut fiber-reinforced polypropylene as a structural material. The coconut fiber-reinforced polypropylene composites were developed. Samples of coconut fiber/polypropylene (PP) composites were prepared using Fused Filament Fabrication (FFF). Tests were then conducted on the mechanical properties of the composites for different proportions of coconut fibers. The results obtained indicate that the composites loaded with 2 wt% exhibited the highest tensile and flexural strength, while the ones loaded with 3 wt% had the highest compression strength. The ultimate tensile and flexural strength at 2 wt% were determined to be 34.13 MPa and 70.47 MPa respectively. The compression strength at 3 wt% was found to be 37.88 MPa. Compared to pure polypropylene, the addition of coconut fibers increased the tensile, flexural, and compression strength of the composite. In the study, an artificial neural network model was proposed to predict the mechanical properties of polymeric composites based on the proportion of fibers. The model was found to predict data with high accuracy.
文摘Nickel-based superalloys, well-established in aeronautics, have recently gained significant traction in additive manufacturing. Inconel 939 is one of the alloys increasingly playing a vital role in this field. This paper examines the development of the Portevin-Le Chatelier (PLC) effect in additively manufactured Inconel 939 in comparison with cast Inconel 939. A detailed analysis of tensile test characteristics was conducted, complemented by a high-resolution scanning electron microscopy (HR-SEM) investigation. The PLC region exhibited several properties during tensile testing, such as stress-strain behavior, cycle scale, and overall stress increase. The HR-SEM analysis of Gamma prime (γ') precipitates revealed distinct morphologies, which are suggested to be linked to the features of the PLC region. Samples with a high amount of γ' precipitates showed a less pronounced PLC region, while those with fewer γ' precipitates displayed a more distinct PLC effect. A mechanism for the cyclic drop-and-rise stress behavior, based on the work of Varvenne and La-Rose, was proposed, possibly induced by the varying morphologies of γ' precipitates in the IN939 alloy. Further study is needed to deepen the understanding of the relationship between the γ' micro-(nano) structure and the PLC phenomenon.
基金Funding was supported by the Key Research and Development Program of Shaanxi Province(Grant No.2020ZDLSF04-07)the National Key Research and Development Program of China(Grant No.2019QY(Y)0502)+2 种基金the National Natural Science Foundation of China(Grant No.51905438)the Innovation Platform of Biofabrication(Grant No.17SF0002)the Fundamental Research Funds for the Central Universities(Grant No.31020190502009).
文摘Currently,osteochondral(OC)tissue engineering has become a potential treatment strategy in repairing chondral lesions and early osteoarthritis due to the limited self-healing ability of cartilage.However,it is still challenging to ensure the integrity,physiological function and regeneration ability of stratified OC scaffolds in clinical application.Biomimetic OC scaffolds are attractive to overcome the above problems because of their similar biological and mechanical properties with native OC tissue.As a consequence,the researches on biomimetic design to achieve the tissue function of each layer,and additive manufacture(AM)to accomplish composition switch and ultrastructure of personalized OC scaffolds have made a remarkable progress.In this review,the design methods of biomaterial and structure as well as computer-aided design,and performance prediction of biopolymer-based OC scaffolds are presented;then,the characteristics and limitations of AM technologies and the integrated manufacture schemes in OC tissue engineering are summarized;finally,the novel biomaterials and techniques and the inevitable trends of multifunctional bio-manufacturing system are discussed for further optimizing production of tissue engineering OC scaffolds.
文摘This paper advances the viewpoints and methods of the rapid sample product trial manufacture technique for developing water meter new products by CAD and simulation, computer virtual assembling and optimizing, rapid machining process and measurement etc. as the design and sample product trial manufacture process of water meter new products are long in product development period, and low in product development efficiency in the present time.
文摘As firms come under greater market pressure, the management of the inter-functional design/manufacture relationship becomes a more important competitive variable. The characteristics of the design-manufacture interface were analyzed, and several methods of the design-manufacture interface relationship management were compared. Based on theories concerned and enterprise practice, how to manage the relationship of design-manufacture interface to reduce the product cost and shorten the time-to-market was demonstrated, finally the competitive advantage was improved.
文摘The paper describes the characteristics of the intelligent manufacturing system and production mode in the 21st century in the information age, therefore draws a conclusion that the intelligent manufacturing system adapts to agile manufacture (AM for short) production mode in the 21st century.
文摘In order to build a ceramic component by inkjet printing, the object must be fabricated through the interaction and solidification of drops, typically in the range of 10–100 p L. In order to achieve this goal, stable ceramic inks must be developed. These inks should satisfy specific rheological conditions that can be illustrated within a parameter space defined by the Reynolds and Weber numbers. Printed drops initially deform on impact with a surface by dynamic dissipative processes, but then spread to an equilibrium shape defined by capillarity. We can identify the processes by which these drops interact to form linear features during printing, but there is a poorer level of understanding as to how 2D and 3D structures form. The stability of 2D sheets of ink appears to be possible over a more limited range of process conditions that is seen with the formation of lines. In most cases, the ink solidifies through evaporation and there is a need to control the drying process to eliminate the "coffee ring" defect. Despite these uncertainties, there have been a large number of reports on the successful use of inkjet printing for the manufacture of small ceramic components from a number of different ceramics. This technique offers good prospects as a future manufacturing technique. This review identifies potential areas for future research to improve our understanding of this manufacturing method.
文摘The refining effect of Al3Ti1B1RE master alloy on Al sheets used for pressure can manufacture and the behavior of mixed rare earths in master alloy were investigated with XRD, OM, SEM and EDAX. It is found that the refining effect of the refiner on the material has superiority over foreign or domestic Al5Ti1B refiner, and the refiner still retains its refining ability for 6 h after adding it to molten Al, thus improving the strength and plasticity of the material remarkably. The excellent refining effect and stability of AlTiBRE refiner result from that RE can lower the surface energy of molten Al and improve the wetting characteristics of molten Al on refinement nuclei such as TiAl 3, TiB 2, etc., thus giving full play to the effect of heterogeneous nucleation and impeding the congregating tendency of TiB 2 phase in molten Al. At the same time, RE gathering in front of solid/liquid interface are also easy to cause composition supercooling in molten Al, thus impeding the growth of α Al grains and promoting α Al nucleation on refinement nuclei. In addition, RE also play certain role in purification and grain refinement, or modification, especially their effect of purification can improve the metallurgical quality of AlTiBRE master alloy.